Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris)

. 2016 May 26 ; 16 (1) : 120. [epub] 20160526

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27230558
Odkazy

PubMed 27230558
PubMed Central PMC4881148
DOI 10.1186/s12870-016-0805-5
PII: 10.1186/s12870-016-0805-5
Knihovny.cz E-zdroje

BACKGROUND: Sugar beet (Beta vulgaris) is an important crop of temperate climate zones, which provides nearly 30 % of the world's annual sugar needs. From the total genome size of 758 Mb, only 567 Mb were incorporated in the recently published genome sequence, due to the fact that regions with high repetitive DNA contents (e.g. satellite DNAs) are only partially included. Therefore, to fill these gaps and to gain information about the repeat composition of centromeres and heterochromatic regions, we performed chromatin immunoprecipitation followed by sequencing (ChIP-Seq) using antibodies against the centromere-specific histone H3 variant of sugar beet (CenH3) and the heterochromatic mark of dimethylated lysine 9 of histone H3 (H3K9me2). RESULTS: ChIP-Seq analysis revealed that active centromeres containing CenH3 consist of the satellite pBV and the Ty3-gypsy retrotransposon Beetle7, while heterochromatin marked by H3K9me2 exhibits heterogeneity in repeat composition. H3K9me2 was mainly associated with the satellite family pEV, the Ty1-copia retrotransposon family Cotzilla and the DNA transposon superfamily of the En/Spm type. In members of the section Beta within the genus Beta, immunostaining using the CenH3 antibody was successful, indicating that orthologous CenH3 proteins are present in closely related species within this section. CONCLUSIONS: The identification of repetitive genome portions by ChIP-Seq experiments complemented the sugar beet reference sequence by providing insights into the repeat composition of poorly characterized CenH3-chromatin and H3K9me2-heterochromatin. Therefore, our work provides the basis for future research and application concerning the sugar beet centromere and repeat-rich heterochromatic regions characterized by the presence of H3K9me2.

Zobrazit více v PubMed

Arumuganathan K, Earle ED. Nuclear DNA content of some important plant species. Plant Mol Biol Report. 1991;9:208–218. doi: 10.1007/BF02672069. DOI

Flavell RB, Bennett MD, Smith JB, Smith DB. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet. 1974;12:257–269. doi: 10.1007/BF00485947. PubMed DOI

Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldón T, Lehrach H, Weisshaar B, Himmelbauer H. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris) Nature. 2014;505:546–9. doi: 10.1038/nature12817. PubMed DOI

Ford-Lloyd B, Biancardi E, Campbell LG, Skaracis GN, Biaggi M: Sources of genetic variation, Genus Beta. In Genetics and Breeding of Sugar Beet; 2005:25–33.

Thulin M, Rydberg A, Thiede J. Identity of Tetragonia pentandra and taxonomy and distribution of Patellifolia (Chenopodiaceae) Willdenowia. 2010;40:5–11. doi: 10.3372/wi.40.40101. DOI

Kadereit G, Hohmann S, Kadereit JW. A synopsis of Chenopodiaceae subfam. Betoideae and notes on the taxonomy of Beta. Willdenowia. 2006;36:9–19. doi: 10.3372/wi.36.36101. DOI

Mesbah M: Characterisation of alien chromosomes in monosomic additions of Beta. Wageningen Agricultural University; 1997

Walia K. Meiotic prophase in genus Beta. Zeitschrift für Pflanzenzüchtung. 1971;65:141.

Schmidt T, Schwarzacher T, Heslop-Harrison JS. Physical mapping of rRNA genes by fluorescent in-situ hybridization and structural analysis of 5S rRNA genes and intergenic spacer sequences in sugar beet (Beta vulgaris) TAG Theor Appl Genet. 1994;88:629–36. doi: 10.1007/BF01253964. PubMed DOI

Zakrzewski F, Wenke T, Holtgräwe D, Weisshaar B, Schmidt T. Analysis of a c0t-1 library enables the targeted identification of minisatellite and satellite families in Beta vulgaris. BMC Plant Biol. 2010;10:8. doi: 10.1186/1471-2229-10-8. PubMed DOI PMC

Paesold S, Borchardt D, Schmidt T, Dechyeva D. A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution. Plant J. 2012;72:600–611. doi: 10.1111/j.1365-313X.2012.05102.x. PubMed DOI

Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2011;13:36–46. PubMed PMC

Zakrzewski F, Weisshaar B, Fuchs J, Bannack E, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T. Epigenetic profiling of heterochromatic satellite DNA. Chromosoma. 2011;120:409–22. doi: 10.1007/s00412-011-0325-x. PubMed DOI

Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705. doi: 10.1016/j.cell.2007.02.005. PubMed DOI

Malik HS, Henikoff S. Major evolutionary transitions in centromere complexity. Cell. 2009;138:1067–82. doi: 10.1016/j.cell.2009.08.036. PubMed DOI

Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH. Mislocalization of the Drosophila Centromere-Specific Histone CID Promotes Fromation of Functional Ectopic Kinetochores. Dev Cell. 2006;10:303–315. doi: 10.1016/j.devcel.2006.01.014. PubMed DOI PMC

Howman EV, Fowler KJ, Newson AJ, Redward S, Macdonald AC, Kalitsis P, Choo KHA. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. PNAS. 2000;97:1148–1153. doi: 10.1073/pnas.97.3.1148. PubMed DOI PMC

Lermontova I, Koroleva O, Rutten T, Fuchs J, Schubert V, Moraes I, D, Schubert I. Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation. Plant J. 2011;68:40–50. PubMed

Régnier V, Vagnarelli P, Fukagawa T, Zerjal T, Burns E, Trouche D, Earnshaw W, Brown W. CENP-A Is Required for Accurate Chromosome Segregation and Sustained Kinetochore Association of BubR1. Mol Cell Biol. 2005;25(10):3967–81. doi: 10.1128/MCB.25.10.3967-3981.2005. PubMed DOI PMC

Nagaki K, Murata M. Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosom Res. 2005;13:195–203. doi: 10.1007/s10577-005-0847-2. PubMed DOI

Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Earnshaw W, Brown W. Sequencing of a rice centromere uncovers active genes. Nat Genet. 2004;36:138–45. PubMed

Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S. Centromeric Localization and Adaptive Evolution of an Arabidopsis Histone H3 Variant. Plant Cell. 2002;14:1053–1066. doi: 10.1105/tpc.010425. PubMed DOI PMC

Tek AL, Kashihara K, Murata M, Nagaki K. Functional centromeres in Astragalus sinicus include a compact centromere-specific histone H3 and a 20-bp tandem repeat. Chromosom Res. 2011;19:969–78. doi: 10.1007/s10577-011-9247-y. PubMed DOI

Tek AL, Kashihara K, Murata M, Nagaki K. Identification of the centromere-specific histone H3 variant in Lotus japonicus. Gene. 2014;538:8–11. doi: 10.1016/j.gene.2014.01.034. PubMed DOI

Bao S, Jiang R, Kwan W, Wang B, Ma X, Song Y-Q. Evaluation of next-generation sequencing software in mapping and assembly. J Hum Genet. 2011;56:406–14. doi: 10.1038/jhg.2011.43. PubMed DOI

Malik HS, Henikoff S. Conflict begets complexity : the evolution of centromeres. Curr Opin Genet Dev. 2002;12:711–718. doi: 10.1016/S0959-437X(02)00351-9. PubMed DOI

Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D, Garcia JF, DeRisi JL, Smith T, Tobias C, Ross-Ibarra J, Korf I, Chan SWL. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 2013;14:R10. doi: 10.1186/gb-2013-14-1-r10. PubMed DOI PMC

Jiang J, Birchler JA, Parrott WA, Kelly Dawe R. A molecular view of plant centromeres. Trends Plant Sci. 2003;8:570–575. doi: 10.1016/j.tplants.2003.10.011. PubMed DOI

Henikoff S, Ahmad K, Malik HS. The centromere paradox: stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–102. doi: 10.1126/science.1062939. PubMed DOI

Henikoff S, Ahmad K. Epigenetic consequences of nucleosome dynamics. Cell. 2002;3:281–4. PubMed

Sullivan BA, Karpen GH. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol. 2004;11:1076–1083. doi: 10.1038/nsmb845. PubMed DOI PMC

Gent JI, Madzima TF, Bader R, Kent MR, Zhang X, Stam M, Mcginnis KM, Dawe RK. Accessible DNA and Relative Depletion of H3K9me2 at Maize Loci Undergoing RNA-Directed DNA Methylation. Plant Cell. 2014;26:4903–4917. doi: 10.1105/tpc.114.130427. PubMed DOI PMC

Roudier F, Ahmed I, Bérard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, Giraut L, Després B, Drevensek S, Barneche F, Dèrozier S, Brunaud V, Aubourg S, Schnittger A, Bowler C, Martin-Magniette M-L, Robin S, Caboche M, Colot V. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 2011;30:1928–1938. doi: 10.1038/emboj.2011.103. PubMed DOI PMC

West PT, Li Q, Ji L, Eichten SR, Song J, Vaughn MW, Schmitz RJ, Springer NM. Genomic distribution of H3K9me2 and DNA methylation in a maize genome. PLoS One. 2014;9:e105267. doi: 10.1371/journal.pone.0105267. PubMed DOI PMC

Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010;11:204–220. doi: 10.1038/nrg2719. PubMed DOI PMC

Jin W, Lamb JC, Zhang W, Kolano B, Birchler JA, Jiang J. Histone modifications associated with both A and B chromosomes of maize. Chromosom Res. 2008;16:1203–1214. doi: 10.1007/s10577-008-1269-8. PubMed DOI

Gent JI, Dong Y, Jiang J, Dawe RK: Strong epigenetic similarity between maize centromeric and pericentromeric regions at the level of small RNAs, DNA methylation and H3 chromatin modifications. Nucleic Acids Res. 2012;40:1550-1560. PubMed PMC

Weber B, Wenke T, Frömmel U, Schmidt T, Heitkam T. The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance, chromosomal distribution, and age. Chromosom Res. 2010;18:247–263. doi: 10.1007/s10577-009-9104-4. PubMed DOI

Weber B, Heitkam T, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T. Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration. Mob DNA. 2013;4:8. doi: 10.1186/1759-8753-4-8. PubMed DOI PMC

Dechyeva D, Schmidt T. Molecular organization of terminal repetitive DNA in Beta species. Chromosom Res. 2007;14:881–897. doi: 10.1007/s10577-006-1096-8. PubMed DOI

Menzel G, Krebs C, Diez M, Holtgräwe D, Weisshaar B. Minoche a. E, Dohm JC, Himmelbauer H, Schmidt T: Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives. Plant Mol Biol. 2012;78:393–405. doi: 10.1007/s11103-011-9872-z. PubMed DOI

Zakrzewski F, Schubert V, Viehoever P, Minoche AE, Dohm JC, Himmelbauer H, Weisshaar B, Schmidt T. The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation. Plant J. 2014;78:937–50. doi: 10.1111/tpj.12519. PubMed DOI

Wollrab C, Heitkam T, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T. Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome. Plant J. 2012;72:636–651. doi: 10.1111/j.1365-313X.2012.05107.x. PubMed DOI

Heitkam T, Holtgräwe D, Dohm JC, Minoche AE, Himmelbauer H, Weisshaar B, Schmidt T. Profiling of extensively diversified plant LINEs reveals distinct plant-specific subclades. Plant J. 2014;79:385–397. doi: 10.1111/tpj.12565. PubMed DOI

Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10:669–680. doi: 10.1038/nrg2641. PubMed DOI PMC

Wolfgruber TK, Sharma A, Schneider KL, Albert PS, Koo D, Shi J, Gao Z, Han F, Lee H, Xu R, Allison J, Birchler JA, Jiang J, Dawe RK, Presting GG. Maize Centromere Structure and Evolution : Sequence Analysis of Centromeres 2 and 5 Reveals Dynamic Loci Shaped Primarily by Retrotransposons. PLoS Genet. 2009;5:13–16. doi: 10.1371/journal.pgen.1000743. PubMed DOI PMC

Fu S, Lv Z, Gao Z, Wu H, Pang J, Zhang B, Dong Q, Guo X. De novo centromere formation on a chromosome fragment in maize. PNAS. 2013;110:6033–6036. doi: 10.1073/pnas.1303944110. PubMed DOI PMC

Zhao H, Zhu X, Wang K, Gent JI, Zhang W, Dawe RK. Gene Expression and Chromatin Modi fi cations Associated with Maize Centromeres. Genes, Genomes, Genet. 2016;79:183–192. PubMed PMC

Liu Y, Su H, Pang J, Gao Z, Wang X, Birchler JA, Han F. Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize. PNAS. 2015;111:1263–1271. doi: 10.1073/pnas.1418248112. PubMed DOI PMC

Gent JI, Wang K, Jiang J, Dawe RK. Stable Patterns of CENH3 Occupancy Through. Genetics. 2015;200:1105–1116. doi: 10.1534/genetics.115.177360. PubMed DOI PMC

Wang K, Wu Y, Zhang W, Dawe RK, Jiang J: Maize centromeres expand and adopt a uniform size in the genetic background of oat. Genome Res. 2014;24:107-116. PubMed PMC

Presting G: Maize Centromeres. In Plant Centromere Biology. Edited by Jiang J, Bircher JA. Oxford, UK: Wiley-Blackwell; 2013:25-38.

Zhang B, Lv Z, Pang J, Liu Y, Guo X, Fu S, Li J, Dong Q, Wu H, Gao Z, Wang X, Han F. Formation of a Functional Maize Centromere after Loss of Centromeric Sequences and Gain of Ectopic Sequences. Plant Cell. 2013;25:1979–1989. doi: 10.1105/tpc.113.110015. PubMed DOI PMC

Neumann P, Navrátilová A, Schroeder-Reiter E, Koblížková A, Steinbauerová V, Chocholová E, Steinbauerová V, Chocholová E, Novák P, Wanner G, Macas J. Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet. 2012;8:e10027777. PubMed PMC

Gong Z, Wu Y, Koblížková A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novák P, Buell CR, Macas J, Jiang J. Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cel. 2012;24:3559–74. doi: 10.1105/tpc.112.100511. PubMed DOI PMC

Novák P, Neumann P, Macas J: Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 2010, 11 PubMed PMC

Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–3. doi: 10.1093/bioinformatics/btt054. PubMed DOI

Schmidt T, Jung C, Metzlaff M. Distribution and evolution of two satellite DNAs in the genus Beta. TAG Theor Appl Genet. 1991;82:793–799. doi: 10.1007/BF00227327. PubMed DOI

Weber B, Schmidt T. Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere contain a putative chromodomain. Chromosom Res. 2009;17:379–396. doi: 10.1007/s10577-009-9029-y. PubMed DOI

Weber B: Molekulare Charakterisierung von Ty3-gypsy Retrotransposons als abundante Sequenzklasse des Centromers eines Minichromosomes in Beta vulgaris L. Technische Universität Dresden; 2008

Menzel G, Dechyeva D, Wenke T, Holtgräwe D, Weisshaar B, Schmidt T. Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris) Ann Bot. 2008;102:521–530. doi: 10.1093/aob/mcn131. PubMed DOI PMC

Begum R, Zakrzewski F, Menzel G, Weber B, Alam SS, Schmidt T. Comparative molecular cytogenetic analyses of a major tandemly repeated DNA family and retrotransposon sequences in cultivated jute Corchorus species (Malvaceae) Ann Bot. 2013;112:123–34. doi: 10.1093/aob/mct103. PubMed DOI PMC

Zakrzewski F, Weber B, Schmidt T: A Molecular Cytogenetic Analysis of the Structure, Evolution, and Epigenetic Modifications of Major DNA Sequences in Centromeres of Beta Species. In Plant Centromere Biology. Edited by Jiang J, Bircher JA. Oxford, UK: Wiley-Blackwell; 2013:39-55.

Zhang T, Talbert PB, Zhang W, Wu Y, Yang Z, Henikoff JG, Henikoff S, Jiang J. The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. PNAS. 2013;110:4875–4883. doi: 10.1073/pnas.1319548110. PubMed DOI PMC

Rošić S, Erhardt S: No longer a nuisance: long non-coding RNAs join CENP-A in epigenetic centromere regulation. Cell Mol Life Sci 2016, [Epub ahea. PubMed PMC

Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler J a, Jiang J, Dawe RK. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell. 2002;14:2825–36. PubMed PMC

Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR. CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma. 2007;116:275–83. doi: 10.1007/s00412-007-0102-z. PubMed DOI

Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell. 2002;14:1691–1704. doi: 10.1105/tpc.003079. PubMed DOI PMC

Gao D, Jiang N, Wing RA, Jiang J, Jackson SA. Transposons play an important role in the evolution and diversification of centromeres among closely related species. Front Plant Sc. 2015;6:1–11. PubMed PMC

Wang G, He Q, Liu F, Cheng Z, Talbert PB, Jin W. Characterization of CENH3 proteins and centromere-associated DNA sequences in diploid and allotetraploid Brassica species. Chromosoma. 2011;120:353–65. doi: 10.1007/s00412-011-0315-z. PubMed DOI

Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J. Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics. 2003;163:22–1225. PubMed PMC

He Q, Cai Z, Hu T, Liu H, Bao C, Mao W, Jin W: Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.). BMC Plant Biol. 2015;15:105. PubMed PMC

Tek AL, Kashihara K, Murata M, Nagaki K. Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon. Chromosom Res. 2010;18:337–347. doi: 10.1007/s10577-010-9119-x. PubMed DOI

Gorinsek B, Gubensek F, Kordis D. Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol. 2004;21:781–798. doi: 10.1093/molbev/msh057. PubMed DOI

Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, Widmer A, Doležel J, Macas J. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA. 2011;2:4. doi: 10.1186/1759-8753-2-4. PubMed DOI PMC

Lee H-R, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. PNAS. 2005;102:11793–11798. doi: 10.1073/pnas.0503863102. PubMed DOI PMC

Dalal Y, Furuyama T, Vermaak D, Henikoff S. Structure, dynamics, and evolution of centromeric nucleosomes. PNAS. 2007;104:15974–15981. doi: 10.1073/pnas.0707648104. PubMed DOI PMC

Pikaard CSP, Aag JRH, Ontes OMFP, Levins TB, Ocklin RC: A Transcription Fork Model for Pol IV and Pol V – Dependent RNA-Directed DNA Methylation. Cold Spring Harb Symp Quant Biol 2012, LXXVII (87. PubMed

Zakrzewski F: Satellite DNA : Structure, evolution and epigenetic characterization in plant genomes. Technische Universität Dresden; 2014

Martienssen RA. Maintenance of heterochromatin by RNA interference of tandem repeats. Nat Genet. 2003;35:213–214. doi: 10.1038/ng1252. PubMed DOI

Peng JC, Karpen GH. Epigenetic regulation of heterochromatic {DNA} stability. Curr Opin Genet Dev. 2008;18:204–211. doi: 10.1016/j.gde.2008.01.021. PubMed DOI PMC

Staginnus C, Huettel B, Desel C, Schmidt T, Kahl G. A PCR-based assay to detect En/Spm -like transposon sequences in plants. Chromosom Res. 2001;9:591–605. doi: 10.1023/A:1012455520353. PubMed DOI

Kumar CS, Wing RA, Sundaresan V. Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J. 2005;44:879–892. doi: 10.1111/j.1365-313X.2005.02570.x. PubMed DOI

Roccaro M, Li Y, Sommer H, Saedler H. ROSINA (RSI) is part of a CACTA transposable element, TamRSI, and links flower development to transposon activity. Mol Genet Genomics. 2007;278:243–254. doi: 10.1007/s00438-007-0245-x. PubMed DOI

Matsuo M, Ito Y, Yamauchi R, Obokata J. The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Plant Cell. 2005;17:665–675. doi: 10.1105/tpc.104.027706. PubMed DOI PMC

Stegemann S, Hartmann S, Ruf S, Bock R. High-frequency gene transfer from the chloroplast genome to the nucleus. PNAS. 2003;100:8828–8833. doi: 10.1073/pnas.1430924100. PubMed DOI PMC

Wang D, Timmis JN. Cytoplasmic organelle DNA preferentially inserts into open chromatin. Genome Biol Evol. 2013;5:1060–1064. doi: 10.1093/gbe/evt070. PubMed DOI PMC

Desel C, Jung C, Cai D, Kleine M, Schmidt T. High-resolution mapping of YACs and the single-copy gene Hs1pro-1 on Beta vulgaris chromosomes by multi-colour fluorescence in situ hybridization. Plant Mol Biol. 2001;45:113–122. doi: 10.1023/A:1006405911442. PubMed DOI

Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Dj L. Gapped BLAST and PSI- BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Schmidt M, Hense S, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T, Zakrzewski F. Cytosine Methylation of an Ancient Satellite Family in the Wild Beet Beta procumbens. Cytogenet Genome Res. 2014;143:157–67. doi: 10.1159/000363485. PubMed DOI

Schwichtenberg K, Wenke T, Zakrzewski F, Seibt K, Minoche A, Dohm J, Gao Z, Han F, Lee H, Xu R, Allison J, Birchler JA, Jiang J, Dawe RK, Presting GG. Diversification, Evolution and Methylation of Short Interspersed Nuclear Element families in sugar beet and related Amaranthaceae species. Plant J. 2016;85:229–44. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...