H3K9me2 Dotaz Zobrazit nápovědu
BACKGROUND: Sugar beet (Beta vulgaris) is an important crop of temperate climate zones, which provides nearly 30 % of the world's annual sugar needs. From the total genome size of 758 Mb, only 567 Mb were incorporated in the recently published genome sequence, due to the fact that regions with high repetitive DNA contents (e.g. satellite DNAs) are only partially included. Therefore, to fill these gaps and to gain information about the repeat composition of centromeres and heterochromatic regions, we performed chromatin immunoprecipitation followed by sequencing (ChIP-Seq) using antibodies against the centromere-specific histone H3 variant of sugar beet (CenH3) and the heterochromatic mark of dimethylated lysine 9 of histone H3 (H3K9me2). RESULTS: ChIP-Seq analysis revealed that active centromeres containing CenH3 consist of the satellite pBV and the Ty3-gypsy retrotransposon Beetle7, while heterochromatin marked by H3K9me2 exhibits heterogeneity in repeat composition. H3K9me2 was mainly associated with the satellite family pEV, the Ty1-copia retrotransposon family Cotzilla and the DNA transposon superfamily of the En/Spm type. In members of the section Beta within the genus Beta, immunostaining using the CenH3 antibody was successful, indicating that orthologous CenH3 proteins are present in closely related species within this section. CONCLUSIONS: The identification of repetitive genome portions by ChIP-Seq experiments complemented the sugar beet reference sequence by providing insights into the repeat composition of poorly characterized CenH3-chromatin and H3K9me2-heterochromatin. Therefore, our work provides the basis for future research and application concerning the sugar beet centromere and repeat-rich heterochromatic regions characterized by the presence of H3K9me2.
- MeSH
- Beta vulgaris genetika metabolismus MeSH
- centromera metabolismus MeSH
- chromatin genetika metabolismus MeSH
- chromatinová imunoprecipitace MeSH
- heterochromatin genetika metabolismus MeSH
- histony metabolismus MeSH
- lysin metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
We studied the histone signature of embryonic and adult brains to strengthen existing evidence of the importance of the histone code in mouse brain development. We analyzed the levels and distribution patterns of H3K9me1, H3K9me2, H3K9me3, and HP1β in both embryonic and adult brains. Western blotting showed that during mouse brain development, the levels of H3K9me1, H3K9me2, and HP1β exhibited almost identical trends, with the highest protein levels occurring at E15 stage. These trends differed from the relatively stable level of H3K9me3 at developmental stages E8, E13, E15, and E18. Compared with embryonic brains, adult brains were characterized by very low levels of H3K9me1/me2/me3 and HP1β. Manipulation of the embryonic epigenome through histone deacetylase inhibitor treatment did not affect the distribution patterns of the studied histone markers in embryonic ventricular ependyma. Similarly, Hdac3 depletion in adult animals had no effect on histone methylation in the adult hippocampus. Our results indicate that the distribution of HP1β in the embryonic mouse brain is related to that of H3K9me1/me2 but not to that of H3K9me3. The unique status of H3K9me3 in the brain was confirmed by its pronounced accumulation in the granular layer of the adult olfactory bulb. Moreover, among the studied proteins, H3K9me3 was the only posttranslational histone modification that was highly abundant at clusters of centromeric heterochromatin, called chromocenters. When we focused on the hippocampus, we found this region to be rich in H3K9me1 and H3K9me3, whereas H3K9me2 and HP1β were present at a very low level or even absent in the hippocampal blade. Taken together, these results revealed differences in the epigenome of the embryonic and adult mouse brain and showed that the adult hippocampus, the granular layer of the adult olfactory bulb, and the ventricular ependyma of the embryonic brain are colonized by specific epigenetic marks.
- MeSH
- chromozomální proteiny, nehistonové analýza metabolismus MeSH
- fluorescenční mikroskopie MeSH
- histonlysin-N-methyltransferasa metabolismus MeSH
- imunohistochemie MeSH
- mozek embryologie metabolismus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The nuclear periphery (NP) plays a substantial role in chromatin organization. Heterochromatin at the NP is interspersed with active chromatin surrounding nuclear pore complexes (NPCs); however, details of the peripheral chromatin organization are missing. To discern the distribution of epigenetic marks at the NP of HeLa nuclei, we used structured illumination microscopy combined with a new MATLAB software tool for automatic NP and NPC detection, measurements of fluorescent intensity and statistical analysis of measured data. Our results show that marks for both active and non-active chromatin associate differentially with NPCs. The incidence of heterochromatin marks, such as H3K27me2 and H3K9me2, was significantly lower around NPCs. In contrast, the presence of marks of active chromatin such as H3K4me2 was only decreased very slightly around the NPCs or not at all (H3K9Ac). Interestingly, the histone demethylases LSD1 (also known as KDM1A) and KDM2A were enriched within the NPCs, suggesting that there was a chromatin-modifying mechanism at the NPCs. Inhibition of transcription resulted in a larger drop in the distribution of H1, H3K9me2 and H3K23me2, which implies that transcription has a role in the organization of heterochromatin at the NP.
- MeSH
- buněčné jádro metabolismus MeSH
- chromatin chemie metabolismus MeSH
- epigeneze genetická MeSH
- fluorescenční mikroskopie MeSH
- HeLa buňky MeSH
- heterochromatin chemie MeSH
- histondemethylasy metabolismus MeSH
- histony chemie MeSH
- jaderný obal metabolismus MeSH
- jaderný pór metabolismus MeSH
- lidé MeSH
- mikroskopie metody MeSH
- software MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
We examined the levels and distribution of post-translationally modified histones and protamines in human sperm. Using western blot immunoassay, immunofluorescence, mass spectrometry (MS), and FLIM-FRET approaches, we analyzed the status of histone modifications and the protamine P2. Among individual samples, we observed variability in the levels of H3K9me1, H3K9me2, H3K27me3, H3K36me3, and H3K79me1, but the level of acetylated (ac) histones H4 was relatively stable in the sperm head fractions, as demonstrated by western blot analysis. Sperm heads with lower levels of P2 exhibited lower levels of H3K9ac, H3K9me1, H3K27me3, H3K36me3, and H3K79me1. A very strong correlation was observed between the levels of P2 and H3K9me2. FLIM-FRET analysis additionally revealed that acetylated histones H4 are not only parts of sperm chromatin but also appear in a non-integrated form. Intriguingly, H4ac and H3K27me3 were detected in sperm tail fractions via western blot analysis. An appearance of specific histone H3 and H4 acetylation and H3 methylation in sperm tail fractions was also confirmed by both LC-MS/MS and MALDI-TOF MS analysis. Taken together, these data indicate that particular post-translational modifications of histones are uniquely distributed in human sperm, and this distribution varies among individuals and among the sperm of a single individual.
- MeSH
- acetylace MeSH
- chromatin genetika MeSH
- histonlysin-N-methyltransferasa biosyntéza genetika MeSH
- histony genetika metabolismus MeSH
- lidé MeSH
- metylace MeSH
- posttranslační úpravy proteinů genetika MeSH
- sekvence aminokyselin MeSH
- spermie růst a vývoj metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Understanding the epigenetics of tumor cells is of clinical significance for the treatment of cancer, and thus, chemists have focused their efforts on the synthesis of new generation of inhibitors of histone deacetylases (HDACs) or methylation-specific enzymes as novel important anti-cancer drugs. Here, we tested whether the histone signature and DNA methylation in multiple myeloma (MM) and leukemia cells is tumor-specific as compared with that in non-malignant lymphoblastoid cells. We observed a distinct histone signature in c-myc, Mcl-1, and ribosomal gene loci in MOLP8 MM and K562 leukemia cells, when compared with lymphoblastoid cells. Histone and DNA methylation patterns in MOLP8 cells were partially modified by the clinically promising HDAC inhibitor, vorinostat. In comparison with lymphoblastoid WIL2NS cells, MOLP8 cells and K562 cells were characterized by an absence of the gene silencing marker H3K9me2 in the c-myc and ribosomal genes. However, high levels of H3K27me3 were detected in the promoters and coding regions of selected genomic regions in these cells. Treatment by vorinostat increased the level of DNA methylation at the c-myc promoter, and this alteration was accompanied by a decrease in c-MYC protein. In MOLP8 cells, vorinostat significantly increased the H3K9 acetylation in the Mcl-1 coding regions and promoter. Both MOLP8 and K562 leukemia cells were characterized by decreased levels of H3K9me2 in the Mcl-1 gene as compared with lymphoblastoid WIL2NS cells. Lower levels of H3K9me1 in the Mcl-1 promoter, however, were specific for MM cells as compared with the other cell types studied. In other MM and leukemia cell lines, COLO677, OPM2, and U937, the ribosomal genes were less prone to epigenetic heterogeneity as compared to the c-myc and Mcl-1 proto-oncogenes. Taken together, these data describe both tumor-specific and loci-specific histone signature and DNA methylation profiles.
- MeSH
- chromatinová imunoprecipitace MeSH
- epigeneze genetická genetika MeSH
- fluorescenční protilátková technika MeSH
- histony genetika MeSH
- leukemie genetika MeSH
- lidé MeSH
- metylace DNA MeSH
- mnohočetný myelom genetika MeSH
- nádorové buněčné linie MeSH
- promotorové oblasti (genetika) genetika MeSH
- stanovení celkové genové exprese MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Phosphoinositides are present in the plasma membrane, cytoplasm and inside the cell nucleus. Here we identify phosphatidylinositol-4,5-bisphosphate (PIP2) as a regulator of rRNA genes transcription at the epigenetic level. We show that PIP2 directly interacts with histone lysine demethylase PHF8 (PHD finger protein 8) and represses demethylation of H3K9me2 through this interaction. We identify the C-terminal K/R-rich motif as PIP2-binding site within PHF8, and address the function of this PIP2-PHF8 complex. PIP2-binding mutant of PHF8 has increased the activity of rDNA promoter (20%) and expression of pre-rRNA genes (47S-100%; 45S-66%). Furthermore, trypsin digestion reveals a potential conformational change of PHF8 upon PIP2 binding. These observations identify the function of nuclear PIP2, and suggest that PIP2 contributes to the fine-tuning of rDNA transcription.
- MeSH
- epigeneze genetická * MeSH
- fosfatidylinositol-4,5-difosfát genetika metabolismus MeSH
- genetická transkripce * MeSH
- geny rRNA * MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- histondemethylasy genetika metabolismus MeSH
- lidé MeSH
- mutace MeSH
- promotorové oblasti (genetika) * MeSH
- RNA ribozomální biosyntéza genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single-copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination-poor region is preferentially marked by a heterochromatin-typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin-typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape.
Moths and butterflies (Lepidoptera) are the most species-rich group of animals with female heterogamety, females mostly having a WZ, males a ZZ sex chromosome constitution. We studied chromatin conformation, activity, and inactivity of the sex chromosomes in the flour moth Ephestia kuehniella and the silkworm Bombyx mori, using immunostaining with anti-H3K9me2/3, anti-RNA polymerase II, and fluoro-uridine (FU) labelling of nascent transcripts, with conventional widefield fluorescence microscopy and 'spatial structured illumination microscopy' (3D-SIM). The Z chromosome is euchromatic in somatic cells and throughout meiosis. It is transcriptionally active in somatic cells and in the postpachaytene stage of meiosis. The W chromosome in contrast is heterochromatic in somatic cells as well as in meiotic cells at pachytene, but euchromatic and transcriptionally active like all other chromosomes at postpachytene. As the W chromosomes are apparently devoid of protein-coding genes, their transcripts must be non-coding. We found no indication of 'meiotic sex chromosome inactivation' (MSCI) in the two species.
The epigenetic modification of histones dictates the formation of euchromatin and heterochromatin domains. We studied the effects of a deficiency of histone methyltransferase, SUV39h, and trichostatin A-dependent hyperacetylation on the structural stability of centromeric clusters, called chromocentres. We did not observe the expected disintegration of chromocentres, but both SUV39h deficiency and hyperacetylation in SUV39h+/+ cells induced the re-positioning of chromocentres closer to the nuclear periphery. Conversely, TSA treatment of SUV39h-/- cells re-established normal nuclear radial positioning of chromocentres. This structural re-arrangement was likely caused by several epigenetic events at centromeric heterochromatin. In particular, reciprocal exchanges between H3K9me1, H3K9me2, H3K9me3, DNA methylation, and HP1 protein levels influenced chromocentre nuclear composition. For example, H3K9me1 likely substituted for the function of H3K9me3 in chromocentre nuclear arrangement and compaction. Our results illustrate the important and interchangeable roles of epigenetic marks for chromocentre integrity. Therefore, we propose a model for epigenetic regulation of nuclear stability of centromeric heterochromatin in the mouse genome.
- MeSH
- buněčné linie MeSH
- epigeneze genetická genetika MeSH
- heterochromatin metabolismus MeSH
- histonlysin-N-methyltransferasa genetika fyziologie MeSH
- histony metabolismus MeSH
- metylace MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Here, we focus on epigenetic changes in leukaemia and MM (multiple myeloma) cells. We show how the histone signature, DNA methylation and levels of select tumour-suppressor proteins can be affected by inhibitors of HDACs (histone deacetylases) and Dnmts (DNA methyltransferases). Both inhibitors, TSA (trichostatin A) and 5-AZA (5-azacytidine), have the ability to change the histone signature in a tumour-specific manner. In MM cells, we observed changes in H3K4 methylation, while in leukaemia cells, H3K9 methylation was especially affected by select inhibitors. Compared with normal peripheral blood lymphocytes, tumour cell samples were characterized by increased H3K9 acetylation, increased H3K4me2, H3K9me2 and HP1α (heterochromatin protein 1α) levels and specific changes were also observed for DNA methylation. Additionally, we showed that the tumour suppressor pRb1 (retinoblastoma protein) is more sensitive to epigenetic-based anti-cancer stimuli than p53. We have found significant decrease in the levels of pRb1 and p53 in both myeloma and leukaemia cells after HDAC inhibition.
- MeSH
- antitumorózní látky farmakologie MeSH
- azacytidin farmakologie MeSH
- DNA modifikační methylasy genetika metabolismus MeSH
- epigeneze genetická MeSH
- histondeacetylasy metabolismus MeSH
- histony genetika metabolismus MeSH
- inhibitory histondeacetylas farmakologie MeSH
- kyseliny hydroxamové farmakologie MeSH
- leukemie farmakoterapie genetika MeSH
- lidé MeSH
- metylace DNA MeSH
- mnohočetný myelom farmakoterapie genetika MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- retinoblastomový protein genetika metabolismus MeSH
- umlčování genů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH