• This record comes from PubMed

Room temperature organic magnets derived from sp3 functionalized graphene

. 2017 Feb 20 ; 8 () : 14525. [epub] 20170220

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp2-conjugated diradical motifs embedded in an sp3 matrix and superexchange interactions via -OH functionalization.

See more in PubMed

Novoselov K. S. et al.. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). PubMed

Novoselov K. S. et al.. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). PubMed

Zhang Y. B., Tan Y. W. & Stormer H. L. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005). PubMed

Lee C., Wei X. D., Kysar J. W. & Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). PubMed

Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S. & Geim A. K. The electronic properties of graphene. Rev. Modern Phys. 81, 109–162 (2009).

Balandin A. A. et al.. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). PubMed

Kane C. L. & Mele E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005). PubMed

Geim A. K. & Novoselov K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007). PubMed

Stoller M. D., Park S. J., Zhu Y. W., An J. H. & Ruoff R. S. Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008). PubMed

Nair R. R. et al.. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). PubMed

Tse W. K. & MacDonald A. H. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Phys. Rev. Lett. 105, 057401 (2010). PubMed

Fialkovsky I. V., Marachevsky V. N. & Vassilevich D. V. Finite-temperature Casimir effect for graphene. Phys. Rev. B 84, 035446 (2011).

Georgakilas V., Perman J. A., Tucek J. & Zboril R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115, 4744–4822 (2015). PubMed

Bae S. et al.. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). PubMed

Tapaszto L., Dobrik G., Lambin P. & Biro L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3, 397–401 (2008). PubMed

Han W., Kawakami R. K., Gmitra M. & Fabian J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014). PubMed

Sun Z. H. & Chang H. X. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 8, 4133–4156 (2014). PubMed

Liu Z. F. et al.. Organic photovoltaic devices based on a novel acceptor material: Graphene. Adv. Mater. 20, 3924–3930 (2008).

Wu J. B. et al.. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4, 43–48 (2010). PubMed

Xu Y. X. et al.. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014). PubMed

Zhao M. Q. et al.. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 5, 3410 (2014). PubMed

Georgakilas V. et al.. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012). PubMed

Joshi R. K., Alwarappan S., Yoshimura M., Sahajwalla V. & Nishina Y. Graphene oxide: the new membrane material. Appl. Mater. Today 1, 1–12 (2015).

Elias D. C. et al.. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009). PubMed

Zboril R. et al.. Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small. 24, 2885–2891 (2010). PubMed PMC

Urbanova V. et al.. Thiofluorographene-hydrophilic graphene derivative with semiconducting and genosensing properties. Adv. Mater. 27, 2305–2310 (2015). PubMed

Dubecky M. et al.. Reactivity of fluorographene: a facile way toward graphene derivatives. J. Phys. Chem. Lett. 6, 1430–1434 (2015). PubMed

Kuila T. et al.. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57, 1061–1105 (2012).

Yazyev O. V. Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 73, 056501 (2010).

Palacios J. J., Fernandez-Rossier J. & Brey L. Vacancy-induced magnetism in graphene and graphene ribbons. Phys. Rev. B 77, 195428 (2008).

Yazyev O. V. & Helm L. Defect-induced magnetism in graphene. Phys. Rev. B 75, 125408 (2007).

Ito Y. et al.. Tuning the magnetic properties of carbon by nitrogen doping of its graphene domains. J. Am. Chem. Soc. 137, 7678–7685 (2015). PubMed

Tuček J. et al.. Sulfur doping induces strong ferromagnetic ordering in graphene: effect of concentration and substitution mechanism. Adv. Mater. 28, 5045–5053 (2016). PubMed

Magda G. Z. et al.. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608–611 (2014). PubMed

Khurana G., Kumar N., Kotnala R. K., Nautiyal T. & Katiyar R. S. Temperature tuned defect induced magnetism in reduced graphene oxide. Nanoscale 5, 3346–3351 (2013). PubMed

Eng A. Y. S. et al.. Searching for magnetism in hydrogenated graphene: using highly hydrogenated graphene prepared via birch reduction of graphite oxides. ACS Nano 7, 5930–5939 (2013). PubMed

Zhou J. et al.. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. 9, 3867–3870 (2009). PubMed

Gonzalez-Herrero H. et al.. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 352, 437–441 (2016). PubMed

Li Y., Ren J. C., Zhang R. Q., Lin Z. J. & van Hove M. A. Atomic nitrogen chemisorption on graphene with extended line defects. J. Mater. Chem. 22, 21167–21172 (2012).

Wang Z. G., Qin S. J., Wang C. L. & Hui Q. Fluorine adsorption on the graphene films: from metal to insulator. Comput. Mater. Sci. 97, 14–19 (2015).

Cao C., Wu M., Jiang J. Z. & Cheng H. P. Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures. Phys. Rev. B 81, 205424 (2010).

Nair R. R. et al.. Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat. Commun. 4, 2010 (2013). PubMed

Nair R. R. et al.. Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 8, 199–202 (2012).

Nair R. R. et al.. Fluorographene: a two-dimensional counterpart of teflon. Small. 6, 2877–2884 (2010). PubMed

Cho D., Ko K. C. & Lee J. Y. Organic magnetic diradicals (radical-coupler-radical): standardization of couplers for strong ferromagnetism. J. Phys. Chem. A 118, 5112–5121 (2014). PubMed

Rajca A. Organic diradicals and polyradicals: from spin coupling to magnetism? Chem. Rev. 94, 871–893 (1994).

Lieb E. H. 2 theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989). PubMed

Belhadji B. et al.. Trends of exchange interactions in dilute magnetic semiconductors. J. Phys. Condens. Matter 19, 436227 (2007).

Ao Z. et al.. Enhancement of the stability of fluorine adatoms on defective graphene and at graphene/fluorographene interface. ACS Appl. Mater. Interfaces 7, 19659–19665 (2015). PubMed

Sadeghi A., Neek-Amal M. & Peeters F. M. Diffusion of fluorine on and between graphene layers. Phys. Rev. B 91, 014304 (2015).

Kim S. W., Kim H. J., Choi J. H., Scheicher R. H. & Cho J. H. Contrasting interedge superexchange interactions of graphene nanoribbons embedded in h-BN and graphane. Phys. Rev. B 92, 035443 (2015).

Feng X. M., Deng Y. J. & Blote H. W. J. Percolation transitions in two dimensions. Phys. Rev. E 78, 031136 (2008). PubMed

Makarova T. L. et al.. Edge state magnetism in zigzag-interfaced graphene via spin susceptibility measurements. Sci. Rep. 5, 13382 (2015). PubMed PMC

Enoki T. & Takai K. The edge state of nanographene and the magnetism of the edge-state spins. Solid State Commun. 149, 1144 (2009).

Kresse G. & Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). PubMed

Kresse G. & Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

Blöchl P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). PubMed

Perdew J. P., Burke K. & Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). PubMed

Monkhorst H. J. & Pack J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

Blöchl P. E., Jepsen O. & Andersen O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223–16233 (1994). PubMed

Grimme S., Antony J., Ehrlich S. & Krieg S. A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...