Room temperature organic magnets derived from sp3 functionalized graphene
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28216636
PubMed Central
PMC5321725
DOI
10.1038/ncomms14525
PII: ncomms14525
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp2-conjugated diradical motifs embedded in an sp3 matrix and superexchange interactions via -OH functionalization.
See more in PubMed
Novoselov K. S. et al.. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). PubMed
Novoselov K. S. et al.. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). PubMed
Zhang Y. B., Tan Y. W. & Stormer H. L. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005). PubMed
Lee C., Wei X. D., Kysar J. W. & Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). PubMed
Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S. & Geim A. K. The electronic properties of graphene. Rev. Modern Phys. 81, 109–162 (2009).
Balandin A. A. et al.. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). PubMed
Kane C. L. & Mele E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005). PubMed
Geim A. K. & Novoselov K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007). PubMed
Stoller M. D., Park S. J., Zhu Y. W., An J. H. & Ruoff R. S. Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008). PubMed
Nair R. R. et al.. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). PubMed
Tse W. K. & MacDonald A. H. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Phys. Rev. Lett. 105, 057401 (2010). PubMed
Fialkovsky I. V., Marachevsky V. N. & Vassilevich D. V. Finite-temperature Casimir effect for graphene. Phys. Rev. B 84, 035446 (2011).
Georgakilas V., Perman J. A., Tucek J. & Zboril R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115, 4744–4822 (2015). PubMed
Bae S. et al.. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). PubMed
Tapaszto L., Dobrik G., Lambin P. & Biro L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3, 397–401 (2008). PubMed
Han W., Kawakami R. K., Gmitra M. & Fabian J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014). PubMed
Sun Z. H. & Chang H. X. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 8, 4133–4156 (2014). PubMed
Liu Z. F. et al.. Organic photovoltaic devices based on a novel acceptor material: Graphene. Adv. Mater. 20, 3924–3930 (2008).
Wu J. B. et al.. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4, 43–48 (2010). PubMed
Xu Y. X. et al.. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014). PubMed
Zhao M. Q. et al.. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 5, 3410 (2014). PubMed
Georgakilas V. et al.. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012). PubMed
Joshi R. K., Alwarappan S., Yoshimura M., Sahajwalla V. & Nishina Y. Graphene oxide: the new membrane material. Appl. Mater. Today 1, 1–12 (2015).
Elias D. C. et al.. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009). PubMed
Zboril R. et al.. Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small. 24, 2885–2891 (2010). PubMed PMC
Urbanova V. et al.. Thiofluorographene-hydrophilic graphene derivative with semiconducting and genosensing properties. Adv. Mater. 27, 2305–2310 (2015). PubMed
Dubecky M. et al.. Reactivity of fluorographene: a facile way toward graphene derivatives. J. Phys. Chem. Lett. 6, 1430–1434 (2015). PubMed
Kuila T. et al.. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57, 1061–1105 (2012).
Yazyev O. V. Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 73, 056501 (2010).
Palacios J. J., Fernandez-Rossier J. & Brey L. Vacancy-induced magnetism in graphene and graphene ribbons. Phys. Rev. B 77, 195428 (2008).
Yazyev O. V. & Helm L. Defect-induced magnetism in graphene. Phys. Rev. B 75, 125408 (2007).
Ito Y. et al.. Tuning the magnetic properties of carbon by nitrogen doping of its graphene domains. J. Am. Chem. Soc. 137, 7678–7685 (2015). PubMed
Tuček J. et al.. Sulfur doping induces strong ferromagnetic ordering in graphene: effect of concentration and substitution mechanism. Adv. Mater. 28, 5045–5053 (2016). PubMed
Magda G. Z. et al.. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608–611 (2014). PubMed
Khurana G., Kumar N., Kotnala R. K., Nautiyal T. & Katiyar R. S. Temperature tuned defect induced magnetism in reduced graphene oxide. Nanoscale 5, 3346–3351 (2013). PubMed
Eng A. Y. S. et al.. Searching for magnetism in hydrogenated graphene: using highly hydrogenated graphene prepared via birch reduction of graphite oxides. ACS Nano 7, 5930–5939 (2013). PubMed
Zhou J. et al.. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. 9, 3867–3870 (2009). PubMed
Gonzalez-Herrero H. et al.. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 352, 437–441 (2016). PubMed
Li Y., Ren J. C., Zhang R. Q., Lin Z. J. & van Hove M. A. Atomic nitrogen chemisorption on graphene with extended line defects. J. Mater. Chem. 22, 21167–21172 (2012).
Wang Z. G., Qin S. J., Wang C. L. & Hui Q. Fluorine adsorption on the graphene films: from metal to insulator. Comput. Mater. Sci. 97, 14–19 (2015).
Cao C., Wu M., Jiang J. Z. & Cheng H. P. Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures. Phys. Rev. B 81, 205424 (2010).
Nair R. R. et al.. Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat. Commun. 4, 2010 (2013). PubMed
Nair R. R. et al.. Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 8, 199–202 (2012).
Nair R. R. et al.. Fluorographene: a two-dimensional counterpart of teflon. Small. 6, 2877–2884 (2010). PubMed
Cho D., Ko K. C. & Lee J. Y. Organic magnetic diradicals (radical-coupler-radical): standardization of couplers for strong ferromagnetism. J. Phys. Chem. A 118, 5112–5121 (2014). PubMed
Rajca A. Organic diradicals and polyradicals: from spin coupling to magnetism? Chem. Rev. 94, 871–893 (1994).
Lieb E. H. 2 theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989). PubMed
Belhadji B. et al.. Trends of exchange interactions in dilute magnetic semiconductors. J. Phys. Condens. Matter 19, 436227 (2007).
Ao Z. et al.. Enhancement of the stability of fluorine adatoms on defective graphene and at graphene/fluorographene interface. ACS Appl. Mater. Interfaces 7, 19659–19665 (2015). PubMed
Sadeghi A., Neek-Amal M. & Peeters F. M. Diffusion of fluorine on and between graphene layers. Phys. Rev. B 91, 014304 (2015).
Kim S. W., Kim H. J., Choi J. H., Scheicher R. H. & Cho J. H. Contrasting interedge superexchange interactions of graphene nanoribbons embedded in h-BN and graphane. Phys. Rev. B 92, 035443 (2015).
Feng X. M., Deng Y. J. & Blote H. W. J. Percolation transitions in two dimensions. Phys. Rev. E 78, 031136 (2008). PubMed
Makarova T. L. et al.. Edge state magnetism in zigzag-interfaced graphene via spin susceptibility measurements. Sci. Rep. 5, 13382 (2015). PubMed PMC
Enoki T. & Takai K. The edge state of nanographene and the magnetism of the edge-state spins. Solid State Commun. 149, 1144 (2009).
Kresse G. & Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). PubMed
Kresse G. & Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Blöchl P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). PubMed
Perdew J. P., Burke K. & Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). PubMed
Monkhorst H. J. & Pack J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
Blöchl P. E., Jepsen O. & Andersen O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223–16233 (1994). PubMed
Grimme S., Antony J., Ehrlich S. & Krieg S. A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). PubMed
Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts
Alkynylation of graphene via the Sonogashira C-C cross-coupling reaction on fluorographene
2D Chemistry: Chemical Control of Graphene Derivatization
Reactivity of fluorographene is triggered by point defects: beyond the perfect 2D world
Chemistry, properties, and applications of fluorographene