• This record comes from PubMed

Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica

. 2017 Dec ; 15 (12) : e2003943. [epub] 20171218

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

The majority of life on Earth depends directly or indirectly on the sun as a source of energy. The initial step of photosynthesis is facilitated by light-harvesting complexes, which capture and transfer light energy into the reaction centers (RCs). Here, we analyzed the organization of photosynthetic (PS) complexes in the bacterium G. phototrophica, which so far is the only phototrophic representative of the bacterial phylum Gemmatimonadetes. The isolated complex has a molecular weight of about 800 ± 100 kDa, which is approximately 2 times larger than the core complex of Rhodospirillum rubrum. The complex contains 62.4 ± 4.7 bacteriochlorophyll (BChl) a molecules absorbing in 2 distinct infrared absorption bands with maxima at 816 and 868 nm. Using femtosecond transient absorption spectroscopy, we determined the energy transfer time between these spectral bands as 2 ps. Single particle analyses of the purified complexes showed that they were circular structures with an outer diameter of approximately 18 nm and a thickness of 7 nm. Based on the obtained, we propose that the light-harvesting complexes in G. phototrophica form 2 concentric rings surrounding the type 2 RC. The inner ring (corresponding to the B868 absorption band) is composed of 15 subunits and is analogous to the inner light-harvesting complex 1 (LH1) in purple bacteria. The outer ring is composed of 15 more distant BChl dimers with no or slow energy transfer between them, resulting in the B816 absorption band. This completely unique and elegant organization offers good structural stability, as well as high efficiency of light harvesting. Our results reveal that while the PS apparatus of Gemmatimonadetes was acquired via horizontal gene transfer from purple bacteria, it later evolved along its own pathway, devising a new arrangement of its light harvesting complexes.

See more in PubMed

Bendall DS, Howe CJ, Nisbet EG, Nisbet RER. Photosynthetic and atmospheric evolution. Introduction. Philos Trans R Soc Lond B Biol Sci. 2008;363:2625–2628. doi: 10.1098/rstb.2008.0058 PubMed DOI PMC

Cardona T. Origin of bacteriochlorophyll a and the early diversification of photosynthesis. PLoS ONE. 2016;11(3):e0151250 doi: 10.1371/journal.pone.0151250 PubMed DOI PMC

Blankenship RE. Molecular mechanisms of photosynthesis. Blackwell Science Ltd; 2002.

Hanada S, Sekiguchi Y. The phylum Gemmatimonadetes In: Rosenberg E, De Long EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes Vol. 11, Springer, Berlin, Heidelberg; 2014. pp. 677–681.

Zeng Y, Koblížek M. Phototrophic Gemmatimonadetes: A new "purple" branch on the bacterial tree of life In: Hallenbeck PC, editor. Modern topics in the phototrophic prokaryotes. Springer International Publishing Switzerland; 2017. pp. 163–192.

Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, et al. Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol. 2003;53:1155–1163. doi: 10.1099/ijs.0.02520-0 PubMed DOI

Zeng Y, Feng FY, Medová H, Dean J, Koblížek M. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadates. Proc Natl Acad Sci USA. 2014; 111:7795–7800. doi: 10.1073/pnas.1400295111 PubMed DOI PMC

Zeng Y, Selyanin V, Lukeš M, Dean J, Kaftan D, Feng F, et al. Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. Int J Syst Evol Microbiol. 2015;65:2410–2419. doi: 10.1099/ijs.0.000272 PubMed DOI

Zeng Y, Baumbach J, Barbosa EG, Azevedo V, Zhang C, Koblížek M. Metagenomic evidence for the presence of phototrophic Gemmatimonadetes bacteria in diverse environments. Environ Microbiol Rep. 2016;8:139–149. doi: 10.1111/1758-2229.12363 PubMed DOI

Cogdell RJ, Gardiner AT, Roszak AW, Law CJ, Southall J, Isaacs NW. Rings, ellipses and horseshoes: How purple bacteria harvest solar energy. Photosynth Res. 2004;81:207–214. doi: 10.1023/B:PRES.0000036883.56959.a9 PubMed DOI

Law CJ, Roszak AW, Southall J, Gardiner AT, Isaacs NW, Cogdell RJ. The structure and function of bacterial light-harvesting complexes. Mol Membr Biol. 2004; 21:183–191. doi: 10.1080/09687680410001697224 PubMed DOI

Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, et al. Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science. 2003;302:1969–1972. doi: 10.1126/science.1088892 PubMed DOI

Niwa S, Yu LJ, Takeda K, Hirano Y, Kawakami T, Wang-Otomo ZY, et al. Structure of the LH1-RC complex from Thermochromatium tepidum at 3.0Å. Nature. 2014;508:228–232. doi: 10.1038/nature13197 PubMed DOI

Qian P. Structure and function of the reaction centre—Light harvesting 1 core complexes from purple photosynthetic bacteria In: Hou HJM, Najafpour MM, Moore GF, Allakhverdiev SI, editors. Photosynthesis: structures, mechanisms, and applications. Springer Nature; 2017. pp. 11–31.

Ke B. Photosynthesis: Photobiochemistry and Photobiophysics. Kluwer Academic Publishers, Boston, MA; 2001.

Wu HM, Ratsep M, Jankowiak R, Cogdell RJ, Small GJ. Hole-burning and absorption studies of the LH1 antenna complex of purple bacteria: effects of pressure and temperature. J Phys Chem B. 1998;102:4023–4034.

Dolan PM, Miller D, Cogdell RJ, Birge RR, Frank HA. Linear dichroism and the transition dipole moment orientation of the carotenoid in the LH2 antenna complex in membranes of Rhodopseudomonas acidophila strain 10050. J Phys Chem B. 2001;105:12134–12142.

Visschers RW, Germeroth L, Michel H, Monshouwer R, Grondelle van R. Spectroscopic properties of the light-harvesting complexes from Rhodospirillum molischianum. Biochim Biophys Acta. 1995;1230:147–154. PubMed

Collins AM, Xin Y, Blankenship RE. Pigment Organization in the Photosynthetic Apparatus of Roseiflexus castenholzii. Biochim Biophys Acta. 2009;1787:1050–1056. doi: 10.1016/j.bbabio.2009.02.027 PubMed DOI

Chang MC, Meyer L, Loach PA. Isolation and characterization of a structural subunit from the core light-harvesting complex of Rhodobacter sphaeroides 2.4.1 and puc705-BA. Photochem Photobiol. 1990;52:873–881. PubMed

Xin Y, Lin S, Montaño GA, Blankenship RE. Purification and characterization of the B808–866 light-harvesting complex from green filamentous bacterium Chloroflexus aurantiacus. Photosynth Res. 2005;86:155–163. doi: 10.1007/s11120-005-5103-2 PubMed DOI

Georgakopoulou S, Frese RN, Johnson E, Koolhaas C, Cogdell RJ, van Grondelle R, van der Zwan G. Absorption and CD spectroscopy and modeling of various LH2 complexes from purple bacteria. Biophys J. 2002;82:2184–2197. doi: 10.1016/S0006-3495(02)75565-3 PubMed DOI PMC

Georgakopoulou S, Zwan GR, Olsen JO, Hunter CN, Niederman RA, van Grondelle R. Investigation of the effects of different carotenoids on the absorption and CD signals of light harvesting 1 complexes. J Phys Chem B. 2006; 110:3354–3361. doi: 10.1021/jp0517955 PubMed DOI

Parkes-Loach PS, Sprinkle JR, Loach PA. Reconstitution of the B873 light-harvesting complex of Rhodospirillum rubrum from the separately isolated alpha- and beta-polypeptides and bacteriochlorophyll a. Biochemistry. 1988;27:2718–2727. PubMed

Shreve AP, Trautman JK, Frank HA, Owens TG, Albrecht AC. Femtosecond energy-transfer processes in the B800-850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1. Biochim Biophys Acta. 1991;1058:280–288. PubMed

Ma YZ, Cogdell RJ, Gillbro T. Energy transfer and exciton annihilation in the B800−850 antenna complex of the photosynthetic purple bacterium Rhodopseudomonas acidophila (Strain 10050). A femtosecond transient absorption study. J Phys Chem B. 1997;101:1087–1095.

Kennis JTM, Streltsov AM, Vulto SIE, Aartsma TJ, Nozawa T, Amesz J. Femtosecond dynamics in isolated LH2 complexes of various species of purple bacteria. J Phys Chem B. 1997;101:7827–7834.

Kennis JTM, Streltsov AM, Aartsma TJ, Nozawa T, Amesz J. Energy transfer and exciton coupling in isolated B800−850 complexes of the photosynthetic purple sulfur bacterium Chromatium tepidum. The effect of structural symmetry on bacteriochlorophyll excited states. J Phys Chem. 1996;100:2438–2442.

Ihalainen JA, Linnanto J, Myllyperkiö P, van Stokkum IHM, Ücker B, Scheer H, et al. Energy transfer in LH2 of Rhodospirillum molischianum, studied by subpicosecond spectroscopy and configuration interaction exciton calculations. J Phys Chem B. 2001;105:9849–9856.

Novoderezhkin VI, Taisova AS, Fetisova ZG, Blankenship RE, Savikhin S, Buck DR, et al. Energy transfers in the B808-866 antenna from the green bacterium Chloroflexus aurantiacus. Biophys J. 1998;74:2069–2075. doi: 10.1016/S0006-3495(98)77913-5 PubMed DOI PMC

Xin Y, Pan J, Collins AM, Lin S, Blankenship RE. Excitation energy transfer and trapping dynamics in the core complex of the filamentous photosynthetic bacterium Roseiflexus castenholzii. Photosynth Res. 2012;111:149–156. doi: 10.1007/s11120-011-9669-6 PubMed DOI

Visser HM, Somsen OJG, van Mourik F, Lin S, van Stokkum IHM, van Grondelle R. Direct observation of sub-picosecond equilibration of excitation energy in the light-harvesting antenna of Rhodospirillum rubrum. Biophys J. 1995;69:1083–1099. doi: 10.1016/S0006-3495(95)79982-9 PubMed DOI PMC

Novoderezhkin VI, Fetisova ZG. Exciton delocalization in the B808-866 antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump-probe spectroscopy. Biophys J. 1999;77:424–430. doi: 10.1016/S0006-3495(99)76900-6 PubMed DOI PMC

Selyanin V, Hauruseu D, Koblížek M. The variability of light-harvesting complexes in aerobic anoxygenic phototrophs. Photosynth Res. 2016;128:35–43. doi: 10.1007/s11120-015-0197-7 PubMed DOI

Pearlstein RM. Theoretical interpretation of antenna spectra In: Scheer H, editor. Chlorophylls. CRC Press, Boca Raton, FL, USA; 1991. pp. 1047–1077.

Krueger BP, Scholes GD, Fleming GR. Calculation of couplings and energy transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B. 1998;102:5378–5386.

Cupellini L, Jurinovich S, Campetella M, Caprasecca S, Guido CA, Kelly SM, et al. An Ab Initio description of the excitonic properties of LH2 and their temperature dependence. J Phys Chem B. 2016;120:11348–11359. doi: 10.1021/acs.jpcb.6b06585 PubMed DOI

Hess S, Chachisvilis M, Timpmann K, Jones MR, Fowler GJS, Hunter CN, et al. Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria. Proc Natl Acad Sci USA. 1995;92:12333–12337. PubMed PMC

Nagarajan V, Parson WW. Excitation Energy transfer between the B850 and B875 antenna complexes of Rhodobacter sphaeroides. Biochemistry. 1997;36:2300–2306. doi: 10.1021/bi962534b PubMed DOI

Ritz T, Park S, Schulten K. Kinetics of excitation migration and trapping in the photosynthetic unit of purple bacteria. J Phys Chem B. 2001;105:8259–8267.

Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol. 1957;49:25–68. PubMed

Scheres SHW. RELION. Implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol. 2012;180:519–530. doi: 10.1016/j.jsb.2012.09.006 PubMed DOI PMC

Bína D, Litvín R, Vácha F. Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria. Photosynth Res. 2009; 99:115–125. doi: 10.1007/s11120-009-9408-4 PubMed DOI

Wittig I, Karas M, Schagger H. High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteomics. 2007;6: 1215–1225. doi: 10.1074/mcp.M700076-MCP200 PubMed DOI

Dobáková M, Sobotka R, Tichý M, Komenda J. Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 2009;149:1076–1086. doi: 10.1104/pp.108.130039 PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Minimal transcriptional regulation of horizontally transferred photosynthesis genes in phototrophic bacterium Gemmatimonas phototrophica

. 2024 Sep 17 ; 9 (9) : e0070624. [epub] 20240827

The Influence of Calcium on the Growth, Morphology and Gene Regulation in Gemmatimonas phototrophica

. 2022 Dec 22 ; 11 (1) : . [epub] 20221222

2.4-Å structure of the double-ring Gemmatimonas phototrophica photosystem

. 2022 Feb 18 ; 8 (7) : eabk3139. [epub] 20220216

Phylum Gemmatimonadota and Its Role in the Environment

. 2022 Jan 12 ; 10 (1) : . [epub] 20220112

Structure elucidation of the novel carotenoid gemmatoxanthin from the photosynthetic complex of Gemmatimonas phototrophica AP64

. 2021 Aug 05 ; 11 (1) : 15964. [epub] 20210805

Common Presence of Phototrophic Gemmatimonadota in Temperate Freshwater Lakes

. 2021 Mar 16 ; 6 (2) : . [epub] 20210316

Simultaneous Presence of Bacteriochlorophyll and Xanthorhodopsin Genes in a Freshwater Bacterium

. 2020 Dec 22 ; 5 (6) : . [epub] 20201222

A comparative look at structural variation among RC-LH1 'Core' complexes present in anoxygenic phototrophic bacteria

. 2020 Aug ; 145 (2) : 83-96. [epub] 20200519

Gemmatimonas groenlandica sp. nov. Is an Aerobic Anoxygenic Phototroph in the Phylum Gemmatimonadetes

. 2020 ; 11 () : 606612. [epub] 20210115

Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake

. 2019 Aug 22 ; 17 (1) : 69. [epub] 20190822

Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae

. 2018 Aug ; 12 (8) : 1994-2010. [epub] 20180524

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...