Scaffolding for Repair: Understanding Molecular Functions of the SMC5/6 Complex
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29329249
PubMed Central
PMC5793187
DOI
10.3390/genes9010036
PII: genes9010036
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage repair, SMC5/6, Structural maintenance of chromosomes, chromatin, chromosomes, genome stability,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Chromosome organization, dynamics and stability are required for successful passage through cellular generations and transmission of genetic information to offspring. The key components involved are Structural maintenance of chromosomes (SMC) complexes. Cohesin complex ensures proper chromatid alignment, condensin complex chromosome condensation and the SMC5/6 complex is specialized in the maintenance of genome stability. Here we summarize recent knowledge on the composition and molecular functions of SMC5/6 complex. SMC5/6 complex was originally identified based on the sensitivity of its mutants to genotoxic stress but there is increasing number of studies demonstrating its roles in the control of DNA replication, sister chromatid resolution and genomic location-dependent promotion or suppression of homologous recombination. Some of these functions appear to be due to a very dynamic interaction with cohesin or other repair complexes. Studies in Arabidopsis indicate that, besides its canonical function in repair of damaged DNA, the SMC5/6 complex plays important roles in regulating plant development, abiotic stress responses, suppression of autoimmune responses and sexual reproduction.
Zobrazit více v PubMed
Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705. doi: 10.1016/j.cell.2007.02.005. PubMed DOI
Li G., Hall T.C., Holmes-Davis R. Plant chromatin: Development and gene control. Bioessays. 2002;24:234–243. doi: 10.1002/bies.10055. PubMed DOI
Branzei D., Vanoli F., Foiani M. SUMOylation regulates Rad18-mediated template switch. Nature. 2008;456:915–920. doi: 10.1038/nature07587. PubMed DOI
Roy S. Maintenance of genome stability in plants: Repairing DNA double strand breaks and chromatin structure stability. Front. Plant Sci. 2014;5:487. doi: 10.3389/fpls.2014.00487. PubMed DOI PMC
Hu Z.B., Cools T., De Veylder L. Mechanisms used by plants to cope with DNA damage. Annu. Rev. Plant. Biol. 2016;67:439–462. doi: 10.1146/annurev-arplant-043015-111902. PubMed DOI
Willing E.M., Piofczyk T., Albert A., Winkler J.B., Schneeberger K., Pecinka A. UVR2 ensures transgenerational genome stability under simulated natural UV-B in Arabidopsis thaliana. Nat. Commun. 2016;7:13522. doi: 10.1038/ncomms13522. PubMed DOI PMC
Balestrazzi A., Confalonieri M., Macovei A., Dona M., Carbonera D. Genotoxic stress and DNA repair in plants: Emerging functions and tools for improving crop productivity. Plant. Cell Rep. 2011;30:287–295. doi: 10.1007/s00299-010-0975-9. PubMed DOI
De Piccoli G., Torres-Rosell J., Aragon L. The unnamed complex: What do we know about Smc5-Smc6? Chromosome Res. 2009;17:251–263. doi: 10.1007/s10577-008-9016-8. PubMed DOI
Hirano T. At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Biol. 2006;7:311–322. doi: 10.1038/nrm1909. PubMed DOI
Losada A., Hirano T. Dynamic molecular linkers of the genome: The first decade of SMC proteins. Genes Dev. 2005;19:1269–1287. doi: 10.1101/gad.1320505. PubMed DOI
Jeppsson K., Kanno T., Shirahige K., Sjogren C. The maintenance of chromosome structure: Positioning and functioning of SMC complexes. Nat. Rev. Mol. Cell Biol. 2014;15:601–614. doi: 10.1038/nrm3857. PubMed DOI
Uhlmann F. SMC complexes: From DNA to chromosomes. Nat. Rev. Mol. Cell Biol. 2016;17:399–412. doi: 10.1038/nrm.2016.30. PubMed DOI
Kanno T., Berta D.G., Sjogren C. The Smc5/6 complex is an ATP-dependent intermolecular DNA linker. Cell Rep. 2015;12:1471–1482. doi: 10.1016/j.celrep.2015.07.048. PubMed DOI
Sergeant J., Taylor E., Palecek J., Fousteri M., Andrews E.A., Sweeney S., Shinagawa H., Watts F.Z., Lehmann A.R. Composition and architecture of the Schizosaccharomyces pombe Rad18 (Smc5-6) complex. Mol. Cell. Biol. 2005;25:172–184. doi: 10.1128/MCB.25.1.172-184.2005. PubMed DOI PMC
Duan X., Yang Y., Chen Y.H., Arenz J., Rangi G.K., Zhao X., Ye H. Architecture of the Smc5/6 Complex of Saccharomyces cerevisiae Reveals a Unique Interaction between the Nse5-6 Subcomplex and the Hinge Regions of Smc5 and Smc6. J. Biol. Chem. 2009;284:8507–8515. doi: 10.1074/jbc.M809139200. PubMed DOI PMC
Palecek J., Vidot S., Feng M., Doherty A.J., Lehmann A.R. The Smc5-Smc6 DNA repair complex. bridging of the Smc5-Smc6 heads by the KLEISIN, Nse4, and non-Kleisin subunits. J. Biol. Chem. 2006;281:36952–36959. doi: 10.1074/jbc.M608004200. PubMed DOI
Fujioka Y., Kimata Y., Nomaguchi K., Watanabe K., Kohno K. Identification of a novel non-structural maintenance of chromosomes (SMC) component of the SMC5-SMC6 complex involved in DNA repair. J. Biol. Chem. 2002;277:21585–21591. doi: 10.1074/jbc.M201523200. PubMed DOI
McDonald W.H., Pavlova Y., Yates J.R., 3rd, Boddy M.N. Novel essential DNA repair proteins Nse1 and Nse2 are subunits of the fission yeast Smc5-Smc6 complex. J. Biol. Chem. 2003;278:45460–45467. doi: 10.1074/jbc.M308828200. PubMed DOI
Taylor E.M., Copsey A.C., Hudson J.J., Vidot S., Lehmann A.R. Identification of the proteins, including MAGEG1, that make up the human SMC5-6 protein complex. Mol. Cell. Biol. 2008;28:1197–1206. doi: 10.1128/MCB.00767-07. PubMed DOI PMC
Pebernard S., Perry J.J., Tainer J.A., Boddy M.N. Nse1 RING-like domain supports functions of the Smc5-Smc6 holocomplex in genome stability. Mol. Biol. Cell. 2008;19:4099–4109. doi: 10.1091/mbc.E08-02-0226. PubMed DOI PMC
Li G., Zou W., Jian L., Qian J., Deng Y., Zhao J. Non-SMC elements 1 and 3 are required for early embryo and seedling development in Arabidopsis. J. Exp. Bot. 2017;68:1039–1054. doi: 10.1093/jxb/erx016. PubMed DOI PMC
Hudson J.J., Bednarova K., Kozakova L., Liao C., Guerineau M., Colnaghi R., Vidot S., Marek J., Bathula S.R., Lehmann A.R., et al. Interactions between the Nse3 and Nse4 components of the SMC5-6 complex identify evolutionarily conserved interactions between MAGE and EID Families. PLoS ONE. 2011;6:e17270. doi: 10.1371/journal.pone.0017270. PubMed DOI PMC
Zabrady K., Adamus M., Vondrova L., Liao C., Skoupilova H., Novakova M., Jurcisinova L., Alt A., Oliver A.W., Lehmann A.R., et al. Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Res. 2016;44:1064–1079. doi: 10.1093/nar/gkv1021. PubMed DOI PMC
Doyle J.M., Gao J., Wang J., Yang M., Potts P.R. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell. 2010;39:963–974. doi: 10.1016/j.molcel.2010.08.029. PubMed DOI PMC
Chomez P., De Backer O., Bertrand M., De Plaen E., Boon T., Lucas S. An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res. 2001;61:5544–5551. PubMed
Barker P.A., Salehi A. The MAGE proteins: Emerging roles in cell cycle progression, apoptosis, and neurogenetic disease. J. Neurosci. Res. 2002;67:705–712. doi: 10.1002/jnr.10160. PubMed DOI
Weon J.L., Potts P.R. The MAGE protein family and cancer. Curr. Opin. Cell Biol. 2015;37:1–8. doi: 10.1016/j.ceb.2015.08.002. PubMed DOI PMC
Schleiffer A., Kaitna S., Maurer-Stroh S., Glotzer M., Nasmyth K., Eisenhaber F. Kleisins: A superfamily of bacterial and eukaryotic SMC protein partners. Mol. Cell. 2003;11:571–575. doi: 10.1016/S1097-2765(03)00108-4. PubMed DOI
Prakash S., Prakash L. Increased spontaneous mitotic segregation in MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics. 1977;87:229–236. PubMed PMC
Zhao X.L., Blobel G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. USA. 2005;102:4777–4782. doi: 10.1073/pnas.0500537102. PubMed DOI PMC
Xu P., Yuan D., Liu M., Li C., Liu Y., Zhang S., Yao N., Yang C. AtMMS21, an SMC5/6 complex subunit, is involved in stem cell niche maintenance and DNA damage responses in Arabidopsis roots. Plant. Physiol. 2013;161:1755–1768. doi: 10.1104/pp.112.208942. PubMed DOI PMC
Potts P.R., Yu H. Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell. Biol. 2005;25:7021–7032. doi: 10.1128/MCB.25.16.7021-7032.2005. PubMed DOI PMC
Hay R.T. SUMO: A history of modification. Mol. Cell. 2005;18:1–12. doi: 10.1016/j.molcel.2005.03.012. PubMed DOI
Jalal D., Chalissery J., Hassan A.H. Genome maintenance in Saccharomyces cerevisiae: The role of SUMO and SUMO-targeted ubiquitin ligases. Nucleic Acids Res. 2017;45:2242–2261. doi: 10.1093/nar/gkw1369. PubMed DOI PMC
Andrews E.A., Palecek J., Sergeant J., Taylor E., Lehmann A.R., Watts F.Z. Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol. 2005;25:185–196. doi: 10.1128/MCB.25.1.185-196.2005. PubMed DOI PMC
McAleenan A., Cordon-Preciado V., Clemente-Blanco A., Liu I.C., Sen N., Leonard J., Jarmuz A., Aragon L. SUMOylation of the alpha-kleisin subunit of cohesin is required for DNA damage-induced cohesion. Curr. Biol. 2012;22:1564–1575. doi: 10.1016/j.cub.2012.06.045. PubMed DOI
Potts P.R., Yu H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 2007;14:581–590. doi: 10.1038/nsmb1259. PubMed DOI
Potts P.R., Porteus M.H., Yu H. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 2006;25:3377–3388. doi: 10.1038/sj.emboj.7601218. PubMed DOI PMC
Ishida T., Fujiwara S., Miura K., Stacey N., Yoshimura M., Schneider K., Adachi S., Minamisawa K., Umeda M., Sugimoto K. SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell. 2009;21:2284–2297. doi: 10.1105/tpc.109.068072. PubMed DOI PMC
Huang L., Yang S., Zhang S., Liu M., Lai J., Qi Y., Shi S., Wang J., Wang Y., Xie Q., et al. The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J. 2009;60:666–678. doi: 10.1111/j.1365-313X.2009.03992.x. PubMed DOI
Pebernard S., Wohlschlegel J., McDonald W.H., Yates J.R., 3rd, Boddy M.N. The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex. Mol. Cell. Biol. 2006;26:1617–1630. doi: 10.1128/MCB.26.5.1617-1630.2006. PubMed DOI PMC
Yan S., Wang W., Marques J., Mohan R., Saleh A., Durrant W.E., Song J., Dong X. Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol. Cell. 2013;52:602–610. doi: 10.1016/j.molcel.2013.09.019. PubMed DOI PMC
Raschle M., Smeenk G., Hansen R.K., Temu T., Oka Y., Hein M.Y., Nagaraj N., Long D.T., Walter J.C., Hofmann K., et al. DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science. 2015;348:1253671. doi: 10.1126/science.1253671. PubMed DOI PMC
Huber A.H., Nelson W.J., Weis W.I. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell. 1997;90:871–882. doi: 10.1016/S0092-8674(00)80352-9. PubMed DOI
Fousteri M.I., Lehmann A.R. A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J. 2000;19:1691–1702. doi: 10.1093/emboj/19.7.1691. PubMed DOI PMC
Lehmann A.R., Walicka M., Griffiths D.J., Murray J.M., Watts F.Z., McCready S., Carr A.M. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol. Cell. Biol. 1995;15:7067–7080. doi: 10.1128/MCB.15.12.7067. PubMed DOI PMC
Mengiste T., Revenkova E., Bechtold N., Paszkowski J. An SMC-like protein is required for efficient homologous recombination in Arabidopsis. EMBO J. 1999;18:4505–4512. doi: 10.1093/emboj/18.16.4505. PubMed DOI PMC
Santa Maria S.R., Gangavarapu V., Johnson R.E., Prakash L., Prakash S. Requirement of Nse1, a subunit of the Smc5-Smc6 complex, for Rad52-dependent postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 2007;27:8409–8418. doi: 10.1128/MCB.01543-07. PubMed DOI PMC
Kegel A., Sjogren C. The Smc5/6 complex: More than repair? Cold Spring Harb. Symp. Quant. Biol. 2010;75:179–187. doi: 10.1101/sqb.2010.75.047. PubMed DOI
Wu N., Yu H. The Smc complexes in DNA damage response. Cell Biosci. 2012;2:5. doi: 10.1186/2045-3701-2-5. PubMed DOI PMC
Potts P.R. The Yin and Yang of the MMS21-SMC5/6 SUMO ligase complex in homologous recombination. DNA Repair. 2009;8:499–506. doi: 10.1016/j.dnarep.2009.01.009. PubMed DOI
Watanabe K., Pacher M., Dukowic S., Schubert V., Puchta H., Schubert I. The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell. 2009;21:2688–2699. doi: 10.1105/tpc.108.060525. PubMed DOI PMC
Liu C.H., Finke A., Diaz M., Rozhon W., Poppenberger B., Baubec T., Pecinka A. Repair of DNA damage induced by the cytidine analog zebularine requires ATR and ATM in Arabidopsis. Plant Cell. 2015;27:1788–1800. doi: 10.1105/tpc.114.135467. PubMed DOI PMC
Yuan D., Lai J., Xu P., Zhang S., Zhang J., Li C., Wang Y., Du J., Liu Y., Yang C. AtMMS21 regulates DNA damage response and homologous recombination repair in Arabidopsis. DNA Repair. 2014;21:140–147. doi: 10.1016/j.dnarep.2014.04.006. PubMed DOI
Pecinka A., Liu C.H. Drugs for plant chromosome and chromatin research. Cytogenet. Genome Res. 2014;143:51–59. doi: 10.1159/000360774. PubMed DOI
Baubec T., Finke A., Mittelsten Scheid O., Pecinka A. Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. EMBO Rep. 2014;15:446–452. doi: 10.1002/embr.201337915. PubMed DOI PMC
Baubec T., Pecinka A., Rozhon W., Mittelsten Scheid O. Effective, homogeneous and transient interference with cytosine methylation in plant genomic DNA by zebularine. Plant J. 2009;57:542–554. doi: 10.1111/j.1365-313X.2008.03699.x. PubMed DOI PMC
Finke A., Pecinka A. (Institute of Experimental Botany A.S. C.R., Rozvojová, Czech Republic). 2018. Unpublished work.
Outwin E.A., Irmisch A., Murray J.M., O’Connell M.J. Smc5-Smc6-dependent removal of cohesin from mitotic chromosomes. Mol. Cell. Biol. 2009;29:4363–4375. doi: 10.1128/MCB.00377-09. PubMed DOI PMC
Jeppsson K., Carlborg K.K., Nakato R., Berta D.G., Lilienthal I., Kanno T., Lindqvist A., Brink M.C., Dantuma N.P., Katou Y., et al. The chromosomal association of the Smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement. PLoS Genet. 2014;10:e1004680. doi: 10.1371/journal.pgen.1004680. PubMed DOI PMC
Lindroos H.B., Strom L., Itoh T., Katou Y., Shirahige K., Sjogren C. Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol. Cell. 2006;22:755–767. doi: 10.1016/j.molcel.2006.05.014. PubMed DOI
De Piccoli G., Cortes-Ledesma F., Ira G., Torres-Rosell J., Uhle S., Farmer S., Hwang J.Y., Machin F., Ceschia A., McAleenan A., et al. Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat. Cell Biol. 2006;8:1032–1034. doi: 10.1038/ncb1466. PubMed DOI PMC
Strom L., Karlsson C., Lindroos H.B., Wedahl S., Katou Y., Shirahige K., Sjogren C. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science. 2007;317:242–245. doi: 10.1126/science.1140649. PubMed DOI
Hanin M., Mengiste T., Bogucki A., Paszkowski J. Elevated levels of intrachromosomal homologous recombination in Arabidopsis overexpressing the MIM gene. Plant J. 2000;24:183–189. doi: 10.1046/j.1365-313x.2000.00867.x. PubMed DOI
Stephan A.K., Kliszczak M., Dodson H., Cooley C., Morrison C.G. Roles of vertebrate Smc5 in sister chromatid cohesion and homologous recombinational repair. Mol. Cell. Biol. 2011;31:1369–1381. doi: 10.1128/MCB.00786-10. PubMed DOI PMC
Cimprich K.A., Cortez D. ATR: An essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 2008;9:616–627. doi: 10.1038/nrm2450. PubMed DOI PMC
Garcia V., Bruchet H., Camescasse D., Granier F., Bouchez D., Tissier A. AtATM is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell. 2003;15:119–132. doi: 10.1105/tpc.006577. PubMed DOI PMC
Culligan K.M., Robertson C.E., Foreman J., Doerner P., Britt A.B. ATR and ATM play both distinct and additive roles in response to ionizing radiation. Plant J. 2006;48:947–961. doi: 10.1111/j.1365-313X.2006.02931.x. PubMed DOI
Roitinger E., Hofer M., Kocher T., Pichler P., Novatchkova M., Yang J., Schlogelhofer P., Mechtler K. Quantitative phosphoproteomics of the ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia-mutated and rad3-related (ATR) dependent DNA damage response in Arabidopsis thaliana. Mol. Cell. Proteom. 2015;14:556–571. doi: 10.1074/mcp.M114.040352. PubMed DOI PMC
Kilian J., Whitehead D., Horak J., Wanke D., Weinl S., Batistic O., D'Angelo C., Bornberg-Bauer E., Kudla J., Harter K. The AtGenExpress global stress expression data set: Protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 2007;50:347–363. doi: 10.1111/j.1365-313X.2007.03052.x. PubMed DOI
Devos K.M., Brown J.K., Bennetzen J.L. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 2002;12:1075–1079. doi: 10.1101/gr.132102. PubMed DOI PMC
Ampatzidou E., Irmisch A., O'Connell M.J., Murray J.M. Smc5/6 is required for repair at collapsed replication forks. Mol. Cell. Biol. 2006;26:9387–9401. doi: 10.1128/MCB.01335-06. PubMed DOI PMC
Torres-Rosell J., Machin F., Farmer S., Jarmuz A., Eydmann T., Dalgaard J.Z., Aragon L. SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nat. Cell Biol. 2005;7:412–419. doi: 10.1038/ncb1239. PubMed DOI
Hwang J.Y., Smith S., Ceschia A., Torres-Rosell J., Aragon L., Myung K. Smc5-Smc6 complex suppresses gross chromosomal rearrangements mediated by break-induced replications. DNA Repair. 2008;7:1426–1436. doi: 10.1016/j.dnarep.2008.05.006. PubMed DOI PMC
Menolfi D., Delamarre A., Lengronne A., Pasero P., Branzei D. Essential roles of the Smc5/6 complex in replication through natural pausing sites and endogenous DNA damage tolerance. Mol. Cell. 2015;60:835–846. doi: 10.1016/j.molcel.2015.10.023. PubMed DOI PMC
Chiolo I., Minoda A., Colmenares S.U., Polyzos A., Costes S.V., Karpen G.H. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell. 2011;144:732–744. doi: 10.1016/j.cell.2011.02.012. PubMed DOI PMC
Ryu T., Spatola B., Delabaere L., Bowlin K., Hopp H., Kunitake R., Karpen G.H., Chiolo I. Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat. Cell Biol. 2015;17:1401–1411. doi: 10.1038/ncb3258. PubMed DOI PMC
Torres-Rosell J., Sunjevaric I., De Piccoli G., Sacher M., Eckert-Boulet N., Reid R., Jentsch S., Rothstein R., Aragon L., Lisby M. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 2007;9:923–931. doi: 10.1038/ncb1619. PubMed DOI
Kozak J., West C.E., White C., da Costa-Nunes J.A., Angelis K.J. Rapid repair of DNA double strand breaks in Arabidopsis thaliana is dependent on proteins involved in chromosome structure maintenance. DNA Repair. 2009;8:413–419. doi: 10.1016/j.dnarep.2008.11.012. PubMed DOI
Branzei D., Sollier J., Liberi G., Zhao X., Maeda D., Seki M., Enomoto T., Ohta K., Foiani M. Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell. 2006;127:509–522. doi: 10.1016/j.cell.2006.08.050. PubMed DOI
DiNardo S., Voelkel K., Sternglanz R. DNA topoisomerase II mutant of Saccharomyces cerevisiae: Topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc. Natl. Acad. Sci. USA. 1984;81:2616–2620. doi: 10.1073/pnas.81.9.2616. PubMed DOI PMC
Bermejo R., Doksani Y., Capra T., Katou Y.M., Tanaka H., Shirahige K., Foiani M. Top1- and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation. Genes Dev. 2007;21:1921–1936. doi: 10.1101/gad.432107. PubMed DOI PMC
Kegel A., Betts-Lindroos H., Kanno T., Jeppsson K., Strom L., Katou Y., Itoh T., Shirahige K., Sjogren C. Chromosome length influences replication-induced topological stress. Nature. 2011;471:392–396. doi: 10.1038/nature09791. PubMed DOI
Gallego-Paez L.M., Tanaka H., Bando M., Takahashi M., Nozaki N., Nakato R., Shirahige K., Hirota T. Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. Mol. Biol. Cell. 2014;25:302–317. doi: 10.1091/mbc.E13-01-0020. PubMed DOI PMC
Cohen-Fix O. The making and breaking of sister chromatid cohesion. Cell. 2001;106:137–140. doi: 10.1016/S0092-8674(01)00439-1. PubMed DOI
Schubert V., Klatte M., Pecinka A., Meister A., Jasencakova Z., Schubert I. Sister chromatids are often incompletely aligned in meristematic and endopolyploid interphase nuclei of Arabidopsis thaliana. Genetics. 2006;172:467–475. doi: 10.1534/genetics.105.048363. PubMed DOI PMC
Bermudez-Lopez M., Ceschia A., de Piccoli G., Colomina N., Pasero P., Aragon L., Torres-Rosell J. The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Res. 2010;38:6502–6512. doi: 10.1093/nar/gkq546. PubMed DOI PMC
Bermudez-Lopez M., Villoria M.T., Esteras M., Jarmuz A., Torres-Rosell J., Clemente-Blanco A., Aragon L. Sgs1’s roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes Dev. 2016;30:1339–1356. doi: 10.1101/gad.278275.116. PubMed DOI PMC
Bonner J.N., Choi K., Xue X., Torres N.P., Szakal B., Wei L., Wan B., Arter M., Matos J., Sung P., et al. Smc5/6 mediated sumoylation of the Sgs1-Top3-Rmi1 complex promotes removal of recombination intermediates. Cell Rep. 2016;16:368–378. doi: 10.1016/j.celrep.2016.06.015. PubMed DOI PMC
Bermudez-Lopez M., Aragon L. Smc5/6 complex regulates Sgs1 recombination functions. Curr. Genet. 2017;63:381–388. doi: 10.1007/s00294-016-0648-5. PubMed DOI PMC
Choi K., Szakal B., Chen Y.H., Branzei D., Zhao X. The Smc5/6 complex and Esc2 influence multiple replication-associated recombination processes in Saccharomyces cerevisiae. Mol. Biol. Cell. 2010;21:2306–2314. doi: 10.1091/mbc.E10-01-0050. PubMed DOI PMC
Chen Y.H., Choi K., Szakal B., Arenz J., Duan X., Ye H., Branzei D., Zhao X. Interplay between the Smc5/6 complex and the Mph1 helicase in recombinational repair. Proc. Natl. Acad. Sci. USA. 2009;106:21252–21257. doi: 10.1073/pnas.0908258106. PubMed DOI PMC
Schmid M., Davison T.S., Henz S.R., Pape U.J., Demar M., Vingron M., Scholkopf B., Weigel D., Lohmann J.U. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 2005;37:501–506. doi: 10.1038/ng1543. PubMed DOI
Song J., Durrant W.E., Wang S., Yan S., Tan E.H., Dong X. DNA repair proteins are directly involved in regulation of gene expression during plant immune response. Cell Host Microbe. 2011;9:115–124. doi: 10.1016/j.chom.2011.01.011. PubMed DOI
Ishida T., Yoshimura M., Miura K., Sugimoto K. MMS21/HPY2 and SIZ1, two Arabidopsis SUMO E3 ligases, have distinct functions in development. PLoS ONE. 2012;7:e46897. doi: 10.1371/journal.pone.0046897. PubMed DOI PMC
Kwak J.S., Son G.H., Kim S.I., Song J.T., Seo H.S. Arabidopsis HIGH PLOIDY2 Sumoylates and Stabilizes Flowering Locus C through Its E3 Ligase Activity. Front. Plant Sci. 2016;7:530. doi: 10.3389/fpls.2016.00530. PubMed DOI PMC
Liu M., Shi S.F., Zhang S.C., Xu P.L., Lai J.B., Liu Y.Y., Yuan D.K., Wang Y.Q., Du J.J., Yang C.W. SUMO E3 ligase AtMMS21 is required for normal meiosis and gametophyte development in Arabidopsis. BMC Plant. Biol. 2014;14 doi: 10.1186/1471-2229-14-153. PubMed DOI PMC
Kimura S., Sakaguchi K. DNA repair in plants. Chem. Rev. 2006;106:753–766. doi: 10.1021/cr040482n. PubMed DOI
Yadav R.K., Girke T., Pasala S., Xie M., Reddy G.V. Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc. Natl. Acad. Sci. USA. 2009;106:4941–4946. doi: 10.1073/pnas.0900843106. PubMed DOI PMC
Diaz M., Pecinka A. Seeds as emerging hotspot for maintenance of genome stability. Cytol. Focus. 2017;82:467–470. doi: 10.1508/cytologia.82.467. DOI
Liu Y., Lai J., Yu M., Wang F., Zhang J., Jiang J., Hu H., Wu Q., Lu G., Xu P., et al. The Arabidopsis SUMO E3 ligase AtMMS21 dissociates the E2Fa/DPa complex in cell cycle regulation. Plant Cell. 2016 doi: 10.1105/tpc.16.00439. PubMed DOI PMC
Zhang J., Lai J., Wang F., Yang S., He Z., Jiang J., Li Q., Wu Q., Liu Y., Yu M., et al. A SUMO Ligase AtMMS21 Regulates the Stability of the Chromatin Remodeler BRAHMA in Root Development. Plant Physiol. 2017;173:1574–1582. doi: 10.1104/pp.17.00014. PubMed DOI PMC
Andres F., Coupland G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 2012;13:627–639. doi: 10.1038/nrg3291. PubMed DOI
Mylne J.S., Barrett L., Tessadori F., Mesnage S., Johnson L., Bernatavichute Y.V., Jacobsen S.E., Fransz P., Dean C. LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. Proc. Natl. Acad. Sci. USA. 2006;103:5012–5017. doi: 10.1073/pnas.0507427103. PubMed DOI PMC
Bastow R., Mylne J.S., Lister C., Lippman Z., Martienssen R.A., Dean C. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature. 2004;427:164–167. doi: 10.1038/nature02269. PubMed DOI
Schubert D., Primavesi L., Bishopp A., Roberts G., Doonan J., Jenuwein T., Goodrich J. Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J. 2006;25:4638–4649. doi: 10.1038/sj.emboj.7601311. PubMed DOI PMC
Tanksley S.D., McCouch S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science. 1997;277:1063–1066. doi: 10.1126/science.277.5329.1063. PubMed DOI
Bewley J.D. Seed Germination and Dormancy. Plant Cell. 1997;9:1055–1066. doi: 10.1105/tpc.9.7.1055. PubMed DOI PMC
McElver J., Tzafrir I., Aux G., Rogers R., Ashby C., Smith K., Thomas C., Schetter A., Zhou Q., Cushman M.A., et al. Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics. 2001;159:1751–1763. PubMed PMC
Liu C.M., McElver J., Tzafrir I., Joosen R., Wittich P., Patton D., Van Lammeren A.A., Meinke D. Condensin and cohesin knockouts in Arabidopsis exhibit a titan seed phenotype. Plant J. 2002;29:405–415. doi: 10.1046/j.1365-313x.2002.01224.x. PubMed DOI
Tzafrir I., McElver J.A., Liu Cm C.M., Yang L.J., Wu J.Q., Martinez A., Patton D.A., Meinke D.W. Diversity of TITAN functions in Arabidopsis seed development. Plant Physiol. 2002;128:38–51. doi: 10.1104/pp.010911. PubMed DOI PMC
Zhang S., Qi Y., Liu M., Yang C. SUMO E3 ligase AtMMS21 regulates drought tolerance in Arabidopsis thaliana(F) J. Integr. Plant Biol. 2013;55:83–95. doi: 10.1111/jipb.12024. PubMed DOI
Cao H., Glazebrook J., Clarke J.D., Volko S., Dong X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell. 1997;88:57–63. doi: 10.1016/S0092-8674(00)81858-9. PubMed DOI
Ryals J., Weymann K., Lawton K., Friedrich L., Ellis D., Steiner H.Y., Johnson J., Delaney T.P., Jesse T., Vos P., et al. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. Plant Cell. 1997;9:425–439. doi: 10.1105/tpc.9.3.425. PubMed DOI PMC
Li X., Zhang Y., Clarke J.D., Li Y., Dong X. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell. 1999;98:329–339. doi: 10.1016/S0092-8674(00)81962-5. PubMed DOI
Durrant W.E., Wang S., Dong X.N. Arabidopsis SNI1 and RAD51D regulate both gene transcription and DNA recombination during the defense response. Proc. Natl. Acad. Sci. USA. 2007;104:4223–4227. doi: 10.1073/pnas.0609357104. PubMed DOI PMC
Wang S., Durrant W.E., Song J., Spivey N.W., Dong X. Arabidopsis BRCA2 and RAD51 proteins are specifically involved in defense gene transcription during plant immune responses. Proc. Natl. Acad. Sci. USA. 2010;107:22716–22721. doi: 10.1073/pnas.1005978107. PubMed DOI PMC
Decorsiere A., Mueller H., van Breugel P.C., Abdul F., Gerossier L., Beran R.K., Livingston C.M., Niu C., Fletcher S.P., Hantz O., et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature. 2016;531:386–389. doi: 10.1038/nature17170. PubMed DOI
Laflamme G., Tremblay-Boudreault T., Roy M.A., Andersen P., Bonneil E., Atchia K., Thibault P., D'Amours D., Kwok B.H. Structural maintenance of chromosome (SMC) proteins link microtubule stability to genome integrity. J. Biol. Chem. 2014;289:27418–27431. doi: 10.1074/jbc.M114.569608. PubMed DOI PMC
SMC5/6 complex-mediated SUMOylation stimulates DNA-protein cross-link repair in Arabidopsis
Multiple Roles of SMC5/6 Complex during Plant Sexual Reproduction
The SMC5/6 Complex Subunit NSE4A Is Involved in DNA Damage Repair and Seed Development
Arabidopsis NSE4 Proteins Act in Somatic Nuclei and Meiosis to Ensure Plant Viability and Fertility