• This record comes from PubMed

Anti-Infectivity against Herpes Simplex Virus and Selected Microbes and Anti-Inflammatory Activities of Compounds Isolated from Eucalyptus globulus Labill

. 2018 Jul 06 ; 10 (7) : . [epub] 20180706

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Herpes simplex virus (HSV) causes numerous mild-to-serious human diseases, including mucocutaneous herpes infections and life-threatening herpes encephalitis. Moreover, herpes viral lesions can be complicated by inflammation and secondary bacterial infections. The development of resistance to antiviral drugs along with the undesirable side effects of these drugs are relevant argue for the development of new anti-HSV drugs with diverse mechanisms of action. Eucalyptus extracts have been used for decades to combat various infectious diseases. We isolated and studied 12 pure compounds and one mixture of two constitutional isomers from the leaves and twigs of E. globulus. The structures were identified by spectroscopic methods (NMR, HR-MS, IR) and all of them were tested for antiherpetic activity against the replication of antigen types HSV-1 and HSV-2. Tereticornate A (12) (IC50: 0.96 μg/mL; selectivity index CC50/IC50: 218.8) showed the strongest activity in the anti-HSV-1 assay, even greater than acyclovir (IC50: 1.92 μg/mL; selectivity index CC50/IC50: 109.4), a standard antiviral drug. Cypellocarpin C (5) (EC50: 0.73 μg/mL; selectivity index CC50/EC50: 287.7) showed the most potent anti-HSV-2 activity, also more intensive than acyclovir (EC50: 1.75 μg/mL; selectivity index CC50/EC50: 120.0). The antimicrobial activity of the isolated compounds was also evaluated against the bacteria Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa and the yeast Candida albicans. The anti-inflammatory potential was examined using LPS-stimulated THP-1-XBlue™-MD2-CD14 and THP-1 macrophages and focusing on the influences of the NF-κB/AP-1 activity and the secretion of pro-inflammatory cytokines IL-1β and TNF-α.

See more in PubMed

Gilles M., Zhao J., An M., Agboola S. Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chem. 2010;119:731–737. doi: 10.1016/j.foodchem.2009.07.021. DOI

Hardel D.K., Sahoo L. A review on phytochemical and pharmacological of Eucalyptus globulus: A multipurpose tree. Int. J. Res. Ayurveda Pharm. 2011;2:1527–1530.

Yao L., Jiang Y., D’Arcy B., Singanusong R., Datta N., Caffin N., Raymont K. Quantitative high-performance liquid chromatography analyses of flavonoids in Australian Eucalyptus honeys. J. Agric. Food. Chem. 2004;52:210–214. doi: 10.1021/jf034990u. PubMed DOI

Takahashi T., Kokubo R., Sakaino M. Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculate. Lett. Appl. Microbiol. 2004;39:60–64. doi: 10.1111/j.1472-765X.2004.01538.x. PubMed DOI

Ghisalberti E.L. Bioactive acylphloroglucinol derivatives from Eucalyptus species. Phytochemistry. 1996;41:7–22. doi: 10.1016/0031-9422(95)00484-X. PubMed DOI

Takasaki M., Konoshima T., Etoh H., Pal Singh I., Tokuda H., Nishino H. Cancer chemopreventive activity of euglobal-G1 from leaves of Eucalyptus grandis. Cancer Lett. 2000;155:61–65. doi: 10.1016/S0304-3835(00)00406-7. PubMed DOI

Cheng S.S., Huang C.G., Chen Y.J., Yu J.J., Chen W.J., Chang S.T. Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour. Technol. 2009;100:452–456. doi: 10.1016/j.biortech.2008.02.038. PubMed DOI

Lima F.J.B., Brito T.S., Freire W.B., Costa R.C., Linhares M.I., Sousa F.C., Lahlou S., Leal-Cardoso J.H., Santos A.A., Magalhães P.J. The essential oil of Eucalyptus tereticornis, and its constituents α- and β-pinene, potentiate acetylcholine-induced contraction in isolated rat trachea. Fitoterapia. 2010;81:649–655. doi: 10.1016/j.fitote.2010.03.012. PubMed DOI

Tyagi A.K., Malik A. Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem. 2011;126:228–235. doi: 10.1016/j.foodchem.2010.11.002. DOI

Okba M.M., El Gedaily R.A., Ashour R.M. UPLC-PDA-ESI-qTOF-MS profiling and potent anti-HSV-II activity of Eucalyptus sideroxylon leaves. J. Chromatogr. B. 2017;1068–1069:335–342. doi: 10.1016/j.jchromb.2017.10.065. PubMed DOI

Abu-Jafar A., Huleihel M. Antiviral activity of Eucalyptus camaldulensis leaves ethanolic extract on herpes viruses infection. Int. J. Clin. Virol. 2017;1:1–9. doi: 10.29328/journal.hjcv.1001001. DOI

Drew W.L. Herpesviruses. In: Ryan K.J., Ray C.G., editors. Sherris Medical Microbiology. 4th ed. McGraw-Hill Companies, Inc.; New York, NY, USA: 2004. pp. 555–562.

Astani A., Reichling J., Schnitzler P. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytother. Res. 2010;24:673–679. doi: 10.1002/ptr.2955. PubMed DOI PMC

Minami M., Kita M., Nakaya T., Yamamoto T., Kuriyama H., Imanishi J. The inhibitory effect of essential oils on herpes simplex virus type-1 replication in vitro. Microbiol. Immunol. 2003;47:681–684. doi: 10.1111/j.1348-0421.2003.tb03431.x. PubMed DOI

Gavanji S., Sayedipour S.S., Larki B., Bakhtari A. Antiviral activity of some plant oils against herpes simplex virus type 1 in Vero cell culture. JACME. 2015;5:62–68. doi: 10.1016/j.jacme.2015.07.001. DOI

Brezáni V., Šmejkal K. Secondary metabolites isolated from the genus Eucalyptus. Curr. Top. Med. Chem. 2013;7:65–75.

Burleson F.G., Chamberts T.M., Wiedbrauk D.L. Virology: A Laboratory Manual. Academic Press; San Diego, CA, USA: 1992. p. 250.

Hassan S.T.S., Berchová-Bímová K., Petráš J., Hassan K.T.S. Cucurbitacin B interacts synergistically with antibiotics against Staphylococcus aureus clinical isolates and exhibits antiviral activity against HSV-1. S. Afr. J. Bot. 2017;108:90–94. doi: 10.1016/j.sajb.2016.10.001. DOI

Hassan S.T.S., Švajdlenka E., Berchová-Bímová K. Hibiscus sabdariffa L. and its bioactive constituents exhibit antiviral activity against HSV-2 and anti-enzymatic properties against urease by an ESI-MS based assay. Molecules. 2017;22:722. doi: 10.3390/molecules22050722. PubMed DOI PMC

Borenfreund E., Puerner J.A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 1985;24:119–124. doi: 10.1016/0378-4274(85)90046-3. PubMed DOI

Silva I.T., Costa G.M., Stoco P.H., Schenkel E.P., Reginatto F.H., Simões C.M.O. In vitro antiherpes effects of C-glycosyl flavonoid-enriched fraction of Cecropia glazivoii Sneth. Lett. Appl. Microbiol. 2010;51:143–148. doi: 10.1111/j.1472-765X.2010.02870.x. PubMed DOI

Zhang H.J., Tan G.T., Santarsiero B.D., Mesecar A.D., Hung N.V., Cuong N.M., Doel Soejarto D., Pezzuto J.M., Fong H.H. New sesquiterpenes from Litsea verticillata. J. Nat. Prod. 2003;66:609–615. doi: 10.1021/np020508a. PubMed DOI

Yoshida S., Asami T., Kawano T., Yoneyama K., Crow W.D., Paton D.M., Takahashi N. Photosynthetic inhibitors in Eucalyptus grandis. Phytochemistry. 1988;27:1943–1946. doi: 10.1016/0031-9422(88)80072-4. DOI

Wang W., Zeng Y.H., Osman K., Shinde K., Rahman M., Gibbons S., Mu Q. Norlignans, acylphloroglucinols, and a dimeric xanthone from Hypericum chinense. J. Nat. Prod. 2010;73:1815–1820. doi: 10.1021/np1004483. PubMed DOI

Yin S., Xue J.J., Fan C.Q., Miao Z.H., Ding J., Yue J.M. Eucalyptals A–C with a new skeleton isolated from Eucalyptus globulus. Org. Lett. 2007;9:5549–5552. doi: 10.1021/ol7025075. PubMed DOI

Ito H., Koreishi M., Tokuda H., Nishino H., Yoshida T. Cypellocarpins A–C, phenol glycosides esterified with oleuropeic acid, from Eucalyptus cypellocarpa. J. Nat. Prod. 2000;63:1253–1257. doi: 10.1021/np0001981. PubMed DOI

Hakki Z., Cao B., Heskes A.M., Goodger J.Q., Woodrow I.E., Williams S.J. Synthesis of the monoterpenoid esters cypellocarpin C and cuniloside B and evidence for their widespread occurrence in Eucalyptus. Carbohydr. Res. 2010;345:2079–2084. doi: 10.1016/j.carres.2010.07.029. PubMed DOI

Junio H.A., Sy-Cordero A.A., Ettefagh K.A., Burns J.T., Micko K.T., Graf T.N., Richter S.J., Cannon R.E., Oberlies N.H., Cech N.B. Synergy-directed fractionation of botanical medicines: A case study with Goldenseal (Hydrastis canadensis) J. Nat. Prod. 2011;74:1621–1629. doi: 10.1021/np200336g. PubMed DOI PMC

Pagola S., Tracanna M.I., Amani S.M., Gonzáles A.M., Raschi A.B., Romano E., Benavente A.M., Stephens P.W. Sideroxylin from Miconia ioneura: Monohydrate crystal structure from high resolution X-ray powder diffraction. Nat. Prod. Commun. 2008;3:759–764.

Wollenweber E., Kohortst G. Epicuticular leaf flavonoids from Eucalyptus species and from Kalmia latifolia. Z. Naturforsch. C Biosci. C. 1981;36:913–915.

Huq F., Misra L.N. An alkenol and C-methylated flavones from Callistemon lanceolatus leaves. Planta Med. 1997;63:369–370. doi: 10.1055/s-2006-957706. PubMed DOI

Pereira S.I., Freire C.S., Pascoal Neto C., Silvestre A.J., Silva A.M. Chemical composition of the epicuticular wax from the fruits of Eucalyptus globulus. Phytochem. Anal. 2005;16:364–369. doi: 10.1002/pca.859. PubMed DOI

Wang H., Fujimoto Y. Triterpene esters from Eucalyptus tereticornis. Phytochemistry. 1993;33:151–153. doi: 10.1016/0031-9422(93)85412-K. DOI

Sidana J., Singh S., Arora S.K., Foley W.J., Singh I.P. Terpenoidal constituents of Eucalyptus loxophleba ssp. Lissophloia. Pharm. Biol. 2012;50:823–827. doi: 10.3109/13880209.2011.636058. PubMed DOI

Guo Q.M., Yang X.W. Cypellocarpin C and other compounds from the fruits of Eucalyptus globulus Labill. Biochem. Syst. Ecol. 2006;34:543–545. doi: 10.1016/j.bse.2005.10.018. DOI

Heidary Navid M., Laszczyk-Lauer M.N., Reichling J., Schnitzler P. Pentacyclic triterpenes in birch bark extract inhibit early step of herpes simplex virus type 1 replication. Phytomedicine. 2014;21:1273–1280. doi: 10.1016/j.phymed.2014.06.007. PubMed DOI

Huh J., Ha T.K.Q., Kang K.B., Kim K.H., Oh W.K., Sung S.H. C-methylated flavonoid glycosides from Pentarhizidium orientale rhizomes and their inhibitory effects on the H1N1 influenza virus. J. Nat. Prod. 2017;80:2818–2824. doi: 10.1021/acs.jnatprod.7b00677. PubMed DOI

Nakayama R., Murata M., Homma S., Aida K. Antibacterial compounds from Eucalyptus perriniana. Agric. Biol. Chem. 1990;54:231–232. doi: 10.1271/bbb1961.54.231. DOI

Khan I., Bahuguna A., Kumar P., Bajpai V.K., Kang S.C. Antimicrobial potential of carvacrol against uropathogenic Escherichia coli via membrane disruption, depolarization, and reactive oxygen species generation. Front. Microbiol. 2017;8:2421. doi: 10.3389/fmicb.2017.02421. PubMed DOI PMC

McDonnell G., Russell A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999;12:147–179. PubMed PMC

Bolte M.L., Crow W.D., Tahahashi N., Sakurai A., Uji-Ie M., Yoshida S. Structure/activity relationship of grandinol: A germination inhibitor in Eucalyptus. Agric. Biol. Chem. 1985;49:761–768. doi: 10.1271/bbb1961.49.761. DOI

Ibewuike J.C., Ogungbamila F.O., Ogundaini A.O., Okeke I.N., Bohlin L. Antiinflammatory and antibacterial activities of C-methylflavonols from Pilostigma thonningii. Phytother. Res. 1997;11:281–284. doi: 10.1002/(SICI)1099-1573(199706)11:4<281::AID-PTR281>3.0.CO;2-9. DOI

Brasier A.R. The NF-κB regulatory network. Cardiovasc. Toxicol. 2006;6:111–130. doi: 10.1385/CT:6:2:111. PubMed DOI

Lim E.-K., Mitchell P.J., Brown N., Drummond R.A., Brown G.D., Kaye P.M., Bowles D.J. Regiospecific Methylation of a Dietary Flavonoid Scaffold Selectively Enhances IL-1β Production Following Toll-like Receptor 2 Stimulation in THP-1 Monocytes. J. Biol. Chem. 2013;288:21126–21135. doi: 10.1074/jbc.M113.453514. PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Flavonoids with Anti-Herpes Simplex Virus Properties: Deciphering Their Mechanisms in Disrupting the Viral Life Cycle

. 2023 Nov 29 ; 15 (12) : . [epub] 20231129

Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights

. 2022 Mar 13 ; 14 (3) : . [epub] 20220313

Copper(II) Complexes Containing Natural Flavonoid Pomiferin Show Considerable In Vitro Cytotoxicity and Anti-inflammatory Effects

. 2021 Jul 16 ; 22 (14) : . [epub] 20210716

Berberine in Human Oncogenic Herpesvirus Infections and Their Linked Cancers

. 2021 May 28 ; 13 (6) : . [epub] 20210528

Nutraceutical Curcumin with Promising Protection against Herpesvirus Infections and Their Associated Inflammation: Mechanisms and Pathways

. 2021 Jan 31 ; 9 (2) : . [epub] 20210131

Brassicasterol with Dual Anti-Infective Properties against HSV-1 and Mycobacterium tuberculosis, and Cardiovascular Protective Effect: Nonclinical In Vitro and In Silico Assessments

. 2020 May 24 ; 8 (5) : . [epub] 20200524

Shedding Light on the Effect of Natural Anti-Herpesvirus Alkaloids on SARS-CoV-2: A Treatment Option for COVID-19

. 2020 Apr 23 ; 12 (4) : . [epub] 20200423

Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development

. 2020 Jan 29 ; 12 (2) : . [epub] 20200129

Investigation of Anti-Inflammatory Potential of N-Arylcinnamamide Derivatives

. 2019 Dec 11 ; 24 (24) : . [epub] 20191211

Psoromic Acid, a Lichen-Derived Molecule, Inhibits the Replication of HSV-1 and HSV-2, and Inactivates HSV-1 DNA Polymerase: Shedding Light on Antiherpetic Properties

. 2019 Aug 11 ; 24 (16) : . [epub] 20190811

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...