Anti-Infectivity against Herpes Simplex Virus and Selected Microbes and Anti-Inflammatory Activities of Compounds Isolated from Eucalyptus globulus Labill
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29986399
PubMed Central
PMC6070903
DOI
10.3390/v10070360
PII: v10070360
Knihovny.cz E-resources
- Keywords
- Eucalyptus, HSV-1, HSV-2, IL-1β, NF-κB/AP-1, ROS, TNF-α, anti-inflammatory, antibacterial, antiherpetic,
- MeSH
- Anti-Bacterial Agents chemistry pharmacology MeSH
- Anti-Inflammatory Agents chemistry pharmacology MeSH
- Anti-Infective Agents chemistry pharmacology MeSH
- Antioxidants metabolism MeSH
- Antiviral Agents chemistry pharmacology MeSH
- Cell Line MeSH
- Chlorocebus aethiops MeSH
- Cytokines metabolism MeSH
- Eucalyptus chemistry MeSH
- Herpes Simplex metabolism virology MeSH
- Humans MeSH
- NF-kappa B metabolism MeSH
- Reactive Oxygen Species metabolism MeSH
- Plant Extracts chemistry pharmacology MeSH
- Simplexvirus drug effects physiology MeSH
- Transcription Factor AP-1 metabolism MeSH
- Vero Cells MeSH
- Cell Survival drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Anti-Inflammatory Agents MeSH
- Anti-Infective Agents MeSH
- Antioxidants MeSH
- Antiviral Agents MeSH
- Cytokines MeSH
- NF-kappa B MeSH
- Reactive Oxygen Species MeSH
- Plant Extracts MeSH
- Transcription Factor AP-1 MeSH
Herpes simplex virus (HSV) causes numerous mild-to-serious human diseases, including mucocutaneous herpes infections and life-threatening herpes encephalitis. Moreover, herpes viral lesions can be complicated by inflammation and secondary bacterial infections. The development of resistance to antiviral drugs along with the undesirable side effects of these drugs are relevant argue for the development of new anti-HSV drugs with diverse mechanisms of action. Eucalyptus extracts have been used for decades to combat various infectious diseases. We isolated and studied 12 pure compounds and one mixture of two constitutional isomers from the leaves and twigs of E. globulus. The structures were identified by spectroscopic methods (NMR, HR-MS, IR) and all of them were tested for antiherpetic activity against the replication of antigen types HSV-1 and HSV-2. Tereticornate A (12) (IC50: 0.96 μg/mL; selectivity index CC50/IC50: 218.8) showed the strongest activity in the anti-HSV-1 assay, even greater than acyclovir (IC50: 1.92 μg/mL; selectivity index CC50/IC50: 109.4), a standard antiviral drug. Cypellocarpin C (5) (EC50: 0.73 μg/mL; selectivity index CC50/EC50: 287.7) showed the most potent anti-HSV-2 activity, also more intensive than acyclovir (EC50: 1.75 μg/mL; selectivity index CC50/EC50: 120.0). The antimicrobial activity of the isolated compounds was also evaluated against the bacteria Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa and the yeast Candida albicans. The anti-inflammatory potential was examined using LPS-stimulated THP-1-XBlue™-MD2-CD14 and THP-1 macrophages and focusing on the influences of the NF-κB/AP-1 activity and the secretion of pro-inflammatory cytokines IL-1β and TNF-α.
See more in PubMed
Gilles M., Zhao J., An M., Agboola S. Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chem. 2010;119:731–737. doi: 10.1016/j.foodchem.2009.07.021. DOI
Hardel D.K., Sahoo L. A review on phytochemical and pharmacological of Eucalyptus globulus: A multipurpose tree. Int. J. Res. Ayurveda Pharm. 2011;2:1527–1530.
Yao L., Jiang Y., D’Arcy B., Singanusong R., Datta N., Caffin N., Raymont K. Quantitative high-performance liquid chromatography analyses of flavonoids in Australian Eucalyptus honeys. J. Agric. Food. Chem. 2004;52:210–214. doi: 10.1021/jf034990u. PubMed DOI
Takahashi T., Kokubo R., Sakaino M. Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculate. Lett. Appl. Microbiol. 2004;39:60–64. doi: 10.1111/j.1472-765X.2004.01538.x. PubMed DOI
Ghisalberti E.L. Bioactive acylphloroglucinol derivatives from Eucalyptus species. Phytochemistry. 1996;41:7–22. doi: 10.1016/0031-9422(95)00484-X. PubMed DOI
Takasaki M., Konoshima T., Etoh H., Pal Singh I., Tokuda H., Nishino H. Cancer chemopreventive activity of euglobal-G1 from leaves of Eucalyptus grandis. Cancer Lett. 2000;155:61–65. doi: 10.1016/S0304-3835(00)00406-7. PubMed DOI
Cheng S.S., Huang C.G., Chen Y.J., Yu J.J., Chen W.J., Chang S.T. Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour. Technol. 2009;100:452–456. doi: 10.1016/j.biortech.2008.02.038. PubMed DOI
Lima F.J.B., Brito T.S., Freire W.B., Costa R.C., Linhares M.I., Sousa F.C., Lahlou S., Leal-Cardoso J.H., Santos A.A., Magalhães P.J. The essential oil of Eucalyptus tereticornis, and its constituents α- and β-pinene, potentiate acetylcholine-induced contraction in isolated rat trachea. Fitoterapia. 2010;81:649–655. doi: 10.1016/j.fitote.2010.03.012. PubMed DOI
Tyagi A.K., Malik A. Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem. 2011;126:228–235. doi: 10.1016/j.foodchem.2010.11.002. DOI
Okba M.M., El Gedaily R.A., Ashour R.M. UPLC-PDA-ESI-qTOF-MS profiling and potent anti-HSV-II activity of Eucalyptus sideroxylon leaves. J. Chromatogr. B. 2017;1068–1069:335–342. doi: 10.1016/j.jchromb.2017.10.065. PubMed DOI
Abu-Jafar A., Huleihel M. Antiviral activity of Eucalyptus camaldulensis leaves ethanolic extract on herpes viruses infection. Int. J. Clin. Virol. 2017;1:1–9. doi: 10.29328/journal.hjcv.1001001. DOI
Drew W.L. Herpesviruses. In: Ryan K.J., Ray C.G., editors. Sherris Medical Microbiology. 4th ed. McGraw-Hill Companies, Inc.; New York, NY, USA: 2004. pp. 555–562.
Astani A., Reichling J., Schnitzler P. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytother. Res. 2010;24:673–679. doi: 10.1002/ptr.2955. PubMed DOI PMC
Minami M., Kita M., Nakaya T., Yamamoto T., Kuriyama H., Imanishi J. The inhibitory effect of essential oils on herpes simplex virus type-1 replication in vitro. Microbiol. Immunol. 2003;47:681–684. doi: 10.1111/j.1348-0421.2003.tb03431.x. PubMed DOI
Gavanji S., Sayedipour S.S., Larki B., Bakhtari A. Antiviral activity of some plant oils against herpes simplex virus type 1 in Vero cell culture. JACME. 2015;5:62–68. doi: 10.1016/j.jacme.2015.07.001. DOI
Brezáni V., Šmejkal K. Secondary metabolites isolated from the genus Eucalyptus. Curr. Top. Med. Chem. 2013;7:65–75.
Burleson F.G., Chamberts T.M., Wiedbrauk D.L. Virology: A Laboratory Manual. Academic Press; San Diego, CA, USA: 1992. p. 250.
Hassan S.T.S., Berchová-Bímová K., Petráš J., Hassan K.T.S. Cucurbitacin B interacts synergistically with antibiotics against Staphylococcus aureus clinical isolates and exhibits antiviral activity against HSV-1. S. Afr. J. Bot. 2017;108:90–94. doi: 10.1016/j.sajb.2016.10.001. DOI
Hassan S.T.S., Švajdlenka E., Berchová-Bímová K. Hibiscus sabdariffa L. and its bioactive constituents exhibit antiviral activity against HSV-2 and anti-enzymatic properties against urease by an ESI-MS based assay. Molecules. 2017;22:722. doi: 10.3390/molecules22050722. PubMed DOI PMC
Borenfreund E., Puerner J.A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 1985;24:119–124. doi: 10.1016/0378-4274(85)90046-3. PubMed DOI
Silva I.T., Costa G.M., Stoco P.H., Schenkel E.P., Reginatto F.H., Simões C.M.O. In vitro antiherpes effects of C-glycosyl flavonoid-enriched fraction of Cecropia glazivoii Sneth. Lett. Appl. Microbiol. 2010;51:143–148. doi: 10.1111/j.1472-765X.2010.02870.x. PubMed DOI
Zhang H.J., Tan G.T., Santarsiero B.D., Mesecar A.D., Hung N.V., Cuong N.M., Doel Soejarto D., Pezzuto J.M., Fong H.H. New sesquiterpenes from Litsea verticillata. J. Nat. Prod. 2003;66:609–615. doi: 10.1021/np020508a. PubMed DOI
Yoshida S., Asami T., Kawano T., Yoneyama K., Crow W.D., Paton D.M., Takahashi N. Photosynthetic inhibitors in Eucalyptus grandis. Phytochemistry. 1988;27:1943–1946. doi: 10.1016/0031-9422(88)80072-4. DOI
Wang W., Zeng Y.H., Osman K., Shinde K., Rahman M., Gibbons S., Mu Q. Norlignans, acylphloroglucinols, and a dimeric xanthone from Hypericum chinense. J. Nat. Prod. 2010;73:1815–1820. doi: 10.1021/np1004483. PubMed DOI
Yin S., Xue J.J., Fan C.Q., Miao Z.H., Ding J., Yue J.M. Eucalyptals A–C with a new skeleton isolated from Eucalyptus globulus. Org. Lett. 2007;9:5549–5552. doi: 10.1021/ol7025075. PubMed DOI
Ito H., Koreishi M., Tokuda H., Nishino H., Yoshida T. Cypellocarpins A–C, phenol glycosides esterified with oleuropeic acid, from Eucalyptus cypellocarpa. J. Nat. Prod. 2000;63:1253–1257. doi: 10.1021/np0001981. PubMed DOI
Hakki Z., Cao B., Heskes A.M., Goodger J.Q., Woodrow I.E., Williams S.J. Synthesis of the monoterpenoid esters cypellocarpin C and cuniloside B and evidence for their widespread occurrence in Eucalyptus. Carbohydr. Res. 2010;345:2079–2084. doi: 10.1016/j.carres.2010.07.029. PubMed DOI
Junio H.A., Sy-Cordero A.A., Ettefagh K.A., Burns J.T., Micko K.T., Graf T.N., Richter S.J., Cannon R.E., Oberlies N.H., Cech N.B. Synergy-directed fractionation of botanical medicines: A case study with Goldenseal (Hydrastis canadensis) J. Nat. Prod. 2011;74:1621–1629. doi: 10.1021/np200336g. PubMed DOI PMC
Pagola S., Tracanna M.I., Amani S.M., Gonzáles A.M., Raschi A.B., Romano E., Benavente A.M., Stephens P.W. Sideroxylin from Miconia ioneura: Monohydrate crystal structure from high resolution X-ray powder diffraction. Nat. Prod. Commun. 2008;3:759–764.
Wollenweber E., Kohortst G. Epicuticular leaf flavonoids from Eucalyptus species and from Kalmia latifolia. Z. Naturforsch. C Biosci. C. 1981;36:913–915.
Huq F., Misra L.N. An alkenol and C-methylated flavones from Callistemon lanceolatus leaves. Planta Med. 1997;63:369–370. doi: 10.1055/s-2006-957706. PubMed DOI
Pereira S.I., Freire C.S., Pascoal Neto C., Silvestre A.J., Silva A.M. Chemical composition of the epicuticular wax from the fruits of Eucalyptus globulus. Phytochem. Anal. 2005;16:364–369. doi: 10.1002/pca.859. PubMed DOI
Wang H., Fujimoto Y. Triterpene esters from Eucalyptus tereticornis. Phytochemistry. 1993;33:151–153. doi: 10.1016/0031-9422(93)85412-K. DOI
Sidana J., Singh S., Arora S.K., Foley W.J., Singh I.P. Terpenoidal constituents of Eucalyptus loxophleba ssp. Lissophloia. Pharm. Biol. 2012;50:823–827. doi: 10.3109/13880209.2011.636058. PubMed DOI
Guo Q.M., Yang X.W. Cypellocarpin C and other compounds from the fruits of Eucalyptus globulus Labill. Biochem. Syst. Ecol. 2006;34:543–545. doi: 10.1016/j.bse.2005.10.018. DOI
Heidary Navid M., Laszczyk-Lauer M.N., Reichling J., Schnitzler P. Pentacyclic triterpenes in birch bark extract inhibit early step of herpes simplex virus type 1 replication. Phytomedicine. 2014;21:1273–1280. doi: 10.1016/j.phymed.2014.06.007. PubMed DOI
Huh J., Ha T.K.Q., Kang K.B., Kim K.H., Oh W.K., Sung S.H. C-methylated flavonoid glycosides from Pentarhizidium orientale rhizomes and their inhibitory effects on the H1N1 influenza virus. J. Nat. Prod. 2017;80:2818–2824. doi: 10.1021/acs.jnatprod.7b00677. PubMed DOI
Nakayama R., Murata M., Homma S., Aida K. Antibacterial compounds from Eucalyptus perriniana. Agric. Biol. Chem. 1990;54:231–232. doi: 10.1271/bbb1961.54.231. DOI
Khan I., Bahuguna A., Kumar P., Bajpai V.K., Kang S.C. Antimicrobial potential of carvacrol against uropathogenic Escherichia coli via membrane disruption, depolarization, and reactive oxygen species generation. Front. Microbiol. 2017;8:2421. doi: 10.3389/fmicb.2017.02421. PubMed DOI PMC
McDonnell G., Russell A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999;12:147–179. PubMed PMC
Bolte M.L., Crow W.D., Tahahashi N., Sakurai A., Uji-Ie M., Yoshida S. Structure/activity relationship of grandinol: A germination inhibitor in Eucalyptus. Agric. Biol. Chem. 1985;49:761–768. doi: 10.1271/bbb1961.49.761. DOI
Ibewuike J.C., Ogungbamila F.O., Ogundaini A.O., Okeke I.N., Bohlin L. Antiinflammatory and antibacterial activities of C-methylflavonols from Pilostigma thonningii. Phytother. Res. 1997;11:281–284. doi: 10.1002/(SICI)1099-1573(199706)11:4<281::AID-PTR281>3.0.CO;2-9. DOI
Brasier A.R. The NF-κB regulatory network. Cardiovasc. Toxicol. 2006;6:111–130. doi: 10.1385/CT:6:2:111. PubMed DOI
Lim E.-K., Mitchell P.J., Brown N., Drummond R.A., Brown G.D., Kaye P.M., Bowles D.J. Regiospecific Methylation of a Dietary Flavonoid Scaffold Selectively Enhances IL-1β Production Following Toll-like Receptor 2 Stimulation in THP-1 Monocytes. J. Biol. Chem. 2013;288:21126–21135. doi: 10.1074/jbc.M113.453514. PubMed DOI PMC
Berberine in Human Oncogenic Herpesvirus Infections and Their Linked Cancers
Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development
Investigation of Anti-Inflammatory Potential of N-Arylcinnamamide Derivatives