Effect of Ivabradine on a Hypertensive Heart and the Renin-Angiotensin-Aldosterone System in L-NAME-Induced Hypertension
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
30282928
PubMed Central
PMC6212851
DOI
10.3390/ijms19103017
PII: ijms19103017
Knihovny.cz E-resources
- Keywords
- L-NAME, aldosterone, angiotensin II, fibrosis, heart function, hypertension, ivabradine,
- MeSH
- Aldosterone blood MeSH
- Angiotensins blood MeSH
- Biomarkers MeSH
- Echocardiography MeSH
- Ventricular Function, Left drug effects MeSH
- Hydroxyproline blood metabolism MeSH
- Hypertension diagnosis etiology metabolism physiopathology MeSH
- Ivabradine pharmacology MeSH
- Cardiovascular Agents pharmacology MeSH
- Collagen metabolism MeSH
- Blood Pressure drug effects MeSH
- Rats MeSH
- Disease Models, Animal MeSH
- NG-Nitroarginine Methyl Ester adverse effects MeSH
- Renin-Angiotensin System drug effects MeSH
- Renin blood MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Aldosterone MeSH
- Angiotensins MeSH
- Biomarkers MeSH
- Hydroxyproline MeSH
- Ivabradine MeSH
- Cardiovascular Agents MeSH
- Collagen MeSH
- NG-Nitroarginine Methyl Ester MeSH
- Renin MeSH
Ivabradine, the selective inhibitor of the If current in the sinoatrial node, exerts cardiovascular protection by its bradycardic effect and potentially pleiotropic actions. However, there is a shortage of data regarding ivabradine's interaction with the renin-angiotensin-aldosterone system (RAAS). This study investigated whether ivabradine is able to protect a hypertensive heart in the model of L-NAME-induced hypertension and to interfere with the RAAS. Four groups (n = 10/group) of adult male Wistar rats were treated as follows for four weeks: control, ivabradine (10 mg/kg/day), L-NAME (40 mg/kg/day), and L-NAME plus ivabradine. L-NAME administration increased systolic blood pressure (SBP) and left ventricular (LV) weight, enhanced hydroxyproline concentration in the LV, and deteriorated the systolic and diastolic LV function. Ivabradine reduced heart rate (HR) and SBP, and improved the LV function. The serum concentrations of angiotensin Ang 1⁻8 (Ang II), Ang 1⁻5, Ang 1⁻7, Ang 1⁻10, Ang 2⁻8, and Ang 3⁻8 were decreased in the L-NAME group and ivabradine did not modify them. The serum concentration of aldosterone and the aldosterone/Ang II ratio were enhanced by L-NAME and ivabradine reduced these changes. We conclude that ivabradine improved the LV function of the hypertensive heart in L-NAME-induced hypertension. The protective effect of ivabradine might have been associated with the reduction of the aldosterone level.
Attoquant Diagnostics 1030 Vienna Austria
Department of Physiology School of Medicine Charles University 50003 Hradec Kralove Czech Republic
See more in PubMed
Silva F.C., Paiva F.A., Müller-Ribeiro F.C., Caldeira H.M., Fontes M., de Menezes R.C., Casali K.R., Fortes G.H., Tobaldini E., Solbiati M., et al. Chronic Treatment with Ivabradine Does Not Affect Cardiovascular Autonomic Control in Rats. Front. Physiol. 2016;7:305. doi: 10.3389/fphys.2016.00305. PubMed DOI PMC
Swedberg K., Komajda M., Böhm M., Borer J.S., Ford I., Dubost-Brama A., Lerebours G., Tavazzi L. SHIFT Investigators. Ivabradine and outcomes in chronic heart failure (SHIFT): A randomised placebo-controlled study. Lancet. 2010;376:875–885. doi: 10.1016/S0140-6736(10)61198-1. PubMed DOI
Kleinbongard P., Gedik N., Witting P., Freedman B., Klöcker N., Heusch G. Pleiotropic, heart rate-independent cardioprotection by ivabradine. Br. J. Pharmacol. 2015;172:4380–4390. doi: 10.1111/bph.13220. PubMed DOI PMC
Walcher T., Bernhardt P., Vasic D., Bach H., Durst R., Rottbauer W., Walcher D. Ivabradine reduces chemokine-induced CD4-positive lymphocyte migration. Mediat. Inflamm. 2010;2010:751313. doi: 10.1155/2010/751313. PubMed DOI PMC
Custodis F., Baumhäkel M., Schlimmer N., List F., Gensch C., Böhm M., Laufs U. Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2008;117:2377–2387. doi: 10.1161/CIRCULATIONAHA.107.746537. PubMed DOI
Dominguez-Rodriguez A., Fard S.S., Abreu-Gonzalez P., Bosa-Ojeda F., Consuegra-Sanchez L., Jiménez-Sosa A., Grande A.S., Kaski J.C. Randomised, double-blind, placebo-controlled trial of ivabradine in patients with acute coronary syndrome: Effects of the If current inhibitor ivabradine on reduction of inflammation markers in patients with acute coronary syndrome—RIVIERA trial study design and rationale. Cardiovasc. Drugs Ther. 2009;23:243–247. PubMed
Kröller-Schön S., Schulz E., Wenzel P., Kleschyov A.L., Hortmann M., Torzewski M., Oelze M., Renné T., Daiber A., Münzel T. Differential effects of heart rate reduction with ivabradine in two models of endothelial dysfunction and oxidative stress. Basic Res. Cardiol. 2011;106:1147–1158. doi: 10.1007/s00395-011-0227-3. PubMed DOI
Becher P.M., Lindner D., Miteva K., Savvatis K., Zietsch C., Schmack B., Van Linthout S., Westermann D., Schultheiss H.P., Tschöpe C. Role of heart rate reduction in the prevention of experimental heart failure: Comparison between If-channel blockade and β-receptor blockade. Hypertension. 2012;59:949–957. doi: 10.1161/HYPERTENSIONAHA.111.183913. PubMed DOI
Albaladejo P., Carusi A., Apartian A., Lacolley P., Safar M.E., Benetos A. Effect of chronic heart rate reduction with ivabradine on carotid and aortic structure and function in normotensive and hypertensive rats. J. Vasc. Res. 2003;40:320–328. doi: 10.1159/000072696. PubMed DOI
Pechanova O., Bernatova I., Pelouch V., Simko F. Protein remodelling of the heart in NO-deficient hypertension: The effect of captopril. J. Mol. Cell. Cardiol. 1997;29:3365–3374. doi: 10.1006/jmcc.1997.0566. PubMed DOI
Bernatova I., Pechanova O., Simko F. Effect of captopril in L-NAME-induced hypertension on the rat myocardium, aorta, brain and kidney. Exp. Physiol. 1999;84:1095–1105. doi: 10.1111/j.1469-445X.1999.01890.x. PubMed DOI
Simko F., Matuskova J., Luptak I., Krajcirovicova K., Kucharska J., Gvozdjakova A., Babal P., Pechanova O. Effect of simvastatin on remodeling of the left ventricle and aorta in L-NAME-induced hypertension. Life Sci. 2004;74:1211–1224. doi: 10.1016/j.lfs.2003.07.032. PubMed DOI
Simko F., Matuskova J., Luptak I., Pincikova T., Krajcirovicova K., Stvrtina S., Pomsar J., Pelouch V., Paulis L., Pechánová O. Spironolactone differently influences remodeling of the left ventricle and aorta in L-NAME-induced hypertension. Physiol. Res. 2007;56:S25–S32. PubMed
Bernatova I., Pechanova O., Pelouch V., Simko F. Regression of chronic L-NAME-treatment-induced left ventricular hypertrophy: Effect of captopril. J. Mol. Cell. Cardiol. 2000;32:177–185. doi: 10.1006/jmcc.1999.1071. PubMed DOI
Simko F., Pechanova O., Pelouch V., Krajcirovicova K., Mullerova M., Bednarova K., Adamcova M., Paulis L. Effect of melatonin, captopril, spironolactone and simvastatin on blood pressure and left ventricular remodelling in spontaneously hypertensive rats. J. Hypertens. Suppl. 2009;27:S5–S10. doi: 10.1097/01.hjh.0000358830.95439.e8. PubMed DOI
Simko F., Pechanova O., Repova K., Aziriova S., Krajcirovicova K., Celec P., Tothova L., Vrankova S., Balazova L., Zorad S., et al. Lactacystin-induced model of hypertension in rats: Effects of melatonin and captopril. Int. J. Mol. Sci. 2017;18:1612. doi: 10.3390/ijms18081612. PubMed DOI PMC
Hegedusova N., Ondicova K., Mikova L., Horvathova L., Tillinger A., Mravec B. The effect of ivabradine administration on heart rate, blood pressure, and secretion of epinephrine, norepinephrine, and corticosterone during stress response in rats. Cardiol. Lett. 2014;23:403–409.
Luong L., Duckles H., Schenkel T., Mahmoud M., Tremoleda J.L., Wylezinska-Arridge M., Ali M., Bowden N.P., Villa-Uriol M.C., van der Heiden K., et al. Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflamatory mechanisms in arteries. Thromb. Haemost. 2016;116:181–190. PubMed
Simko F., Simko J. The potential role of nitric oxide in the hypertrophic growth of the left ventricle. Physiol. Res. 2000;49:37–46. PubMed
Koniari I., Mavrilas D., Apostolakis E., Papadimitriou E., Papadaki H., Papalois A., Poimenidi E., Xanthopoulou I., Hahalis G., Alexopoulos D. Inhibition of Atherosclerosis Progression, Intimal Hyperplasia, and Oxidative Stress by Simvastatin and Ivabradine May Reduce Thoracic Aorta’s Stiffness in Hypercholesterolemic Rabbits. J. Cardiovasc. Pharmacol. Ther. 2016;21:412–422. doi: 10.1177/1074248415617289. PubMed DOI
Custodis F., Fries P., Müller A., Stamm C., Grube M., Kroemer H.K., Böhm M., Laufs U. Heart rate reduction by ivabradine improves aortic compliance in apolipoprotein E-deficient mice. J. Vasc. Res. 2012;49:432–440. doi: 10.1159/000339547. PubMed DOI
Dedkov E.I., Zheng W., Christensen L.P., Weiss R.M., Mahlberg-Gaudin F., Tomanek R.J. Preservation of coronary reserve by ivabradine-induced reduction in heart rate in infarcted rats is associated with decrease in perivascular collagen. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H590–H598. doi: 10.1152/ajpheart.00047.2007. PubMed DOI
Busseuil D., Shi Y., Mecteau M., Brand G., Gillis M.A., Thorin E., Asselin C., Roméo P., Leung T.K., Latour J.G., et al. Heart rate reduction by ivabradine reduces diastolic dysfunction and cardiac fibrosis. Cardiology. 2010;117:234–242. doi: 10.1159/000322905. PubMed DOI
Rienzo M., Melka J., Bizé A., Sambin L., Jozwiak M., Su J.B., Hittinger L., Berdeaux A., Ghaleh B. Ivabradine improves left ventricular function during chronic hypertension in conscious pigs. Hypertension. 2015;65:122–129. doi: 10.1161/HYPERTENSIONAHA.114.04323. PubMed DOI
Kim B.H., Cho K.I., Kim S.M., Kim N., Han J., Kim J.Y., Kim I.J. Heart rate reduction with ivabradine prevents thyroid hormone-induced cardiac remodeling in rat. Heart Vessels. 2013;28:524–535. doi: 10.1007/s00380-012-0304-z. PubMed DOI
Ciobotaru V., Heimburger M., Louedec L., Heymes C., Ventura-Clapier R., Bedossa P., Escoubet B., Michel J.B., Mercadier J.J., Logeart D. Effect of long-term heart rate reduction by If current inhibition on pressure overload-induced heart failure in rats. J. Pharmacol. Exp. Ther. 2008;324:43–49. doi: 10.1124/jpet.107.130237. PubMed DOI
Oliphant C.S., Owens R.E., Bolorunduro O.B., Jha S.K. Ivabradine: A Review of Labeled and off-Label Uses. Am. J. Cardiovasc. Drugs. 2016;16:337–347. doi: 10.1007/s40256-016-0178-z. PubMed DOI
Dias da Silva V.J., Tobaldini E., Rocchetti M., Wu M.A., Malfatto G., Montano N., Zaza A. Modulation of sympathetic activity and heart rate variability by ivabradine. Cardiovasc. Res. 2015;108:31–38. doi: 10.1093/cvr/cvv180. PubMed DOI
Simko F., Baka T., Krajcirovicova K., Repova K., Aziriova S., Zorad S., Poglitsch M., Adamcova M., Reiter R.J., Paulis L. Effect of Melatonin on the Renin-Angiotensin-Aldosterone System in l-NAME-Induced Hypertension. Molecules. 2018;23:265. doi: 10.3390/molecules23020265. PubMed DOI PMC
Muldowney J.A., Davis S.N., Vaughan D.E., Brown N.J. NO synthase inhibition increases aldosterone in humans. Hypertension. 2004;44:739–745. doi: 10.1161/01.HYP.0000143852.48258.f1. PubMed DOI
Suehiro T., Tsuruya K., Ikeda H., Toyonaga J., Yamada S., Noguchi H., Tokumoto M., Kitazono T. Systemic Aldosterone, But Not Angiotensin II, Plays a Pivotal Role in the Pathogenesis of Renal Injury in Chronic Nitric Oxide-Deficient Male Rats. Endocrinology. 2015;156:2657–2666. doi: 10.1210/en.2014-1369. PubMed DOI
Funder J.W. Aldosterone and mineralocorticoid receptors-physiology and pathophysiology. Int. J. Mol. Sci. 2017;18:1032. doi: 10.3390/ijms18051032. PubMed DOI PMC
Pitt B., Zannad F., Remme W.J., Cody R., Castaigne A., Perez A., Palensky J., Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 1999;341:709–717. doi: 10.1056/NEJM199909023411001. PubMed DOI
Zile M.R., Brutsaert D.L. New concepts in diastolic dysfunction and diastolic heart failure: Part II: Causal mechanisms and treatment. Circulation. 2002;105:1503–1508. doi: 10.1161/hc1202.105290. PubMed DOI
Jeong E.M., Monasky M.M., Gu L., Taglieri D.M., Patel B.G., Liu H., Wang Q., Greener I., Dudley S.C., Jr., Solaro R.J. Tetrahydrobiopterin improves diastolic dysfunction by reversing changes in myofilament properties. J. Mol. Cell. Cardiol. 2013;56:44–54. doi: 10.1016/j.yjmcc.2012.12.003. PubMed DOI PMC
Silberman G.A., Fan T.H., Liu H., Jiao Z., Xiao H.D., Lovelock J.D., Boulden B.M., Widder J., Fredd S., Bernstein K.E., et al. Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation. 2010;121:519–528. doi: 10.1161/CIRCULATIONAHA.109.883777. PubMed DOI PMC
Shahbaz A.U., Kamalov G., Zhao W., Zhao T., Johnson P.L., Sun Y., Bhattacharya S.K., Ahokas R.A., Gerling I.C., Weber K.T. Mitochondria-targeted cardioprotection in aldosteronism. J. Cardiovasc. Pharmacol. 2011;57:37–43. doi: 10.1097/FJC.0b013e3181fe1250. PubMed DOI PMC
Matsumoto T., Oki K., Kajikawa M., Nakashima A., Maruhashi T., Iwamoto Y., Iwamoto A., Oda N., Hidaka T., Kihara Y., et al. Effect of aldosterone-producing adenoma on endothelial function and Rho-associated kinase activity in patients with primary aldosteronism. Hypertension. 2015;65:841–848. doi: 10.1161/HYPERTENSIONAHA.114.05001. PubMed DOI PMC
Paulis L., Rajkovicova R., Simko F. New developments in the pharmacological treatment of hypertension: Dead-end or a glimmer at the horizon? Curr. Hypertens. Rep. 2015;17:557. doi: 10.1007/s11906-015-0557-x. PubMed DOI PMC
Mulrow P.J. Angiotensin II and aldosterone regulation. Regul. Pept. 1999;80:27–32. doi: 10.1016/S0167-0115(99)00004-X. PubMed DOI
Rebuffat P., Malendowicz L.K., Nussdorfer G.G., Mazzocchi G. Stimulation of endogenous nitric oxide production is involved in the inhibitory effect of adrenomedullin on aldosterone secretion in the rat. Peptides. 2001;22:923–926. doi: 10.1016/S0196-9781(01)00418-1. PubMed DOI
Nithipatikom K., Holmes B.B., McCoy M.J., Hillard C.J., Campbell W.B. Chronic administration of nitric oxide reduces angiotensin II receptor type 1 expression and aldosterone synthesis in Zona glomerulosa cells. Am. J. Physiol. Endocrinol. Metab. 2004;287:E820–E827. doi: 10.1152/ajpendo.00183.2004. PubMed DOI
Pelouch V., Milerova M., Ostadal B., Samanek M., Hucin B. Protein profiling of human atrial and ventricular musculature: The effect of normoxaemia and hypoxaemia in congenital heart diseases. Physiol. Res. 1993;42:235–242. PubMed
Reddy G.K., Enwemeka C.S. A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 1996;29:225–229. doi: 10.1016/0009-9120(96)00003-6. PubMed DOI
Basu R., Poglitsch M., Yogasundaram H., Thomas J., Rowe B.H., Oudit G.Y. Roles of Angiotensin Peptides and Recombinant Human ACE2 in Heart Failure. J. Am. Coll. Cardiol. 2017;69:805–819. doi: 10.1016/j.jacc.2016.11.064. PubMed DOI
Domenig O., Manzel A., Grobe N., Königshausen E., Kaltenecker C.C., Kovarik J.J., Stegbauer J., Gurley S.B., van Oyen D., Antlanger M., et al. Mediator of Alternative Renin-Angiotensin-System Activation in the Murine and Human Kidney. Sci. Rep. 2016;6:33678. doi: 10.1038/srep33678. PubMed DOI PMC
Pavo N., Goliasch G., Wurm R., Novak J., Strunk G., Gyöngyösi M., Poglitsch M., Säemann M.D., Hülsmann M. Low- and High-renin Heart Failure Phenotypes with Clinical Implications. Clin. Chem. 2018;64:597–608. doi: 10.1373/clinchem.2017.278705. PubMed DOI
Baka T., Hodosy J., Krajcirovicova K., Repova K., Aziriova S., Domonkos E., Borbelyova V., Slavkovsky P., Zorad S., Celec P., et al. 17β-Estradiol treatment reversed left ventricular dysfunction in castrated male rats: An echocardiographic study. Can. J. Physiol. Pharmacol. 2018;96:850–854. doi: 10.1139/cjpp-2017-0596. PubMed DOI
Liu J., Rigel D.F. Echocardiographic examination in rats and mice. Methods Mol. Biol. 2009;573:139–155. PubMed
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling
Ivabradine Ameliorates Kidney Fibrosis in L-NAME-Induced Hypertension