Short Review: Investigating ARSACS: models for understanding cerebellar degeneration

. 2019 Oct ; 45 (6) : 531-537. [epub] 20190311

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30636067

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease that includes progressive cerebellar dysfunction. ARSACS is caused by an autosomal recessive loss-of-function mutation in the SACS gene, which encodes for SACSIN. Although animal models are still necessary to investigate the role of SACSIN in the pathology of this disease, more reliable human cellular models need to be generated to better understand the cerebellar pathophysiology of ARSACS. The discovery of human induced pluripotent stem cells (hiPSC) has permitted the derivation of patient-specific cells. These cells have an unlimited self-renewing capacity and the ability to differentiate into different neural cell types, allowing studies of disease mechanism, drug discovery and cell replacement therapies. In this study, we discuss how the hiPSC-derived cerebellar organoid culture offers novel strategies for targeting the pathogenic mutations related to ARSACS. We also highlight the advantages and challenges of this 3D cellular model, as well as the questions that still remain unanswered.

Zobrazit více v PubMed

Bouchard JP, Barbeau A, Bouchard R, Bouchard RW. Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Canadian J Neurol Sci 1978; 5: 61-9.

Anheim M, Chaigne D, Fleury M, Santorelli FM, De Seze J, Durr A, et al. [Autosomal recessive spastic ataxia of Charlevoix-Saguenay: study of a family and review of the literature]. Rev Neurol (Paris) 2008;164:363-8. Epub 2008/04/29. Ataxie spastique autosomique recessive de Charlevoix-Saguenay: etude d'une famille et revue de la litterature.

Masciullo M, Modoni A, Fattori F, Santoro M, Denora PS, Tonali P, et al. A novel mutation in the SACS gene associated with a complicated form of spastic ataxia. J Neurol 2008; 255: 1429-31.

Masciullo M, Modoni A, Tessa A, Santorelli FM, Rizzo V, D'Amico G, et al. Novel SACS mutations in two unrelated Italian patients with spastic ataxia: clinico-diagnostic characterization and results of serial brain MRI studies. Eur J Neurol 2012; 19: e77-8.

Ouyang Y, Segers K, Bouquiaux O, Wang FC, Janin N, Andris C, et al. Novel SACS mutation in a Belgian family with sacsin-related ataxia. J Neurol Sci 2008; 264: 73-6.

Richter AM, Ozgul RK, Poisson VC, Topaloglu H. Private SACS mutations in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) families from Turkey. Neurogenetics 2004; 5: 165-70.

Sanchez MG, Perez JE, Perez MR, Redondo AG. Novel SACS mutation in autosomal recessive spastic ataxia of Charlevoix-Saguenay. J Neurol Sci 2015; 358: 475-6.

Tzoulis C, Johansson S, Haukanes BI, Boman H, Knappskog PM, Bindoff LA. Novel SACS mutations identified by whole exome sequencing in a norwegian family with autosomal recessive spastic ataxia of Charlevoix-Saguenay. PLoS ONE 2013; 8: e66145.

Dupre N, Bouchard JP, Brais B, Rouleau GA. Hereditary ataxia, spastic paraparesis and neuropathy in the French-Canadian population. Canadian J Neurol Sci 2006; 33: 149-57.

Gazulla J, Benavente I, Vela AC, Marin MA, Pablo LE, Tessa A, et al. New findings in the ataxia of Charlevoix-Saguenay. J Neurol 2012; 259: 869-78.

Mignarri A, Tessa A, Carluccio MA, Rufa A, Storti E, Bonelli G, et al. Cerebellum and neuropsychiatric disorders: insights from ARSACS. Neurological Sciences : Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology. 2014; 35: 95-7.

Verhoeven WM, Egger JI, Ahmed AI, Kremer BP, Vermeer S, van de Warrenburg BP. Cerebellar cognitive affective syndrome and autosomal recessive spastic ataxia of charlevoix-saguenay: a report of two male sibs. Psychopathology 2012; 45: 193-9.

Garcia-Martin E, Pablo LE, Gazulla J, Polo V, Ferreras A, Larrosa JM. Retinal nerve fibre layer thickness in ARSACS: myelination or hypertrophy? Br J Ophthalmol 2013; 97: 238-41.

Garcia-Martin E, Pablo LE, Gazulla J, Vela A, Larrosa JM, Polo V, et al. Retinal segmentation as noninvasive technique to demonstrate hyperplasia in ataxia of Charlevoix-Saguenay. Invest Ophthalmol Vis Sci 2013; 54: 7137-42.

Engert JC, Berube P, Mercier J, Dore C, Lepage P, Ge B, et al. ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet 2000; 24: 120-5.

Synofzik M, Soehn AS, Gburek-Augustat J, Schicks J, Karle KN, Schule R, et al. Autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS): expanding the genetic, clinical and imaging spectrum. Orphanet J Rare Dis 2013; 8: 41.

Vermeer S, Meijer RP, Pijl BJ, Timmermans J, Cruysberg JR, Bos MM, et al. ARSACS in the Dutch population: a frequent cause of early-onset cerebellar ataxia. Neurogenetics 2008; 9: 207-14.

Ouyang Y, Takiyama Y, Sakoe K, Shimazaki H, Ogawa T, Nagano S, et al. Sacsin-related ataxia (ARSACS): expanding the genotype upstream from the gigantic exon. Neurology 2006; 66: 1103-4.

Parfitt DA, Michael GJ, Vermeulen EG, Prodromou NV, Webb TR, Gallo JM, et al. The ataxia protein sacsin is a functional co-chaperone that protects against polyglutamine-expanded ataxin-1. Hum Mol Genet 2009; 18: 1556-65.

Anderson JF, Siller E, Barral JM. The sacsin repeating region (SRR): a novel Hsp90-related supra-domain associated with neurodegeneration. J Mol Biol 2010; 400: 665-74.

Anderson JF, Siller E, Barral JM. The neurodegenerative-disease-related protein sacsin is a molecular chaperone. J Mol Biol 2011; 411: 870-80.

Kozlov G, Denisov AY, Girard M, Dicaire MJ, Hamlin J, McPherson PS, et al. Structural basis of defects in the sacsin HEPN domain responsible for autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). J Biol Chem 2011; 286: 20407-12.

Li X, Menade M, Kozlov G, Hu Z, Dai Z, McPherson PS, et al. High-Throughput Screening for Ligands of the HEPN Domain of Sacsin. PLoS ONE 2015; 10: e0137298.

Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW, et al. The angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 2010; 140: 704-16.

Martin MH, Bouchard JP, Sylvain M, St-Onge O, Truchon S. Autosomal recessive spastic ataxia of Charlevoix-Saguenay: a report of MR imaging in 5 patients. AJNR Am J Neuroradiol 2007; 28: 1606-8.

Girard M, Lariviere R, Parfitt DA, Deane EC, Gaudet R, Nossova N, et al. Mitochondrial dysfunction and Purkinje cell loss in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). Proc Natl Acad Sci U S A 2012; 109: 1661-6.

Lim J, Hao T, Shaw C, Patel AJ, Szabo G, Rual JF, et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 2006; 125: 801-14.

Lariviere R, Gaudet R, Gentil BJ, Girard M, Conte TC, Minotti S, et al. Sacs knockout mice present pathophysiological defects underlying autosomal recessive spastic ataxia of Charlevoix-Saguenay. Hum Mol Genet 2015; 24: 727-39.

Ady V, Toscano-Marquez B, Nath M, Chang PK, Hui J, Cook A, et al. Altered synaptic and firing properties of cerebellar Purkinje cells in a mouse model of ARSACS. J Physiol 2018; 596: 4253-67.

Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 2009; 27: 851-7

Lukovic D, Moreno-Manzano V, Rodriguez-Jimenez FJ, Vilches A, Sykova E, Jendelova P, et al. hiPSC disease modeling of rare hereditary cerebellar ataxias. Neuroscientist 2017; 23: 554-66. 1073858416672652.

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861-72.

Salero E, Hatten ME. Differentiation of ES cells into cerebellar neurons. Proc Natl Acad Sci U S A 2007; 104: 2997-3002

Erceg S, Lukovic D, Moreno-Manzano V, Stojkovic M, Bhattacharya SS. Derivation of cerebellar neurons from human pluripotent stem cells. Curr Protoc Stem Cell Biol 2012; Chapter 1: Unit 1H 5.

Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep 2015; 10: 537-50.

Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Ait-Hamou N, et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev 2011; 25: 2248-53.

Baets J, Deconinck T, Smets K, Goossens D, Van den Bergh P, Dahan K, et al. Mutations in SACS cause atypical and late-onset forms of ARSACS. Neurology 2010; 75: 1181-8.

Erceg S, Ronaghi M, Stojkovic M. Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 2009; 27: 78-87.

Miller J, Studer L. Aging in iPS cells. Aging 2014; 6: 246-7.

Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 2013; 13: 691-705.

Vera E, Bosco N, Studer L. Generating late-onset human iPSC-based disease models by inducing neuronal age-related phenotypes through telomerase manipulation. Cell Rep 2016; 17: 1184-92.

Arellano CM, Vilches A, Clemente E, Pascual-Pascual SI, Bolinches-Amoros A, Castro AA, et al. Generation of a human iPSC line from a patient with autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) caused by mutation in SACSIN gene. Stem Cell Research. 2018; 31: 249-52.

Machuca C, Vilches A, Clemente E, Pascual-Pascual SI, Bolinches-Amoros A, Artero Castro A, et al. Generation of human induced pluripotent stem cell (iPSC) line from an unaffected female carrier of mutation in SACSIN gene. Stem Cell Research. 2018; 33: 166-70.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...