Deathbed choice by ASF-infected wild boar can help find carcasses

. 2019 Sep ; 66 (5) : 1821-1826. [epub] 20190622

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31183963

African swine fever (ASF) is a fatal disease infectious to wild and domesticated suids. This disease entered the European Union in 2014 and recently reached western Europe, with the first cases observed in Belgium in September 2018. Carcasses of ASF-infected wild boar play an important role in the spread and persistence of the virus in the environment. Thus, rapidly finding and removing carcasses is a crucial measure for effective ASF control. Using distribution modelling, we investigated whether the fine-scale distribution of ASF-infected animals can be predicted and support wild boar carcass searches. Our results suggest that ASF-infected wild boar selected deathbeds in cool and moist habitats; thus, deathbed choice was mostly influenced by topographic and water-dependent covariates. Furthermore, we show that in the case of an epidemic, it is important to quickly collect a minimum of 75-100 carcasses with exact locations to build a well-performing and efficient carcass distribution model. The proposed model provides an indication of where carcasses are most likely to be found and can be used as a guide to strategically allocate resources.

Erratum v

PubMed

Zobrazit více v PubMed

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223-1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

Arias, M., Jurado, C., Gallardo, C., Fernández-Pinero, J., & Sánchez-Vizcaíno, J. M. (2017). Gaps in African swine fever: Analysis and priorities. Transboundary and Emerging Diseases, 65(S1), 235-247. https://doi.org/10.1111/tbed.12695

Aubry, K. B., Raley, C. M., & McKelvey, K. S. (2017). The importance of data quality for generating reliable distribution models for rare, elusive, and cryptic species. PLoS ONE, 12(6), 1-17. https://doi.org/10.1371/journal.pone.0179152

Bellini, S., Rutili, D., & Guberti, V. (2016). Preventive measures aimed at minimizing the risk of African swine fever virus spread in pig farming systems. Acta Veterinaria Scandinavica, 58, https://doi.org/10.1186/s13028-016-0264-x

Bracke, M. B. M. (2011). Review of wallowing in pigs: Description of the behaviour and its motivational basis. Applied Animal Behaviour Science, 132(1), 1-13. https://doi.org/10.1016/j.applanim.2011.01.002

Gallardo, C., Nurmoja, I., Soler, A., Delicado, V., Simón, A., Martin, E., … Arias, M. (2018). Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent. Veterinary Microbiology, 219, 70-79. https://doi.org/10.1016/j.vetmic.2018.04.001

Chenais, E., Depner, K., Guberti, V., Dietze, K., Viltrop, A., & Ståhl, K. (2019). Epidemiological considerations on African swine fever in Europe 2014-2018. Porcine Health Management, 5(1), 6. https://doi.org/10.1186/s40813-018-0109-2

Chenais, E., Ståhl, K., Guberti, V., & Depner, K. (2018). Identification of Wild Boar-habitat epidemiologic cycle in African swine fever epizootic. Emerging Infectious Diseases, 24(4), 810-812. https://doi.org/10.3201/eid2404.172127

Choquenot, D., & Ruscoe, W. A. (2003). Landscape complementation and food limitation of large herbivores: Habitat-related constraints on the foraging efficiency of wild pigs. Journal of Animal Ecology, 72(1), 14-26. https://doi.org/10.1046/j.1365-2656.2003.00676.x

R Core Team (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/.

De la Torre, A., Bosch, J., Iglesias, I., Muñoz, M. J., Mur, L., Martínez-López, B., … Sánchez-Vizcaíno, J. M. (2015). Assessing the risk of African swine fever introduction into the European Union by Wild Boar. Transboundary and Emerging Diseases, 62(3), 272-279. https://doi.org/10.1111/tbed.12129

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Evans, J. S. (2017). spatialEco. R package version 0.0.1-7, <URL: https://CRAN.R-project.org/package=spatialEco>.

Franklin, J. (2010). Mapping Species Distributions by Janet Franklin. Cambridge Core. https://doi.org/10.1017/CBO9780511810602

Gavier-Widen, D., Stahl, K., Neimanis, A. S., Segerstad, C. H. A., Gortazar, C., Rossi, S., & Kuiken, T. (2015). African swine fever in wild boar in Europe: A notable challenge. Veterinary Record, 176(8), 199-200. https://doi.org/10.1136/vr.h699

Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36. https://doi.org/10.1148/radiology.143.1.7063747

Hart, B. L. (1988). Biological basis of the behavior of sick animals. Neuroscience and Biobehavioral Reviews, 12(2), 123-137. https://doi.org/10.1016/S0149-7634(88)80004-6

Hijmans, R. J. (2017). Raster: Geographic data analysis and modeling. Retrieved from https://CRAN.R-project.org/package=raster.

Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. (2017). Dismo: Species distribution modeling. Retrieved from https://CRAN.R-project.org/package=dismo.

Kay, S. L., Fischer, J. W., Monaghan, A. J., Beasley, J. C., Boughton, R., Campbell, T. A., … Pepin, K. M. (2017). Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Movement Ecology, 5, 14. https://doi.org/10.1186/s40462-017-0105-1

Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., … Wilting, A. (2013). The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19(11), 1366-1379. https://doi.org/10.1111/ddi.12096

Linden, A., Licoppe, A., Volpe, R., Paternostre, J., Lesenfants, C., Cassart, D., Cay, A. B. (2019). Summer 2018: African swine fever virus hits north-western Europe. Transboundary and Emerging Diseases, 66(1), 54-55. https://doi.org/10.1111/tbed.13047

Lopes, P. C., Block, P., & König, B. (2016). Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks. Scientific Reports, 6, 31790. https://doi.org/10.1038/srep31790

Montgomery, R. (1921). On a form of swine fever occurring in British East Africa (Kenya Colony). Journal of Comparative Pathology and Therapeutics, 34, 159-191. https://doi.org/10.1016/S0368-1742(21)80031-4

Padgham, M., Rudis, B., Lovelace, R., & Salmon, M. (2017). Osmdata. The Journal of Open Source Software, 2(14), 305. https://doi.org/10.21105/joss.00305

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Probst, C., Globig, A., Knoll, B., Conraths, F. J., & Depner, K. (2017). Behaviour of free ranging wild boar towards their dead fellows: Potential implications for the transmission of African swine fever. Royal Society Open Science, 4(5), 170054. https://doi.org/10.1098/rsos.170054

Ramm, F. (2017). OpenStreetMap data in layered gis format. Geofabrik GmbH.

Re3data.Org. (2014). Copernicus. re3data.org - Registry of Research Data Repositories. https://doi.org/10.17616/R3TW53

Schneider, A., Jost, A., Coulon, C., Silvestre, M., Théry, S., & Ducharne, A. (2017). Global-scale river network extraction based on high-resolution topography and constrained by lithology, climate, slope, and observed drainage density. Geophysical Research Letters, 44(6), 2773-2781. https://doi.org/10.1002/2016GL071844

Selva, N., Jędrzejewska, B., Jędrzejewski, W., & Wajrak, A. (2005). Factors affecting carcass use by a guild of scavengers in European temperate woodland. Canadian Journal of Zoology, 83(12), 1590-1601. https://doi.org/10.1139/z05-158

Śmietanka, K., Woźniakowski, G., Kozak, E., Niemczuk, K., Frączyk, M., Bocian, Ł., Kowalczyk, A., Pejsak, Z.( 2016). African Swine Fever Epidemic, Poland, 2014-2015. Emerging Infectious Diseases, 22(7), 1201 - 1207. https://doi.org/10.3201/eid2207.151708

Vergne, T., Gogin, A., & Pfeiffer, D. U. (2017). Statistical exploration of local transmission routes for African swine fever in pigs in the Russian federation, 2007-2014. Transboundary and Emerging Diseases, 64(2), 504-512. https://doi.org/10.1111/tbed.12391

Virgós, E. (2002). Factors affecting wild boar (Sus scrofa) occurrence in highly fragmented Mediterranean landscapes. Canadian Journal of Zoology, 80(3), 430-435. https://doi.org/10.1139/z02-028

Walter, M., Brugger, K., & Rubel, F. (2018). Usutu virus induced mass mortalities of songbirds in Central Europe: Are habitat models suitable to predict dead birds in unsampled regions? Preventive Veterinary Medicine, 159, 162-170. https://doi.org/10.1016/j.prevetmed.2018.09.013

Woźniakowski, G., Kozak, E., Kowalczyk, A., Łyjak, M., Pomorska-Mól, M., Niemczuk, K., & Pejsak, Z. (2016). Current status of African swine fever virus in a population of wild boar in eastern Poland (2014-2015). Archives of Virology, 161(1), 189-195. https://doi.org/10.1007/s00705-015-2650-5

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...