Maytenus macrocarpa (Ruiz & Pav.) Briq.: Phytochemistry and Pharmacological Activity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31226757
PubMed Central
PMC6630539
DOI
10.3390/molecules24122288
PII: molecules24122288
Knihovny.cz E-zdroje
- Klíčová slova
- Maytenus macrocarpa, dihydro-β-agarofuran sesquiterpene, folk medicine, rheumatism, triterpene,
- MeSH
- antibakteriální látky chemie terapeutické užití MeSH
- antivirové látky chemie terapeutické užití MeSH
- hojení ran účinky léků MeSH
- kořeny rostlin chemie MeSH
- kůra rostlin chemie MeSH
- lidé MeSH
- listy rostlin chemie MeSH
- Maytenus chemie MeSH
- revmatické nemoci farmakoterapie patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky MeSH
- antivirové látky MeSH
Maytenus macrocarpa (Celastraceae) is a tree native to Amazonia. Its roots, leaves, bark, and combinations of these are used in traditional medicine mainly to treat rheumatism and, to a lesser extent, to heal wounds and to combat bronchitis and diarrhea. To date, mainly triterpenes and dihydro-β-agarofuran sesquiterpenes were isolated from M. macrocarpa. Extracts and selected pure compounds isolated from the leaves, roots, and stem bark showed antibacterial, antiviral, antiparasitic, anti-inflammatory, and cytotoxic activities in vitro. The aim of this review is to summarize the available ethnobotanical, phytochemical, and pharmacological information about this traditional Amazonian medicinal tree, as well as to attract the attention of phytochemists and pharmacognosists to this potentially interesting source of ethnopharmaceuticals.
Zobrazit více v PubMed
Liesner R.L. Geography. In: Jørgensen P.M., León-Yánez S., editors. Catalogue of the vascular plants of Ecuador. Missouri Botanical Garden Press; St. Louis, MO, USA: 1999. pp. 392–393.
USDA, ARS, National Genetic Resources Program Germplasm Resources Information Network-(GRIN). National Germplasm Resources Laboratory, Beltsville, Maryland. [(accessed on 31 May 2019)]; Available online: https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?413469.
Kvist L.P., Christensen S.B., Rasmussen H.B., Mejia K., Gonzalez A. Identification and evaluation of Peruvian plants used to treat malaria and leishmaniasis. J. Ethnopharmacol. 2006;106:390–402. doi: 10.1016/j.jep.2006.01.020. PubMed DOI
Mejia K., Rengifo E. Plantas medicinales de uso popular en la Amazonia peruana. Agencia Española de Cooperación Internacional; Lima, Peru: 1995.
Sanz-Biset J., Campos-de-la-Cruz J., Epiquién-Rivera M.A., Cañigueral S. A first survey on the medicinal plants of the Chazuta valley (Peruvian Amazon) J. Ethnopharmacol. 2009;122:333–362. doi: 10.1016/j.jep.2008.12.009. PubMed DOI
Lombardi J.A., Groppo M., Biral L. Celastraceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. [(accessed on 31 May 2019)]; Available online: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB6746.
The Plant List. [(accessed on 31 May 2019)]; Available online: http://www.theplantlist.org/
Alvarenga N., Ferro E.A. Bioactive Triterpenes and Related Compounds from Celastraceae. Stud. Nat. Prod. Chem. 2005;30:635–702.
Biral L., Simmons M.P., Smidt E.C., Tembrock L.R., Bolson M., Archer R.H., Lombardi J.A. Systematics of New World Maytenus (Celastraceae) and a New Delimitation of the Genus. Syst. Bot. 2017;42:1–14. doi: 10.1600/036364417X696456. DOI
Niero R., de Andrade S.F., Cechinel Filho V. A review of the ethnopharmacology, phytochemistry and pharmacology of plants of the Maytenus genus. Curr. Pharm. Des. 2011;17:1851–1871. doi: 10.2174/138161211796391029. PubMed DOI
Chávez H., Callo N., Estévez-Braun A., Ravelo A.G., González A.G. Sesquiterpene polyol esters from the leaves of Maytenus macrocarpa. J. Nat. Prod. 1999;62:1576–1577. doi: 10.1021/np990232f. PubMed DOI
Torpocco V., Chávez H., Estévez-Braun A., Ravelo A.G. New dammarane triterpenes from Maytenus macrocarpa. Chem. Pharm. Bull. 2007;55:812–814. doi: 10.1248/cpb.55.812. PubMed DOI
Piacente S., Santos L.C.D., Mahmood N., Pizza C. Triterpenes from Maytenus macrocarpa and Evaluation of Their Anti-HIV Activity. Nat. Prod. Comm. 2006;1:1934578X0600101201. doi: 10.1177/1934578X0600101201. DOI
Betancor C., Freire R., Gonzalez A.G., Salazar J.A., Pascard C., Prange T. Three triterpenes and other terpenoids from Catha cassinoides. Phytochemistry. 1980;19:1989–1993. doi: 10.1016/0031-9422(80)83019-6. DOI
Chávez H., Estévez-Braun A., Ravelo Á.G., González A.G. First examples of dammarane triterpenes isolated from Celastraceae. Tetrahedron. 1997;53:6465–6472. doi: 10.1016/S0040-4020(97)00303-7. DOI
Chávez H., Estévez-Braun A., Ravelo A.G., González A.G. Friedelane triterpenoids from Maytenus macrocarpa. J. Nat. Prod. 1998;61:82–85. doi: 10.1021/np970232k. PubMed DOI
Anjaneyulu A.S.R., Narayanarao M. Elaeodendrol and elaeodendradiol, new nor-triterpenes from Elaeodendron glaucum. Phytochemistry. 1980;19:1163–1169. doi: 10.1016/0031-9422(80)83076-7. DOI
González A.G., Alvarenga N.L., Ravelo A.G., Bazzocchi I.L., Ferro E.A., Navarro A.G., Moujir L.M. Scutione, a new bioactive norquinonemethide triterpene from Maytenus scutioides (Celastraceae) Bioorg. Med. Chem. 1996;4:815–820. doi: 10.1016/0968-0896(96)00078-8. PubMed DOI
Da Costa P.M., Ferreira P.M.P., da Silva Bolzani V., Furlan M., de Freitas Formenton Macedo Dos Santos V.A., Corsino J., de Moraes M.O., Costa-Lotufo L.V., Montenegro R.C., Pessoa C. Antiproliferative activity of pristimerin isolated from Maytenus ilicifolia (Celastraceae) in human HL-60 cells. Toxicol In Vitro. 2008;22:854–863. doi: 10.1016/j.tiv.2008.01.003. PubMed DOI
Itoh T., Tamura T., Matsumoto T. Triterpene alcohols in the seeds of solanaceae. Phytochemistry. 1977;16:1723–1726. doi: 10.1016/0031-9422(71)85079-3. DOI
Duan H., Takaishi Y., Momota H., Ohmoto Y., Taki T., Jia Y., Li D. Triterpenoids from Tripterygium wilfordii. Phytochemistry. 2000;53:805–810. doi: 10.1016/S0031-9422(00)00007-8. PubMed DOI
Itokawa H., Shirota O., Ikuta H., Morita H., Takeya K., Iitaka Y. Triterpenes fromMaytenus ilicifolia. Phytochemistry. 1991;30:3713–3716. doi: 10.1016/0031-9422(91)80096-J. DOI
Liang G.-Y., Gray A.L., Waterman P.G. Tirucallane and oleanane triterpenes from the resin of Aucoumea klaineana. Phytochemistry. 1988;27:2283–2286. doi: 10.1016/0031-9422(88)80143-2. DOI
Chávez H., Rodríguez G., Estévez-Braun A., Ravelo A.G., Estévez-Reyes R., González A.G., Fdez-Puente J.L., García-Grávalos D. Macrocarpins A-D, new cytotoxic nor-triterpenes from Maytenus macrocarpa. Bioorg. Med. Chem. Lett. 2000;10:759–762. doi: 10.1016/S0960-894X(00)00082-2. PubMed DOI
Ruiz L., Ruiz L., Maco M., Cobos M., Gutierrez-Choquevilca A.-L., Roumy V. Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria. J. Ethnopharmacol. 2011;133:917–921. doi: 10.1016/j.jep.2010.10.039. PubMed DOI
Kvist L.P., Andersen M.K., Stagegaard J., Hesselsøe M., Llapapasca C. Extraction from woody forest plants in flood plain communities in Amazonian Peru: Use, choice, evaluation and conservation status of resources. Forest Ecol. Manag. 2001;150:147–174. doi: 10.1016/S0378-1127(00)00688-5. DOI
Graham J.G., Quinn M.L., Fabricant D.S., Farnsworth N.R. Plants used against cancer - an extension of the work of Jonathan Hartwell. J. Ethnopharmacol. 2000;73:347–377. doi: 10.1016/S0378-8741(00)00341-X. PubMed DOI
Sanz-Biset J., Cañigueral S. Plant use in the medicinal practices known as “strict diets” in Chazuta valley (Peruvian Amazon) J. Ethnopharmacol. 2011;137:271–288. doi: 10.1016/j.jep.2011.05.021. PubMed DOI
Cos P., Vlietinck A.J., Berghe D.V., Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro “proof-of-concept”. J. Ethnopharmacol. 2006;106:290–302. doi: 10.1016/j.jep.2006.04.003. PubMed DOI
Kloucek P., Svobodova B., Polesny Z., Langrova I., Smrcek S., Kokoska L. Antimicrobial activity of some medicinal barks used in Peruvian Amazon. J. Ethnopharmacol. 2007;111:427–429. doi: 10.1016/j.jep.2006.11.010. PubMed DOI
Kloucek P., Polesny Z., Svobodova B., Vlkova E., Kokoska L. Antibacterial screening of some Peruvian medicinal plants used in Callería District. J. Ethnopharmacol. 2005;99:309–312. doi: 10.1016/j.jep.2005.01.062. PubMed DOI
Mutai C., Bii C., Vagias C., Abatis D., Roussis V. Antimicrobial activity of Acacia mellifera extracts and lupane triterpenes. J. Ethnopharmacol. 2009;123:143–148. doi: 10.1016/j.jep.2009.02.007. PubMed DOI
Orabi K.Y., Al-Qasoumi S.I., El-Olemy M.M., Mossa J.S., Muhammad I. Dihydroagarofuran alkaloid and triterpenes from Maytenus heterophylla and Maytenus arbutifolia. Phytochemistry. 2001;58:475–480. doi: 10.1016/S0031-9422(01)00277-1. PubMed DOI
Christopher R., Nyandoro S.S., Chacha M., de Koning C.B. A new cinnamoylglycoflavonoid, antimycobacterial and antioxidant constituents from Heritiera littoralis leaf extracts. Nat. Prod. Res. 2014;28:351–358. doi: 10.1080/14786419.2013.863202. PubMed DOI
Higuchi C.T., Pavan F.R., Leite C.Q.F., Sannomiya M., Vilegas W., de Andrade Leite S.R., Sacramento L.V.S., Sato D.N. Triterpenes and antitubercular activity of Byrsonima crassa. Química Nova. 2008;31:1719–1721. doi: 10.1590/S0100-40422008000700023. DOI
Lannang A.M., Noudou B.S., Sewald N. Ovalifolone A and B: New friedelane derivatives from Garcinia ovalifolia. Phytochem. Lett. 2013;6:157–161. doi: 10.1016/j.phytol.2012.12.010. DOI
Mokoka T.A., McGaw L.J., Mdee L.K., Bagla V.P., Iwalewa E.O., Eloff J.N. Antimicrobial activity and cytotoxicity of triterpenes isolated from leaves of Maytenus undata (Celastraceae) BMC Complement Altern. Med. 2013;13:111. doi: 10.1186/1472-6882-13-111. PubMed DOI PMC
Ribeiro P.R., Ferraz C.G., Guedes M.L.S., Martins D., Cruz F.G. A new biphenyl and antimicrobial activity of extracts and compounds from Clusia burlemarxii. Fitoterapia. 2011;82:1237–1240. doi: 10.1016/j.fitote.2011.08.012. PubMed DOI
Tamokou J.D.D., Tala M.F., Wabo H.K., Kuiate J.R., Tane P. Antimicrobial activities of methanol extract and compounds from stem bark of Vismia rubescens. J. Ethnopharmacol. 2009;124:571–575. doi: 10.1016/j.jep.2009.04.062. PubMed DOI
Liu C.-M., Wang H.-X., Wei S.-L., Gao K. Oleanane-Type Triterpenes from the Flowers and Roots of Saussurea muliensis. J. Nat. Prod. 2008;71:789–792. doi: 10.1021/np070618n. PubMed DOI
Madureira A.M., Ascenso J.R., Valdeira L., Duarte A., Frade J.P., Freitas G., Ferreira M.J.U. Evaluation of the antiviral and antimicrobial activities of triterpenes isolated from Euphorbia segetalis. Nat. Prod. Res. 2003;17:375–380. doi: 10.1080/14786410310001605841. PubMed DOI
Viswanathan M.B.G., Jeya Ananthi J.D., Sathish Kumar P. Antimicrobial activity of bioactive compounds and leaf extracts in Jatropha tanjorensis. Fitoterapia. 2012;83:1153–1159. doi: 10.1016/j.fitote.2012.07.007. PubMed DOI
Ragasa C.Y., Espineli D.L., Mandia E.H., Raga D.D., Don M.-J., Shen C.-C. A New Triterpene from Atalantia retusa Merr. Z. Naturforsch. B. 2014;67:426–432. doi: 10.5560/znb.2012-0026. DOI
Jain S.C., Singh B., Jain R. Antimicrobial activity of triterpenoids from Heliotropium ellipticum. Fitoterapia. 2001;72:666–668. doi: 10.1016/S0367-326X(01)00267-2. PubMed DOI
Singh B., Dubey M.M. Estimation of triterpenoids from Heliotropium marifolium Koen. ex Retz. in vivo and in vitro. I. Antimicrobial screening. Phytother. Res. 2001;15:231–234. doi: 10.1002/ptr.759. PubMed DOI
Kuete V., Komguem J., Beng V.P., Meli A.L., Tangmouo J.G., Etoa F.-X., Lontsi D. Antimicrobial components of the methanolic extract from the stem bark of Garcinia smeathmannii Oliver (Clusiaceae) S. Afr. J. Bot. 2007;73:347–354. doi: 10.1016/j.sajb.2007.01.004. DOI
Kuete V., Nguemeving J.R., Beng V.P., Azebaze A.G.B., Etoa F.-X., Meyer M., Bodo B., Nkengfack A.E. Antimicrobial activity of the methanolic extracts and compounds from Vismia laurentii De Wild (Guttiferae) J. Ethnopharmacol. 2007;109:372–379. doi: 10.1016/j.jep.2006.07.044. PubMed DOI
Shaiq Ali M., Mahmud S., Perveen S., Rizwani G.H., Ahmad V.U. Screening for the Antimicrobial Properties of the Leaves of Calophyllum inophyllum Linn. (Guttiferae) J. Chem. Soc. Pak. 1999;21:174–178.
Chiozem D.D., Trinh-Van-Dufat H., Wansi J.D., Mbazoa Djama C., Fannang V.S., Seguin E., Tillequin F., Wandji J. New friedelane triterpenoids with antimicrobial activity from the stems of Drypetes paxii. Chem. Pharm. Bull. 2009;57:1119–1122. doi: 10.1248/cpb.57.1119. PubMed DOI
Gerrish D., Kim I.C., Kumar D.V., Austin H., Garrus J.E., Baichwal V., Saunders M., McKinnon R.S., Anderson M.B., Carlson R., et al. Triterpene based compounds with potent anti-maturation activity against HIV-1. Bioorg. Med. Chem. Lett. 2008;18:6377–6380. doi: 10.1016/j.bmcl.2008.10.098. PubMed DOI
Mukhtar M., Arshad M., Ahmad M., Pomerantz R.J., Wigdahl B., Parveen Z. Antiviral potentials of medicinal plants. Virus Res. 2008;131:111–120. doi: 10.1016/j.virusres.2007.09.008. PubMed DOI PMC
Aiken C., Chen C.H. Betulinic acid derivatives as HIV-1 antivirals. Trends Mol. Med. 2005;11:31–36. doi: 10.1016/j.molmed.2004.11.001. PubMed DOI
Ng T.B., Huang B., Fong W.P., Yeung H.W. Anti-human immunodeficiency virus (anti-HIV) natural products with special emphasis on HIV reverse transcriptase inhibitors. Life Sci. 1997;61:933–949. doi: 10.1016/S0024-3205(97)00245-2. PubMed DOI
Wu P.-L., Lin F.-W., Wu T.-S., Kuoh C.-S., Lee K.-H., Lee S.-J. Cytotoxic and anti-HIV principles from the rhizomes of Begonia nantoensis. Chem. Pharm. Bull. 2004;52:345–349. doi: 10.1248/cpb.52.345. PubMed DOI
Callies O., Bedoya L.M., Beltrán M., Muñoz A., Calderón P.O., Osorio A.A., Jiménez I.A., Alcamí J., Bazzocchi I.L. Isolation, Structural Modification, and HIV Inhibition of Pentacyclic Lupane-Type Triterpenoids from Cassine xylocarpa and Maytenus cuzcoina. J. Nat. Prod. 2015;78:1045–1055. doi: 10.1021/np501025r. PubMed DOI
Kuo Y.H., Kuo L.M. Antitumour and anti-AIDS triterpenes from Celastrus hindsii. Phytochemistry. 1997;44:1275–1281. PubMed
Ren H.-C., Qin R.-D., Wang Q., Cheng W., Zhang Q.-Y., Liang H. A new triterpenoid and a new glycoside from Pilea cavaleriei. J. Asian Nat. Prod. Res. 2012;14:1032–1038. doi: 10.1080/10286020.2012.702760. PubMed DOI
Dat N.T., Bae K., Wamiru A., McMahon J.B., Le Grice S.F.J., Bona M., Beutler J.A., Kim Y.H. A dimeric lactone from Ardisia japonica with inhibitory activity for HIV-1 and HIV-2 ribonuclease H. J. Nat. Prod. 2007;70:839–841. doi: 10.1021/np060359m. PubMed DOI
Reutrakul V., Chanakul W., Pohmakotr M., Jaipetch T., Yoosook C., Kasisit J., Napaswat C., Santisuk T., Prabpai S., Kongsaeree P., et al. Anti-HIV-1 constituents from leaves and twigs of Cratoxylum arborescens. Planta Med. 2006;72:1433–1435. doi: 10.1055/s-2006-951725. PubMed DOI
Huerta-Reyes M., Basualdo M.D.C., Abe F., Jimenez-Estrada M., Soler C., Reyes-Chilpa R. HIV-1 inhibitory compounds from Calophyllum brasiliense leaves. Biol. Pharm. Bull. 2004;27:1471–1475. doi: 10.1248/bpb.27.1471. PubMed DOI
Jiang R.-W., Ma S.-C., He Z.-D., Huang X.-S., But P.P.-H., Wang H., Chan S.-P., Ooi V.E.-C., Xu H.-X., Mak T.C.W. Molecular structures and antiviral activities of naturally occurring and modified cassane furanoditerpenoids and friedelane triterpenoids from Caesalpinia minax. Bioorg. Med. Chem. 2002;10:2161–2170. doi: 10.1016/S0968-0896(02)00072-X. PubMed DOI
Vásquez-Ocmín P., Cojean S., Rengifo E., Suyyagh-Albouz S., Amasifuen Guerra C.A., Pomel S., Cabanillas B., Mejía K., Loiseau P.M., Figadère B., et al. Antiprotozoal activity of medicinal plants used by Iquitos-Nauta road communities in Loreto (Peru) J. Ethnopharmacol. 2018;210:372–385. doi: 10.1016/j.jep.2017.08.039. PubMed DOI
Figueiredo J.N., Räz B., Séquin U. Novel quinone methides from Salacia kraussii with in vitro antimalarial activity. J. Nat. Prod. 1998;61:718–723. doi: 10.1021/np9704157. PubMed DOI
Lomchid P., Nasomjai P., Kanokmedhakul S., Boonmak J., Youngme S., Kanokmedhakul K. Bioactive Lupane and Hopane Triterpenes from Lepisanthes senegalensis. Planta Med. 2017;83:334–340. doi: 10.1055/s-0042-116438. PubMed DOI
Mutai C., Rukunga G., Vagias C., Roussis V. In vivo screening of antimalarial activity of Acacia mellifera (Benth) (Leguminosae) on Plasmodium berghei in mice. Afr J Tradit Complement Altern. Med. 2007;5:46–50. doi: 10.4314/ajtcam.v5i1.31255. PubMed DOI PMC
Ngouamegne E.T., Fongang R.S., Ngouela S., Boyom F.F., Rohmer M., Tsamo E., Gut J., Rosenthal P.J. Endodesmiadiol, a friedelane triterpenoid, and other antiplasmodial compounds from Endodesmia calophylloides. Chem. Pharm. Bull. 2008;56:374–377. doi: 10.1248/cpb.56.374. PubMed DOI
Mitaine-Offer A.-C., Sauvain M., Deharo E., Muñoz V., Zèches-Hanrot M. A new diterpene from Tanaecium jaroba. Planta Med. 2002;68:568–569. doi: 10.1055/s-2002-32553. PubMed DOI
Ogungbe I.V., Setzer W.N. In-silico Leishmania target selectivity of antiparasitic terpenoids. Molecules. 2013;18:7761–7847. doi: 10.3390/molecules18077761. PubMed DOI PMC
Torres-Santos E.C., Lopes D., Oliveira R.R., Carauta J.P.P., Falcao C.A.B., Kaplan M. a. C., Rossi-Bergmann B. Antileishmanial activity of isolated triterpenoids from Pourouma guianensis. Phytomedicine. 2004;11:114–120. doi: 10.1078/0944-7113-00381. PubMed DOI
Camacho M.R., Mata R., Castaneda P., Kirby G.C., Warhurst D.C., Croft S.L., Phillipson J.D. Bioactive compounds from Celaenodendron mexicanum. Planta Med. 2000;66:463–468. doi: 10.1055/s-2000-8598. PubMed DOI
Takahashi M., Fuchino H., Sekita S., Satake M. In vitro leishmanicidal activity of some scarce natural products. Phytother. Res. 2004;18:573–578. doi: 10.1002/ptr.1502. PubMed DOI
Cortés-Selva F., Jiménez I.A., Munoz-Martínez F., Campillo M., Bazzocchi I.L., Pardo L., Ravelo A.G., Castanys S., Gamarro F. Dihydro-beta-agarofuran sesquiterpenes: A new class of reversal agents of the multidrug resistance phenotype mediated by P-glycoprotein in the protozoan parasite Leishmania. Curr. Pharm. Des. 2005;11:3125–3139. doi: 10.2174/1381612054864920. PubMed DOI
Pérez-Victoria J.M., Tincusi B.M., Jiménez I.A., Bazzocchi I.L., Gupta M.P., Castanys S., Gamarro F., Ravelo A.G. New natural sesquiterpenes as modulators of daunomycin resistance in a multidrug-resistant Leishmania tropica line. J. Med. Chem. 1999;42:4388–4393. doi: 10.1021/jm991066b. PubMed DOI
Setzer W.N., Ogungbe I.V. In-silico Investigation of Antitrypanosomal Phytochemicals from Nigerian Medicinal Plants. PLOS Negl. Trop. Dis. 2012;6:e1727. doi: 10.1371/journal.pntd.0001727. PubMed DOI PMC
Abe F., Nagafuji S., Okabe H., Akahane H., Estrada-Muñiz E., Huerta-Reyes M., Reyes-Chilpa R. Trypanocidal constituents in plants 3. Leaves of Garcinia intermedia and heartwood of Calophyllum brasiliense. Biol. Pharm. Bull. 2004;27:141–143. doi: 10.1248/bpb.27.141. PubMed DOI
Biavatti M.W., Vieira P.C., da Silva M.F.G.F., Fernandes J.B., Albuquerque S., Magalhães C.M., Pagnocca F.C. Chemistry and bioactivity of Raulinoa echinata Cowan, an endemic Brazilian Rutaceae species. Phytomedicine. 2001;8:121–124. doi: 10.1078/0944-7113-00016. PubMed DOI
Oramas-Royo S.M., Chávez H., Martín-Rodíguez P., Fernández-Pérez L., Ravelo A.G., Estévez-Braun A. Cytotoxic triterpenoids from Maytenus retusa. J. Nat. Prod. 2010;73:2029–2034. doi: 10.1021/np100517u. PubMed DOI
Espindola L.S., Dusi R.G., Demarque D.P., Braz-Filho R., Yan P., Bokesch H.R., Gustafson K.R., Beutler J.A. Cytotoxic Triterpenes from Salacia crassifolia and Metabolite Profiling of Celastraceae Species. Molecules. 2018;23 doi: 10.3390/molecules23061494. PubMed DOI PMC
de Almeida M.T.R., Ríos-Luci C., Padrón J.M., Palermo J.A. Antiproliferative terpenoids and alkaloids from the roots of Maytenus vitis-idaea and Maytenus spinosa. Phytochemistry. 2010;71:1741–1748. doi: 10.1016/j.phytochem.2010.06.023. PubMed DOI
Chen S.-R., Dai Y., Zhao J., Lin L., Wang Y., Wang Y. A Mechanistic Overview of Triptolide and Celastrol, Natural Products from Tripterygium wilfordii Hook F. Front Pharmacol. 2018;9:104. doi: 10.3389/fphar.2018.00104. PubMed DOI PMC
Gao H., Wu L., Kuroyanagi M., Harada K., Kawahara N., Nakane T., Umehara K., Hirasawa A., Nakamura Y. Antitumor-promoting constituents from Chaenomeles sinensis KOEHNE and their activities in JB6 mouse epidermal cells. Chem. Pharm. Bull. 2003;51:1318–1321. doi: 10.1248/cpb.51.1318. PubMed DOI
Kim C.S., Subedi L., Oh J., Kim S.Y., Choi S.U., Lee K.R. Bioactive Triterpenoids from the Twigs of Chaenomeles sinensis. J. Nat. Prod. 2017;80:1134–1140. doi: 10.1021/acs.jnatprod.7b00111. PubMed DOI
Ohsaki A., Imai Y., Naruse M., Ayabe S.-I., Komiyama K., Takashima J. Four new triterpenoids from Maytenus ilicifolia. J. Nat. Prod. 2004;67:469–471. doi: 10.1021/np030379d. PubMed DOI
Hwang B.Y., Chai H.-B., Kardono L.B.S., Riswan S., Farnsworth N.R., Cordell G.A., Pezzuto J.M., Kinghorn A.D. Cytotoxic triterpenes from the twigs of Celtis philippinensis. Phytochemistry. 2003;62:197–201. doi: 10.1016/S0031-9422(02)00520-4. PubMed DOI
Thao N.T.P., Hung T.M., Lee M.K., Kim J.C., Min B.S., Bae K. Triterpenoids from Camellia japonica and their cytotoxic activity. Chem. Pharm. Bull. 2010;58:121–124. doi: 10.1248/cpb.58.121. PubMed DOI
Mandal A., Ghosh S., Bothra A.K., Nanda A.K., Ghosh P. Synthesis of friedelan triterpenoid analogs with DNA topoisomerase IIα inhibitory activity and their molecular docking studies. Eur. J. Med. Chem. 2012;54:137–143. doi: 10.1016/j.ejmech.2012.04.037. PubMed DOI
Lu B., Liu L., Zhen X., Wu X., Zhang Y. Anti-tumor activity of triterpenoid-rich extract from bamboo shavings (Caulis bamfusae in Taeniam) Afr. J. Biotechnol. 2010;9:6430–6436.
Tanaka R., Nakata T., Yamaguchi C., Wada S.-I., Yamada T., Tokuda H. Potential anti-tumor-promoting activity of 3alpha-hydroxy-D:A-friedooleanan-2-one from the stem bark of Mallotus philippensis. Planta Med. 2008;74:413–416. doi: 10.1055/s-2008-1034347. PubMed DOI
Yasukawa K., Takido M., Matsumoto T., Takeuchi M., Nakagawa S. Sterol and triterpene derivatives from plants inhibit the effects of a tumor promoter, and sitosterol and betulinic acid inhibit tumor formation in mouse skin two-stage carcinogenesis. Oncology. 1991;48:72–76. doi: 10.1159/000226898. PubMed DOI
Saleem M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009;285:109–115. doi: 10.1016/j.canlet.2009.04.033. PubMed DOI PMC
Takaishi Y., Wariishi N., Tateishi H., Kawazoe K., Nakano K., Ono Y., Tokuda H., Nishino H., Iwashima A. Triterpenoid inhibitors of interleukin-1 secretion and tumour-promotion from Tripterygium wilfordii var. regelii. Phytochemistry. 1997;45:969–974. doi: 10.1016/S0031-9422(96)00859-X. DOI
Cascão R., Vidal B., Raquel H., Neves-Costa A., Figueiredo N., Gupta V., Fonseca J.E., Moita L.F. Effective treatment of rat adjuvant-induced arthritis by celastrol. Autoimmun. Rev. 2012;11:856–862. doi: 10.1016/j.autrev.2012.02.022. PubMed DOI PMC
Reyes C.P., Núñez M.J., Jiménez I.A., Busserolles J., Alcaraz M.J., Bazzocchi I.L. Activity of lupane triterpenoids from Maytenus species as inhibitors of nitric oxide and prostaglandin E2. Bioorg. Med. Chem. 2006;14:1573–1579. doi: 10.1016/j.bmc.2005.10.063. PubMed DOI
Huang S.-S., Jian K.-L., Li R.-J., Kong L.-Y., Yang M.-H. Phytosteroids and triterpenoids with potent cytotoxicities from the leaves of Chisocheton cumingianus. RSC Adv. 2016;6:6320–6328. doi: 10.1039/C5RA23626F. DOI
Wal P., Wal A., Sharma G., Rai A. Biological Activities of Lupeol. Systematic Reviews in Pharmacy. 2011;2 doi: 10.4103/0975-8453.86298. DOI
Siddique H.R., Saleem M. Beneficial health effects of lupeol triterpene: A review of preclinical studies. Life Sci. 2011;88:285–293. doi: 10.1016/j.lfs.2010.11.020. PubMed DOI
Oliveira-Junior M.S., Pereira E.P., de Amorim V.C.M., Reis L.T.C., do Nascimento R.P., da Silva V.D.A., Costa S.L. Lupeol inhibits LPS-induced neuroinflammation in cerebellar cultures and induces neuroprotection associated to the modulation of astrocyte response and expression of neurotrophic and inflammatory factors. Int. Immunopharmacol. 2019;70:302–312. doi: 10.1016/j.intimp.2019.02.055. PubMed DOI
Ignoato M.C., Fabrão R.M., Schuquel I.T.A., Botelho M.F.P., Bannwart G., Pomini A.M., Arruda L.L.M., Bersani-Amado C.A., Santin S.M.O. Chemical constituents of Machaerium hirtum Vell. (Fabaceae) leaves and branches and its anti-inflammatory activity evaluation. Nat. Prod. Res. 2013;27:1556–1561. doi: 10.1080/14786419.2012.738204. PubMed DOI
Kumari R., Meyyappan A., Selvamani P., Mukherjee J., Jaisankar P. Lipoxygenase inhibitory activity of crude bark extracts and isolated compounds from Commiphora berryi. J. Ethnopharmacol. 2011;138:256–259. doi: 10.1016/j.jep.2011.09.007. PubMed DOI
Antonisamy P., Duraipandiyan V., Ignacimuthu S. Anti-inflammatory, analgesic and antipyretic effects of friedelin isolated from Azima tetracantha Lam. in mouse and rat models. J. Pharm. Pharmacol. 2011;63:1070–1077. doi: 10.1111/j.2042-7158.2011.01300.x. PubMed DOI
Ming Shan ZHENG J.H.Y., Son J.-K. Anti-Inflammatory Activity of Constituents Isolated from Ulmus davidiana var. japonica. Biomol. Ther. 2010;18:321–328. doi: 10.4062/biomolther.2010.18.3.321. DOI
Fan X., Zi J., Zhu C., Xu W., Cheng W., Yang S., Guo Y., Shi J. Chemical Constituents of Heteroplexis micocephala. J. Nat. Prod. 2009;72:1184–1190. doi: 10.1021/np900213w. PubMed DOI
Shimizu M., Tomoo T. Anti-inflammatory constituents of topically applied crude drugs. V. Constituents and anti-inflammatory effect of Aoki, Aucuba japonica Thunb. Biol. Pharm. Bull. 1994;17:665–667. doi: 10.1248/bpb.17.665. PubMed DOI
Queiroga C.L., Silva G.F., Dias P.C., Possenti A., de Carvalho J.E. Evaluation of the antiulcerogenic activity of friedelan-3beta-ol and friedelin isolated from Maytenus ilicifolia (Celastraceae) J. Ethnopharmacol. 2000;72:465–468. doi: 10.1016/S0378-8741(00)00237-3. PubMed DOI
Tewtrakul S., Tansakul P., Daengrot C., Ponglimanont C., Karalai C. Anti-inflammatory principles from Heritiera littoralis bark. Phytomedicine. 2010;17:851–855. doi: 10.1016/j.phymed.2010.02.011. PubMed DOI
Tsao C.-C., Shen Y.-C., Su C.-R., Li C.-Y., Liou M.-J., Dung N.-X., Wu T.-S. New diterpenoids and the bioactivity of Erythrophleum fordii. Bioorg. Med. Chem. 2008;16:9867–9870. doi: 10.1016/j.bmc.2008.09.021. PubMed DOI
Ding Y., Liang C., Kim J.H., Lee Y.-M., Hyun J.-H., Kang H.-K., Kim J.-A., Min B.S., Kim Y.H. Triterpene compounds isolated from Acer mandshuricum and their anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2010;20:1528–1531. doi: 10.1016/j.bmcl.2010.01.096. PubMed DOI
Mitaine-Offer A.-C., Hornebeck W., Sauvain M., Zèches-Hanrot M. Triterpenes and phytosterols as human leucocyte elastase inhibitors. Planta Med. 2002;68:930–932. doi: 10.1055/s-2002-34929. PubMed DOI
Nakagawa H., Takaishi Y., Fujimoto Y., Duque C., Garzon C., Sato M., Okamoto M., Oshikawa T., Ahmed S.U. Chemical Constituents from the Colombian Medicinal Plant Maytenus laevis. J. Nat. Prod. 2004;67:1919–1924. doi: 10.1021/np040006s. PubMed DOI
Lai Y.-C., Chen C.-K., Tsai S.-F., Lee S.-S. Triterpenes as α-glucosidase inhibitors from Fagus hayatae. Phytochemistry. 2012;74:206–211. doi: 10.1016/j.phytochem.2011.09.016. PubMed DOI
Sasikumar P., Sharathna P., Prabha B., Sunil S., Anil Kumar N., Sivan V.V., Sherin D.R., Suresh E., Manojkumar T.K., Radhakrishnan K.V. Dihydro-β-agarofuran sesquiterpenoids from the seeds of Celastrus paniculatus Willd. and their α-glucosidase inhibitory activity. Phytochem. Lett. 2018;26:1–8.
Giacoman-Martínez A., Alarcón-Aguilar F.J., Zamilpa A., Hidalgo-Figueroa S., Navarrete-Vázquez G., García-Macedo R., Román-Ramos R., Almanza-Pérez J.C. Triterpenoids from Hibiscus sabdariffa L. with PPARδ/γ Dual Agonist Action: In Vivo, In Vitro and In Silico Studies. Planta Med. 2019;85:412–423. doi: 10.1055/a-0824-1316. PubMed DOI
Lv Y., Ming Q., Hao J., Huang Y., Chen H., Wang Q., Yang X., Zhao P. Anti-diabetic activity of canophyllol from Cratoxylum cochinchinense (Lour.) Blume in type 2 diabetic mice by activation of AMP-activated kinase and regulation of PPARγ. Food Funct. 2019;10:964–977. doi: 10.1039/C8FO02169D. PubMed DOI
Morikawa T., Kishi A., Pongpiriyadacha Y., Matsuda H., Yoshikawa M. Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpene and aldose reductase inhibitors from Salacia chinensis. J. Nat. Prod. 2003;66:1191–1196. doi: 10.1021/np0301543. PubMed DOI
Yoshikawa M., Shimoda H., Nishida N., Takada M., Matsuda H. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. J. Nutr. 2002;132:1819–1824. doi: 10.1093/jn/132.7.1819. PubMed DOI
Lan G., Zhang J., Ye W., Yang F., Li A., He W., Zhang W.-D. Celastrol as a tool for the study of the biological events of metabolic diseases. Sci. China Chem. 2019;62:409–416. doi: 10.1007/s11426-018-9404-9. DOI
Huaccho Rojas J.J., Cavero Aguilar E.S., Quezada Rojas M.A., Lara Paredes A.M., Lluen Escobar S.E., Paragulla Bocángel A.A., Rojas Villacorta F.J., Loja Herrera B., Alvarado Yarasca Á., Mujica Calderón J., et al. Efectos sobre la temperatura, frecuencia respiratoria, frecuencia cardiaca y electrocardiograma de Maytenus macrocarpa (Ruiz & Pav.) Briq. (chuchuhuasi). [Effects of Maytenus macrocarpa (Ruiz & Pav.) Briq. (chuchuhuasi) in temperature, respiratory rate, heart rate, and electrocardiogram] Rev. Cuba. de Plantas Med. 2012;17:233–243.
Bioactive Molecules and Their Mechanisms of Action