Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation

. 2019 Aug 26 ; 20 (1) : 171. [epub] 20190826

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, multicentrická studie, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31446895

Grantová podpora
HL 123658 NIH HHS - United States
MR/L010240/1 Medical Research Council - United Kingdom
U54 GM115516 NIGMS NIH HHS - United States
MR/P023576/1 Medical Research Council - United Kingdom
K01 AR067858 NIAMS NIH HHS - United States
UM1 OD023221 NIH HHS - United States
PG/12/89/29970 British Heart Foundation - United Kingdom
P01 CA217798 NIH HHS - United States
MR/M008908/1 Medical Research Council - United Kingdom
MR/P011853/1 Medical Research Council - United Kingdom
097820/Z11/B Wellcome Trust - United Kingdom
P30CA16672 NIH HHS - United States
MR/P023576/2 Medical Research Council - United Kingdom
UM1OD023221 NIH HHS - United States
P30 CA016672 NCI NIH HHS - United States
FS/12/57/29717 British Heart Foundation - United Kingdom
105610/Z/14/Z Wellcome Trust - United Kingdom
R01 HL144477 NHLBI NIH HHS - United States
RG/15/12/31616 British Heart Foundation - United Kingdom
MR/N029992/1 Medical Research Council - United Kingdom
R50 CA211121 NCI NIH HHS - United States
104192/Z/14/Z Wellcome Trust - United Kingdom
P30 CA036727 NCI NIH HHS - United States
107851/Z/15/Z Wellcome Trust - United Kingdom
HL138987 NIH HHS - United States
P30 GM110768 NIGMS NIH HHS - United States
FS12/57/29717 British Heart Foundation - United Kingdom
P20GM103471 NIGMS NIH HHS - United States
R01 HL138987 NHLBI NIH HHS - United States
FS12-57 British Heart Foundation - United Kingdom
R01 HL123658 NHLBI NIH HHS - United States
BB/N015584/1 Biotechnology and Biological Sciences Research Council - United Kingdom
CH/13/2/30154 British Heart Foundation - United Kingdom
R01 AR074473 NIAMS NIH HHS - United States
UL1 TR001108 NCATS NIH HHS - United States
107849/Z/15/Z Wellcome Trust - United Kingdom
P01 CA217798 NCI NIH HHS - United States

Odkazy

PubMed 31446895
PubMed Central PMC6709553
DOI 10.1186/s13059-019-1776-2
PII: 10.1186/s13059-019-1776-2
Knihovny.cz E-zdroje

BACKGROUND: CRISPR-Cas9 gene-editing technology has facilitated the generation of knockout mice, providing an alternative to cumbersome and time-consuming traditional embryonic stem cell-based methods. An earlier study reported up to 16% efficiency in generating conditional knockout (cKO or floxed) alleles by microinjection of 2 single guide RNAs (sgRNA) and 2 single-stranded oligonucleotides as donors (referred herein as "two-donor floxing" method). RESULTS: We re-evaluate the two-donor method from a consortium of 20 laboratories across the world. The dataset constitutes 56 genetic loci, 17,887 zygotes, and 1718 live-born mice, of which only 15 (0.87%) mice contain cKO alleles. We subject the dataset to statistical analyses and a machine learning algorithm, which reveals that none of the factors analyzed was predictive for the success of this method. We test some of the newer methods that use one-donor DNA on 18 loci for which the two-donor approach failed to produce cKO alleles. We find that the one-donor methods are 10- to 20-fold more efficient than the two-donor approach. CONCLUSION: We propose that the two-donor method lacks efficiency because it relies on two simultaneous recombination events in cis, an outcome that is dwarfed by pervasive accompanying undesired editing events. The methods that use one-donor DNA are fairly efficient as they rely on only one recombination event, and the probability of correct insertion of the donor cassette without unanticipated mutational events is much higher. Therefore, one-donor methods offer higher efficiencies for the routine generation of cKO animal models.

Basic and Clinical Research The Rogosin Institute New York USA

Center for Matrix Biology and Medicine Graduate School of Medicine Tokai University Isehara Kanagawa 259 1193 Japan

Centre de Recherche du Centre Hospitalier Universitaire de Montreal Montreal Canada

Centre for Biological Timing School of Medical Sciences Faculty of Biology Medicine and Health University of Manchester Manchester UK

Children's Research Institute Mouse Genome Engineering Core University of Texas Southwestern Medical Center Dallas TX 75390 USA

College of Osteopathic Medicine Marian University Indianapolis IN 46222 USA

Department of Basic Medicine Division of Basic Medical Science and Molecular Medicine School of Medicine Tokai University 143 Shimokasuya Isehara Kanagawa 259 1193 Japan

Department of Biochemistry and Molecular Biology University of Nebraska Medical Center Omaha NE USA

Department of Biomedical Molecular Biology Ghent University Ghent Belgium

Department of Frontier Science for Cancer and Chemotherapy Osaka University Graduate School of Medicine Suita Japan

Department of Gastroenterology and Metabolism Nagoya City University Graduate School of Medical Sciences Nagoya Japan

Department of Immunology and Infectious Disease The John Curtin School of Medical Research the Australian National University Canberra Australia

Department of Immunology Tufts University School of Medicine Boston USA

Department of Laboratory Animal Science Support Center for Medical Research and Education Tokai University 143 Shimokasuya Isehara Kanagawa 259 1193 Japan

Department of Medical Data Science Osaka University Graduate School of Medicine Suita Japan

Department of Molecular Life Science Division of Basic Medical Science and Molecular Medicine School of Medicine Tokai University 143 Shimokasuya Isehara Kanagawa 259 1193 Japan

Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center Omaha NE USA

Department of Surgery School of Medicine University of California Davis Davis USA

Departments of Anatomy and Cell Biology Human Genetics and Pediatrics Research Institute McGill University Health Center Montreal Canada

Division of Cardiovascular Sciences School of Medical Sciences Faculty of Biology Medicine and Health The University of Manchester and Manchester Heart Centre Manchester University NHS Foundation Trust Manchester Academic Health Science Centre Manchester UK

Division of Evolution and Genomic Sciences School of Biological Sciences Faculty of Biology Medicine and Health Manchester Academic Health Science Centre University of Manchester Manchester UK

Division of Neuroscience and Experimental Psychology School of Biological Sciences Faculty of Biology Medicine and Health Manchester Academic Health Science Centre University of Manchester AV Hill Building Oxford Road Manchester M13 9PT UK

High Throughput DNA Sequencing and Genotyping Core Facility Vice Chancellor for Research Office University of Nebraska Medical Center Omaha USA

Laboratory Animal Resource Center University of Tsukuba Tsukuba Japan

Laboratory of Molecular Life Science Foundation for Biomedical Research and Innovation Kobe Japan

Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic

Lillehei Heart Institute Regenerative Medicine and Sciences Program University of Minnesota Minneapolis MN USA

Maine Medical Center Research Institute Scarborough ME USA

Manchester Collaborative Centre for Inflammation Research School of Biological Sciences Faculty of Biology Medicine and Health The University of Manchester Manchester UK

McGill Integrated Core for Animal Modeling Montreal Canada

Mouse Biology Program University of California Davis USA

Mouse Genome Engineering Core Facility Vice Chancellor for Research Office University of Nebraska Medical Center Omaha NE USA

Oxford Centre for Diabetes Endocrinology and Metabolism University of Oxford Oxford OX37LE UK

Paul and Sheila Wellstone Muscular Dystrophy Center University of Minnesota Minneapolis MN USA

RIKEN BioResource Research Center Tsukuba Ibaraki 305 0074 Japan

School of Health and Human Sciences Department of Physical Therapy Indiana University Indianapolis IN 46202 USA

School of Medicine Indiana University Indianapolis IN 46202 USA

South Australian Health and Medical Research Institute and Department of Medicine University of Adelaide Adelaide Australia

Texas A and M Institute for Genomic Medicine Texas A and M University College Station TX 77843 USA

The Institute of Experimental Animal Sciences Osaka University Graduate School of Medicine Suita Japan

The University of Texas MD Anderson Cancer Center Houston TX USA

Transformational Bioinformatics Health and Biosecurity Business Unit CSIRO North Ryde Australia

Transgenesis and Animal Modeling Core Facility Centre de Recherche du Centre Hospitalier Universitaire de Montreal Montreal Canada

Transgenic Mouse Core Facility VIB Center for Inflammation Research Ghent Belgium

Transgenic Unit Core Facility Faculty of Biology Medicine and Health University of Manchester Manchester UK

Unit of Cardiac Physiology School of Medical Sciences Manchester Academic Health Science Center University of Manchester Manchester UK

University of Rochester Medical Center Rochester NY 14642 USA

Komentář v

PubMed

Komentář v

PubMed

Zobrazit více v PubMed

Lee D, Threadgill DW. Investigating gene function using mouse models. Curr Opin Genet Dev. 2004;14(3):246–252. doi: 10.1016/j.gde.2004.04.013. PubMed DOI

Dickinson ME, et al. High-throughput discovery of novel developmental phenotypes. Nature. 2016;537(7621):508–514. doi: 10.1038/nature19356. PubMed DOI PMC

Skarnes WC, et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474(7351):337–342. doi: 10.1038/nature10163. PubMed DOI PMC

Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987;51(3):503–512. doi: 10.1016/0092-8674(87)90646-5. PubMed DOI

Austin CP, et al. The knockout mouse project. Nat Genet. 2004;36(9):921–924. doi: 10.1038/ng0904-921. PubMed DOI PMC

Friedel RH, et al. EUCOMM--the European conditional mouse mutagenesis program. Brief Funct Genomic Proteomic. 2007;6(3):180–185. doi: 10.1093/bfgp/elm022. PubMed DOI

Ayadi A, et al. Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm Genome. 2012;23(9–10):600–610. doi: 10.1007/s00335-012-9418-y. PubMed DOI PMC

Shen B, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 2013;23(5):720–723. doi: 10.1038/cr.2013.46. PubMed DOI PMC

Quadros RM, et al. Insertion of sequences at the original provirus integration site of mouse ROSA26 locus using the CRISPR/Cas9 system. FEBS Open Bio. 2015;5:191–197. doi: 10.1016/j.fob.2015.03.003. PubMed DOI PMC

Wang H, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910–918. doi: 10.1016/j.cell.2013.04.025. PubMed DOI PMC

Yang H, et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154(6):1370–1379. doi: 10.1016/j.cell.2013.08.022. PubMed DOI PMC

Blake JA, et al. The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse. Nucleic Acids Res. 2014;42(Database issue):D810–D817. doi: 10.1093/nar/gkt1225. PubMed DOI PMC

Tian David, Wenlock Stephanie, Kabir Mitra, Tzotzos George, Doig Andrew J., Hentges Kathryn E. Identifying mouse developmental essential genes using machine learning. Disease Models & Mechanisms. 2018;11(12):dmm034546. doi: 10.1242/dmm.034546. PubMed DOI PMC

Kaneko T, et al. Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Sci Rep. 2014;4:6382. doi: 10.1038/srep06382. PubMed DOI PMC

Chen S, et al. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem. 2016;291(28):14457–14467. doi: 10.1074/jbc.M116.733154. PubMed DOI PMC

Hashimoto M, Takemoto T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci Rep. 2015;5:11315. doi: 10.1038/srep11315. PubMed DOI PMC

Miyasaka Y, et al. CLICK: one-step generation of conditional knockout mice. BMC Genomics. 2018;19(1):318. doi: 10.1186/s12864-018-4713-y. PubMed DOI PMC

Ohtsuka M, et al. i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol. 2018;19(1):25. doi: 10.1186/s13059-018-1400-x. PubMed DOI PMC

Qin W, et al. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics. 2015;200(2):423–430. doi: 10.1534/genetics.115.176594. PubMed DOI PMC

Teixeira M, et al. Electroporation of mice zygotes with dual guide RNA/Cas9 complexes for simple and efficient cloning-free genome editing. Sci Rep. 2018;8(1):474. doi: 10.1038/s41598-017-18826-5. PubMed DOI PMC

Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. doi: 10.1023/A:1010933404324. DOI

Kueh AJ, et al. An update on using CRISPR/Cas9 in the one-cell stage mouse embryo for generating complex mutant alleles. Cell Death Differ. 2017;24(10):1821–1822. doi: 10.1038/cdd.2017.122. PubMed DOI PMC

Quadros RM, et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol. 2017;18(1):92. doi: 10.1186/s13059-017-1220-4. PubMed DOI PMC

Liu Y, et al. Generation of conditional knockout mice by sequential insertion of two loxP sites in cis using CRISPR/Cas9 and single-stranded DNA oligonucleotides. Methods Mol Biol. 2019;1874:191–210. doi: 10.1007/978-1-4939-8831-0_11. PubMed DOI PMC

Horii T, et al. Efficient generation of conditional knockout mice via sequential introduction of lox sites. Sci Rep. 2017;7(1):7891. doi: 10.1038/s41598-017-08496-8. PubMed DOI PMC

Gurumurthy Channabasavaiah B., Lloyd Kevin C. Kent. Generating mouse models for biomedical research: technological advances. Disease Models & Mechanisms. 2019;12(1):dmm029462. doi: 10.1242/dmm.029462. PubMed DOI PMC

Harms DW, et al. Mouse genome editing using the CRISPR/Cas system. Curr Protoc Hum Genet. 2014;83:15.7.1–15.727. doi: 10.1002/0471142905.hg1507s83. PubMed DOI PMC

Bishop KA, et al. CRISPR/Cas9-mediated insertion of loxP sites in the mouse Dock7 gene provides an effective alternative to use of targeted embryonic stem cells. G3 (Bethesda) 2016;6(7):2051–2061. doi: 10.1534/g3.116.030601. PubMed DOI PMC

Lanza DG, et al. Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol. 2018;16(1):69. doi: 10.1186/s12915-018-0529-0. PubMed DOI PMC

Miano JM, Zhu QM, Lowenstein CJ. A CRISPR path to engineering new genetic mouse models for cardiovascular research. Arterioscler Thromb Vasc Biol. 2016;36(6):1058–1075. doi: 10.1161/ATVBAHA.116.304790. PubMed DOI PMC

Pritchard CEJ, Kroese LJ, Huijbers IJ. Direct generation of conditional alleles using CRISPR/Cas9 in mouse zygotes. Methods Mol Biol. 2017;1642:21–35. doi: 10.1007/978-1-4939-7169-5_2. PubMed DOI

Miura H, et al. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat Protoc. 2018;13(1):195–215. doi: 10.1038/nprot.2017.153. PubMed DOI PMC

Yao X, et al. Tild-CRISPR allows for efficient and precise gene knockin in mouse and human cells. Dev Cell. 2018;45(4):526–536.e5. doi: 10.1016/j.devcel.2018.04.021. PubMed DOI

Haeussler M, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17(1):148. doi: 10.1186/s13059-016-1012-2. PubMed DOI PMC

Stemmer M, et al. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One. 2015;10(4):e0124633. doi: 10.1371/journal.pone.0124633. PubMed DOI PMC

Cong L, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–823. doi: 10.1126/science.1231143. PubMed DOI PMC

Yang H, Wang H, Jaenisch R. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc. 2014;9(8):1956–1968. doi: 10.1038/nprot.2014.134. PubMed DOI

Bassett AR, et al. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 2013;4(1):220–228. doi: 10.1016/j.celrep.2013.06.020. PubMed DOI PMC

Aida T, et al. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome Biol. 2015;16:87. doi: 10.1186/s13059-015-0653-x. PubMed DOI PMC

Pedregosa F, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–2830.

Gurumurthy CB, O’Brien AR, Quadros RM, Adams J, Alcaide P, Ayabe S, Ballard J, Batra SK, Beauchamp M-C, Becker KA, et al. Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Source code. Github. https://gist.github.com/aydun1/932f526867f7f8139b8e8eae7c76e866. Accessed 17 July 2019. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...