Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, multicentrická studie, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
HL 123658
NIH HHS - United States
MR/L010240/1
Medical Research Council - United Kingdom
U54 GM115516
NIGMS NIH HHS - United States
MR/P023576/1
Medical Research Council - United Kingdom
K01 AR067858
NIAMS NIH HHS - United States
UM1 OD023221
NIH HHS - United States
PG/12/89/29970
British Heart Foundation - United Kingdom
P01 CA217798
NIH HHS - United States
MR/M008908/1
Medical Research Council - United Kingdom
MR/P011853/1
Medical Research Council - United Kingdom
097820/Z11/B
Wellcome Trust - United Kingdom
P30CA16672
NIH HHS - United States
MR/P023576/2
Medical Research Council - United Kingdom
UM1OD023221
NIH HHS - United States
P30 CA016672
NCI NIH HHS - United States
FS/12/57/29717
British Heart Foundation - United Kingdom
105610/Z/14/Z
Wellcome Trust - United Kingdom
R01 HL144477
NHLBI NIH HHS - United States
RG/15/12/31616
British Heart Foundation - United Kingdom
MR/N029992/1
Medical Research Council - United Kingdom
R50 CA211121
NCI NIH HHS - United States
104192/Z/14/Z
Wellcome Trust - United Kingdom
P30 CA036727
NCI NIH HHS - United States
107851/Z/15/Z
Wellcome Trust - United Kingdom
HL138987
NIH HHS - United States
P30 GM110768
NIGMS NIH HHS - United States
FS12/57/29717
British Heart Foundation - United Kingdom
P20GM103471
NIGMS NIH HHS - United States
R01 HL138987
NHLBI NIH HHS - United States
FS12-57
British Heart Foundation - United Kingdom
R01 HL123658
NHLBI NIH HHS - United States
BB/N015584/1
Biotechnology and Biological Sciences Research Council - United Kingdom
CH/13/2/30154
British Heart Foundation - United Kingdom
R01 AR074473
NIAMS NIH HHS - United States
UL1 TR001108
NCATS NIH HHS - United States
107849/Z/15/Z
Wellcome Trust - United Kingdom
P01 CA217798
NCI NIH HHS - United States
PubMed
31446895
PubMed Central
PMC6709553
DOI
10.1186/s13059-019-1776-2
PII: 10.1186/s13059-019-1776-2
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR-Cas9, Conditional knockout mouse, Floxed allele, Homology-directed repair, Long single-stranded DNA, Machine learning, Mouse, Oligonucleotide, Reproducibility, Transgenesis,
- MeSH
- alely * MeSH
- blastocysta metabolismus MeSH
- CRISPR-Cas systémy genetika MeSH
- faktorová analýza statistická MeSH
- mikroinjekce MeSH
- myši knockoutované MeSH
- protein 2 vázající methyl-CpG genetika metabolismus MeSH
- protein Cas9 metabolismus MeSH
- regresní analýza MeSH
- reprodukovatelnost výsledků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- Mecp2 protein, mouse MeSH Prohlížeč
- protein 2 vázající methyl-CpG MeSH
- protein Cas9 MeSH
BACKGROUND: CRISPR-Cas9 gene-editing technology has facilitated the generation of knockout mice, providing an alternative to cumbersome and time-consuming traditional embryonic stem cell-based methods. An earlier study reported up to 16% efficiency in generating conditional knockout (cKO or floxed) alleles by microinjection of 2 single guide RNAs (sgRNA) and 2 single-stranded oligonucleotides as donors (referred herein as "two-donor floxing" method). RESULTS: We re-evaluate the two-donor method from a consortium of 20 laboratories across the world. The dataset constitutes 56 genetic loci, 17,887 zygotes, and 1718 live-born mice, of which only 15 (0.87%) mice contain cKO alleles. We subject the dataset to statistical analyses and a machine learning algorithm, which reveals that none of the factors analyzed was predictive for the success of this method. We test some of the newer methods that use one-donor DNA on 18 loci for which the two-donor approach failed to produce cKO alleles. We find that the one-donor methods are 10- to 20-fold more efficient than the two-donor approach. CONCLUSION: We propose that the two-donor method lacks efficiency because it relies on two simultaneous recombination events in cis, an outcome that is dwarfed by pervasive accompanying undesired editing events. The methods that use one-donor DNA are fairly efficient as they rely on only one recombination event, and the probability of correct insertion of the donor cassette without unanticipated mutational events is much higher. Therefore, one-donor methods offer higher efficiencies for the routine generation of cKO animal models.
Basic and Clinical Research The Rogosin Institute New York USA
Centre de Recherche du Centre Hospitalier Universitaire de Montreal Montreal Canada
College of Osteopathic Medicine Marian University Indianapolis IN 46222 USA
Department of Biochemistry and Molecular Biology University of Nebraska Medical Center Omaha NE USA
Department of Biomedical Molecular Biology Ghent University Ghent Belgium
Department of Immunology Tufts University School of Medicine Boston USA
Department of Medical Data Science Osaka University Graduate School of Medicine Suita Japan
Department of Surgery School of Medicine University of California Davis Davis USA
Laboratory Animal Resource Center University of Tsukuba Tsukuba Japan
Laboratory of Molecular Life Science Foundation for Biomedical Research and Innovation Kobe Japan
Maine Medical Center Research Institute Scarborough ME USA
McGill Integrated Core for Animal Modeling Montreal Canada
Mouse Biology Program University of California Davis USA
Oxford Centre for Diabetes Endocrinology and Metabolism University of Oxford Oxford OX37LE UK
Paul and Sheila Wellstone Muscular Dystrophy Center University of Minnesota Minneapolis MN USA
RIKEN BioResource Research Center Tsukuba Ibaraki 305 0074 Japan
School of Medicine Indiana University Indianapolis IN 46202 USA
Texas A and M Institute for Genomic Medicine Texas A and M University College Station TX 77843 USA
The University of Texas MD Anderson Cancer Center Houston TX USA
Transformational Bioinformatics Health and Biosecurity Business Unit CSIRO North Ryde Australia
Transgenic Mouse Core Facility VIB Center for Inflammation Research Ghent Belgium
University of Rochester Medical Center Rochester NY 14642 USA
Zobrazit více v PubMed
Lee D, Threadgill DW. Investigating gene function using mouse models. Curr Opin Genet Dev. 2004;14(3):246–252. doi: 10.1016/j.gde.2004.04.013. PubMed DOI
Dickinson ME, et al. High-throughput discovery of novel developmental phenotypes. Nature. 2016;537(7621):508–514. doi: 10.1038/nature19356. PubMed DOI PMC
Skarnes WC, et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474(7351):337–342. doi: 10.1038/nature10163. PubMed DOI PMC
Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987;51(3):503–512. doi: 10.1016/0092-8674(87)90646-5. PubMed DOI
Austin CP, et al. The knockout mouse project. Nat Genet. 2004;36(9):921–924. doi: 10.1038/ng0904-921. PubMed DOI PMC
Friedel RH, et al. EUCOMM--the European conditional mouse mutagenesis program. Brief Funct Genomic Proteomic. 2007;6(3):180–185. doi: 10.1093/bfgp/elm022. PubMed DOI
Ayadi A, et al. Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm Genome. 2012;23(9–10):600–610. doi: 10.1007/s00335-012-9418-y. PubMed DOI PMC
Shen B, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 2013;23(5):720–723. doi: 10.1038/cr.2013.46. PubMed DOI PMC
Quadros RM, et al. Insertion of sequences at the original provirus integration site of mouse ROSA26 locus using the CRISPR/Cas9 system. FEBS Open Bio. 2015;5:191–197. doi: 10.1016/j.fob.2015.03.003. PubMed DOI PMC
Wang H, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910–918. doi: 10.1016/j.cell.2013.04.025. PubMed DOI PMC
Yang H, et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154(6):1370–1379. doi: 10.1016/j.cell.2013.08.022. PubMed DOI PMC
Blake JA, et al. The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse. Nucleic Acids Res. 2014;42(Database issue):D810–D817. doi: 10.1093/nar/gkt1225. PubMed DOI PMC
Tian David, Wenlock Stephanie, Kabir Mitra, Tzotzos George, Doig Andrew J., Hentges Kathryn E. Identifying mouse developmental essential genes using machine learning. Disease Models & Mechanisms. 2018;11(12):dmm034546. doi: 10.1242/dmm.034546. PubMed DOI PMC
Kaneko T, et al. Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Sci Rep. 2014;4:6382. doi: 10.1038/srep06382. PubMed DOI PMC
Chen S, et al. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem. 2016;291(28):14457–14467. doi: 10.1074/jbc.M116.733154. PubMed DOI PMC
Hashimoto M, Takemoto T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci Rep. 2015;5:11315. doi: 10.1038/srep11315. PubMed DOI PMC
Miyasaka Y, et al. CLICK: one-step generation of conditional knockout mice. BMC Genomics. 2018;19(1):318. doi: 10.1186/s12864-018-4713-y. PubMed DOI PMC
Ohtsuka M, et al. i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol. 2018;19(1):25. doi: 10.1186/s13059-018-1400-x. PubMed DOI PMC
Qin W, et al. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics. 2015;200(2):423–430. doi: 10.1534/genetics.115.176594. PubMed DOI PMC
Teixeira M, et al. Electroporation of mice zygotes with dual guide RNA/Cas9 complexes for simple and efficient cloning-free genome editing. Sci Rep. 2018;8(1):474. doi: 10.1038/s41598-017-18826-5. PubMed DOI PMC
Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. doi: 10.1023/A:1010933404324. DOI
Kueh AJ, et al. An update on using CRISPR/Cas9 in the one-cell stage mouse embryo for generating complex mutant alleles. Cell Death Differ. 2017;24(10):1821–1822. doi: 10.1038/cdd.2017.122. PubMed DOI PMC
Quadros RM, et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol. 2017;18(1):92. doi: 10.1186/s13059-017-1220-4. PubMed DOI PMC
Liu Y, et al. Generation of conditional knockout mice by sequential insertion of two loxP sites in cis using CRISPR/Cas9 and single-stranded DNA oligonucleotides. Methods Mol Biol. 2019;1874:191–210. doi: 10.1007/978-1-4939-8831-0_11. PubMed DOI PMC
Horii T, et al. Efficient generation of conditional knockout mice via sequential introduction of lox sites. Sci Rep. 2017;7(1):7891. doi: 10.1038/s41598-017-08496-8. PubMed DOI PMC
Gurumurthy Channabasavaiah B., Lloyd Kevin C. Kent. Generating mouse models for biomedical research: technological advances. Disease Models & Mechanisms. 2019;12(1):dmm029462. doi: 10.1242/dmm.029462. PubMed DOI PMC
Harms DW, et al. Mouse genome editing using the CRISPR/Cas system. Curr Protoc Hum Genet. 2014;83:15.7.1–15.727. doi: 10.1002/0471142905.hg1507s83. PubMed DOI PMC
Bishop KA, et al. CRISPR/Cas9-mediated insertion of loxP sites in the mouse Dock7 gene provides an effective alternative to use of targeted embryonic stem cells. G3 (Bethesda) 2016;6(7):2051–2061. doi: 10.1534/g3.116.030601. PubMed DOI PMC
Lanza DG, et al. Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol. 2018;16(1):69. doi: 10.1186/s12915-018-0529-0. PubMed DOI PMC
Miano JM, Zhu QM, Lowenstein CJ. A CRISPR path to engineering new genetic mouse models for cardiovascular research. Arterioscler Thromb Vasc Biol. 2016;36(6):1058–1075. doi: 10.1161/ATVBAHA.116.304790. PubMed DOI PMC
Pritchard CEJ, Kroese LJ, Huijbers IJ. Direct generation of conditional alleles using CRISPR/Cas9 in mouse zygotes. Methods Mol Biol. 2017;1642:21–35. doi: 10.1007/978-1-4939-7169-5_2. PubMed DOI
Miura H, et al. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat Protoc. 2018;13(1):195–215. doi: 10.1038/nprot.2017.153. PubMed DOI PMC
Yao X, et al. Tild-CRISPR allows for efficient and precise gene knockin in mouse and human cells. Dev Cell. 2018;45(4):526–536.e5. doi: 10.1016/j.devcel.2018.04.021. PubMed DOI
Haeussler M, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17(1):148. doi: 10.1186/s13059-016-1012-2. PubMed DOI PMC
Stemmer M, et al. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One. 2015;10(4):e0124633. doi: 10.1371/journal.pone.0124633. PubMed DOI PMC
Cong L, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–823. doi: 10.1126/science.1231143. PubMed DOI PMC
Yang H, Wang H, Jaenisch R. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc. 2014;9(8):1956–1968. doi: 10.1038/nprot.2014.134. PubMed DOI
Bassett AR, et al. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 2013;4(1):220–228. doi: 10.1016/j.celrep.2013.06.020. PubMed DOI PMC
Aida T, et al. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome Biol. 2015;16:87. doi: 10.1186/s13059-015-0653-x. PubMed DOI PMC
Pedregosa F, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–2830.
Gurumurthy CB, O’Brien AR, Quadros RM, Adams J, Alcaide P, Ayabe S, Ballard J, Batra SK, Beauchamp M-C, Becker KA, et al. Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Source code. Github. https://gist.github.com/aydun1/932f526867f7f8139b8e8eae7c76e866. Accessed 17 July 2019. PubMed PMC