Conditional knockout mouse
Dotaz
Zobrazit nápovědu
Iron accumulation has been implicated in degenerative retinal diseases. It can catalyze the production of damaging reactive oxygen species. Previous work has demonstrated iron accumulation in multiple retinal diseases, including age-related macular degeneration and diabetic retinopathy. In mice, systemic knockout of the ferroxidases ceruloplasmin (Cp) and hephaestin (Heph), which oxidize iron, results in retinal iron accumulation and iron-induced degeneration. To determine the role of Heph in the retina, we generated a neural retina-specific Heph knockout on a background of systemic Cp knockout. This resulted in elevated neural retina iron. Conversely, retinal ganglion cells had elevated transferrin receptor and decreased ferritin, suggesting diminished iron levels. The retinal degeneration observed in systemic Cp-/-, Heph-/- mice did not occur. These findings indicate that Heph has a local role in regulating neural retina iron homeostasis, but also suggest that preserved Heph function in either the RPE or systemically mitigates the degeneration phenotype observed in the systemic Cp-/-, Heph-/- mice.
- MeSH
- ceruloplasmin genetika metabolismus MeSH
- homeostáza MeSH
- makulární degenerace * genetika MeSH
- membránové proteiny * genetika MeSH
- myši knockoutované MeSH
- myši MeSH
- retina metabolismus MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
We elucidated the role of collecting duct kinin B2 receptor (B2R) in the development of salt-sensitivity and angiotensin II (ANG II)-induced hypertension. To this end, we used a Cre-Lox recombination strategy to generate mice lacking Bdkrb2 gene for B2R in the collecting duct (Hoxb7-Cre(tg/+):Bdkrb2(flox/flox)). In 3 groups of control (Bdkrb2(flox/flox)) and 3 groups of UB(Bdkrb2-/-) mice, systolic blood pressure (SBP) responses to high salt intake (4 or 8% NaCl; HS) were monitored by radiotelemetry in comparison with standard salt diet (0.4% NaCl) prior to and during subcutaneous ANG II infusion (1000 ng/min/kg) via osmotic minipumps. High salt intakes alone for 2 weeks did not alter SBP in either strain. ANG II significantly increased SBP equally in control (121 ± 2 to 156 ± 3 mmHg) and UB(Bdkrb2-/-) mice (120 ± 2 to 153 ± 2 mmHg). The development of ANG II-induced hypertension was exacerbated by 4%HS in both control (125 ± 3 to 164 ± 5 mmHg) and UB(Bdkrb2-/-) mice (124 ± 2 to 162 ± 3 mmHg) during 2 weeks. Interestingly, 8%HS caused a more profound and earlier ANG II-induced hypertension in UB(Bdkrb2-/-) (129 ± 2 to 166 ± 3 mmHg) as compared to control (128 ± 2 to 158 ± 2 mmHg) and it was accompanied by body weight loss and increased mortality. In conclusion, targeted inactivation of B2R in the renal collecting duct does not cause salt-sensitivity; however, collecting duct B2R attenuates the hypertensive actions of ANG II under conditions of very high salt intake.
- MeSH
- angiotensin II metabolismus MeSH
- genový knockout MeSH
- hypertenze * metabolismus patofyziologie MeSH
- krevní tlak * účinky léků fyziologie MeSH
- kuchyňská sůl škodlivé účinky MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- receptor bradykininu B2 genetika MeSH
- sběrací ledvinové kanálky * metabolismus patofyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Genetically altered mice lacking the AT1A angiotensin II (Ang II) receptor were used to examine the role of AT1A receptors in regulating renal hemodynamics, sodium excretion, glomerulotubular balance, and Ang II levels in plasma and kidney during normal and volume-expanded conditions. METHODS: AT1A receptor-deficient mice and their wild-type controls were anesthetized with inactin and ketamine, and were prepared to allow intravenous infusions of solutions and measurements of aortic pressure and urine collections. Inulin and para-aminohippurate (PAH) solutions were infused intravenously for clearance determinations under conditions of euvolemia (2.5 microliter/min infusion of isotonic saline) or volume-expansion conditions (12.5 microliter/min). After three 30-minute urine collections, blood samples were collected, and kidneys were harvested. Plasma and kidney Ang II measurements were made by radioimmunoassay. RESULTS: In the euvolemic state, mean arterial pressures (MAPs) were significantly lower in the AT1A receptor-deficient mice (68 +/- 4 mm Hg) compared with wild-type controls (89 +/- 3 mm Hg). Despite the lower MAP, the glomerular filtration rate (GFR), renal plasma flow (RPF), absolute sodium excretion, and fractional sodium excretion were not significantly different between wild-type and AT1A-/- mice. Volume expansion did not alter MAP in wild-type mice, but significantly increased MAP in the AT1A-/- mice (68 +/- 4 to 83 +/- 5 mm Hg). Similar increases in GFR, RPF, absolute sodium excretion, and fractional sodium excretion in AT1A+/+ and AT1A-/- mice were observed. Glomerulotubular balance was not disrupted by the absence of AT1A receptors. During euvolemia, plasma Ang II concentrations were significantly higher in the AT1A-/- mice compared with wild-type mice (536 +/- 172 vs. 198 +/- 36 fmol/ml). Although volume expansion had no effect on plasma Ang II levels in the AT1A+/+ group, plasma Ang II concentrations were markedly suppressed in the AT1A-/- mice to levels that were not different from those in wild-type mice. In contrast, kidney tissue Ang II contents were reduced in the AT1A-/- mice and were not significantly altered during volume expansion in either the AT1A-/- or the AT1A+/+ mice. CONCLUSIONS: The absence of AT1A receptors does not impair chronic regulation of renal blood flow, GFR, or glomerulotubular balance. The prompt restoration of MAP following volume expansion suggests that low blood pressure in the AT1A receptor-deficient mice is primarily due to reduced effective plasma and extracellular fluid volume. Normalization of plasma Ang II levels with volume expansion demonstrates a dominant effect of extracellular fluid volume and blood pressure over AT1A receptor-mediated short-loop feedback in the regulation of plasma Ang II levels.
- MeSH
- angiotensin II krev MeSH
- extracelulární prostor * fyziologie MeSH
- hodnoty glomerulární filtrace MeSH
- krevní tlak MeSH
- ledviny * fyziologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- receptor angiotensinu typ 1 MeSH
- receptor angiotensinu typ 2 MeSH
- receptory angiotensinu fyziologie genetika MeSH
- renální oběh MeSH
- sodík metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
To test the role of the miR17-92 (miR) cluster in dental bones, we evaluated the incisor tooth phenotype by micro-CT in 5- and 12-week-old conditional knockout (CKO) mice deficient in the miR17-92 cluster in type-I collagen-expressing cells and bone strength by finite element analysis. The incisor teeth of CKO mice showed a 23-30 % reduction in tissue volume and bone volume. Accordingly, the stiffness and failure load of incisor teeth assessed by finite element analysis showed an 18-40 % decrease in CKO compared to wild-type mice. A positive correlation between bone parameters and strength data suggests that the decreased mechanical properties of incisor teeth are due to decreased tissue volume and bone volume. Subsequently, we found that the width of alveolar bone was reduced by 25 % with a 16 % increase in periodontal ligament space, suggesting that the CKO mice are more susceptible to tooth movement. Since alveolar bone is populated primarily by osteoblast lineage cells, it is likely that the reduction in periosteal expansion of alveolar bone in the lower jaw of CKO mice results from decreased periosteal bone formation. Overall, our phenotype analysis demonstrates that the miR17-92 cluster is essential for development and maintenance of tooth strength by regulating its tooth size.
- MeSH
- biomechanika MeSH
- kolagen typu I metabolismus MeSH
- mikro RNA genetika metabolismus MeSH
- myši knockoutované MeSH
- processus alveolaris diagnostické zobrazování patologie MeSH
- rentgenová mikrotomografie MeSH
- řezáky diagnostické zobrazování metabolismus patologie patofyziologie MeSH
- sekvence nukleotidů MeSH
- velikost orgánu MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: Interphotoreceptor retinoid-binding protein's (IRBP) role in eye growth and its involvement in cell homeostasis remain poorly understood. One hypothesis proposes early conditional deletion of the IRBP gene could lead to a myopic response with retinal degeneration, whereas late conditional deletion (after eye size is determined) could cause retinal degeneration without myopia. Here, we sought to understand if prior myopia was required for subsequent retinal degeneration in the absence of IRBP. This study investigates if any cell type or developmental stage is more important in myopia or retinal degeneration. METHODS: IBRPfl/fl mice were bred with 5 Cre-driver lines: HRGP-Cre, Chx10-Cre, Rho-iCre75, HRGP-Cre Rho-iCre75, and Rx-Cre. Mice were analyzed for IRBP gene expression through digital droplet PCR (ddPCR). Young adult (P30) mice were tested for retinal degeneration and morphology using spectral-domain optical coherence tomography (SD-OCT) and hematoxylin and eosin (H&E) staining. Function was analyzed using electroretinograms (ERGs). Eye sizes and axial lengths were compared through external eye measurements and whole eye biometry. RESULTS: Across all outcome measures, when bred to IRBPfl/fl, HRGP-Cre and Chx10-Cre lines showed no differences from IRBPfl/fl alone. With the Rho-iCre75 line, small but significant reductions were seen in retinal thickness with SD-OCT imaging and postmortem H&E staining without increased axial length. Both the HRGP-Cre+Rho-iCre75 and the Rx-Cre lines showed significant decreases in retinal thickness and outer nuclear layer cell counts. Using external eye measurements and SD-OCT imaging, both lines showed an increase in eye size. Finally, function in both lines was roughly halved across scotopic, photopic, and flicker ERGs. CONCLUSIONS: Our studies support hypotheses that for both eye size determination and retinal homeostasis, there are two critical timing windows when IRBP must be expressed in rods or cones to prevent myopia (P7-P12) and degeneration (P21 and later). The rod-specific IRBP knockout (Rho-iCre75) showed significant retinal functional losses without myopia, indicating that the two phenotypes are independent. IRBP is needed for early development of photoreceptors and eye size, whereas Rho-iCre75 IRBPfl/fl knockout results in retinal degeneration without myopia.
- MeSH
- degenerace retiny * genetika metabolismus patofyziologie MeSH
- elektroretinografie * MeSH
- modely nemocí na zvířatech * MeSH
- myopie * genetika metabolismus patofyziologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované * MeSH
- myši MeSH
- oční proteiny * genetika metabolismus MeSH
- optická koherentní tomografie * MeSH
- proteiny vázající retinol * genetika MeSH
- retina metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: CRISPR-Cas9 gene-editing technology has facilitated the generation of knockout mice, providing an alternative to cumbersome and time-consuming traditional embryonic stem cell-based methods. An earlier study reported up to 16% efficiency in generating conditional knockout (cKO or floxed) alleles by microinjection of 2 single guide RNAs (sgRNA) and 2 single-stranded oligonucleotides as donors (referred herein as "two-donor floxing" method). RESULTS: We re-evaluate the two-donor method from a consortium of 20 laboratories across the world. The dataset constitutes 56 genetic loci, 17,887 zygotes, and 1718 live-born mice, of which only 15 (0.87%) mice contain cKO alleles. We subject the dataset to statistical analyses and a machine learning algorithm, which reveals that none of the factors analyzed was predictive for the success of this method. We test some of the newer methods that use one-donor DNA on 18 loci for which the two-donor approach failed to produce cKO alleles. We find that the one-donor methods are 10- to 20-fold more efficient than the two-donor approach. CONCLUSION: We propose that the two-donor method lacks efficiency because it relies on two simultaneous recombination events in cis, an outcome that is dwarfed by pervasive accompanying undesired editing events. The methods that use one-donor DNA are fairly efficient as they rely on only one recombination event, and the probability of correct insertion of the donor cassette without unanticipated mutational events is much higher. Therefore, one-donor methods offer higher efficiencies for the routine generation of cKO animal models.
- MeSH
- alely * MeSH
- blastocysta metabolismus MeSH
- CRISPR-Cas systémy genetika MeSH
- faktorová analýza statistická MeSH
- mikroinjekce MeSH
- myši knockoutované MeSH
- protein 2 vázající methyl-CpG genetika metabolismus MeSH
- protein Cas9 metabolismus MeSH
- regresní analýza MeSH
- reprodukovatelnost výsledků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.
A deficiency in nitric oxide (NO) generation leads to salt-sensitive hypertension, but the role of increased superoxide (O(2)(-)) in such salt sensitivity has not been delineated. We examined the hypothesis that an enhancement in O(2)(-) activity induced by high-salt (HS) intake under deficient NO production contributes to the development of salt-sensitive hypertension. Endothelial NO synthase knockout (eNOS KO; total n = 64) and wild-type (WT; total n = 58) mice were given diets containing either normal (NS; 0.4%) or high-salt (HS; 4%) for 2 wk. During this period, mice were chronically treated with a O(2)(-) scavenger, tempol (400 mg/l), or an inhibitor of NADPH oxidase, apocynin (1 g/l), in drinking water or left untreated (n = 6-8 per group). Blood pressure was measured by radiotelemetry and 24-h urine samples were collected in metabolic cages. Basal mean arterial pressure (MAP) in eNOS KO was higher (125 +/- 4 vs. 106 +/- 3 mmHg) compared with WT. Feeding HS diet did not alter MAP in WT but increased it in eNOS KO to 166 +/- 9 mmHg. Both tempol and apocynin treatment significantly attenuated the MAP response to HS in eNOS KO (134 +/- 3 and 139 +/- 4 mmHg, respectively). Basal urinary 8-isoprostane excretion rates (U(Iso)V), a marker for endogenous O(2)(-) activity, were similar (2.8 +/- 0.2 and 2.4 +/- 0.3 ng/day) in both eNOS KO and WT mice. However, HS increased U(Iso)V more in eNOS KO than in WT (4.6 +/- 0.3 vs. 3.8 +/- 0.2 ng/day); these were significantly attenuated by both tempol and apocynin treatment. These data indicate that an enhancement in O(2)(-) activity contributes substantially to the development of salt-sensitive hypertension under NO-deficient conditions.
- MeSH
- acetofenony farmakologie MeSH
- antioxidancia farmakologie MeSH
- cyklické N-oxidy farmakologie MeSH
- dinoprost analogy a deriváty moč MeSH
- hypertenze * etiologie metabolismus MeSH
- krevní tlak účinky léků MeSH
- kuchyňská sůl farmakologie škodlivé účinky MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- spinové značení MeSH
- superoxidy * metabolismus MeSH
- synthasa oxidu dusnatého, typ III genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Bradykinin can enhance skeletal muscle glucose uptake (GU), and exercise increases both bradykinin production and muscle insulin sensitivity, but bradykinin's relationship with post-exercise insulin action is uncertain. Our primary aim was to determine if the B2 receptor of bradykinin (B2R) is essential for the post-exercise increase in GU by insulin-stimulated mouse soleus muscles. Wildtype (WT) and B2R knockout (B2RKO) mice were sedentary or performed 60 minutes of treadmill exercise. Isolated soleus muscles were incubated with [(3)H]-2-deoxyglucose +/-insulin (60 or 100 microU/ml). GU tended to be greater for WT vs. B2RKO soleus with 60 microU/ml insulin (P=0.166) and was significantly greater for muscles with 100 microU/ml insulin (P<0.05). Both genotypes had significant exercise-induced reductions (P<0.05) in glycemia and insulinemia, and the decrements for glucose (~14 %) and insulin (~55 %) were similar between genotypes. GU tended to be greater for exercised vs. sedentary soleus with 60 microU/ml insulin (P=0.063) and was significantly greater for muscles with 100 microU/ml insulin (P<0.05). There were no significant interactions between genotype and exercise for blood glucose, plasma insulin or GU. These results indicate that the B2R is not essential for the exercise-induced decrements in blood glucose or plasma insulin or for the post-exercise increase in GU by insulin-stimulated mouse soleus muscle.
- MeSH
- genotyp MeSH
- inzulin lidský farmakologie krev metabolismus MeSH
- kondiční příprava zvířat MeSH
- kosterní svaly metabolismus MeSH
- krevní glukóza metabolismus MeSH
- lidé MeSH
- myši knockoutované MeSH
- myši MeSH
- receptor bradykininu B2 genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
Adenosine deaminase acting on RNA 1 (ADAR1) is the principal enzyme for the adenosine-to-inosine RNA editing that prevents the aberrant activation of cytosolic nucleic acid sensors by endogenous double stranded RNAs and the activation of interferon-stimulated genes. In mice, the conditional neural crest deletion of Adar1 reduces the survival of melanocytes and alters the differentiation of Schwann cells that fail to myelinate nerve fibers in the peripheral nervous system. These myelination defects are partially rescued upon the concomitant removal of the Mda5 antiviral dsRNA sensor in vitro, suggesting implication of the Mda5/Mavs pathway and downstream effectors in the genesis of Adar1 mutant phenotypes. By analyzing RNA-Seq data from the sciatic nerves of mouse pups after conditional neural crest deletion of Adar1 (Adar1cKO), we here identified the transcription factors deregulated in Adar1cKO mutants compared to the controls. Through Adar1;Mavs and Adar1cKO;Egr1 double-mutant mouse rescue analyses, we then highlighted that the aberrant activation of the Mavs adapter protein and overexpression of the early growth response 1 (EGR1) transcription factor contribute to the Adar1 deletion associated defects in Schwann cell development in vivo. In silico and in vitro gene regulation studies additionally suggested that EGR1 might mediate this inhibitory effect through the aberrant regulation of EGR2-regulated myelin genes. We thus demonstrate the role of the Mda5/Mavs pathway, but also that of the Schwann cell transcription factors in Adar1-associated peripheral myelination defects.
- MeSH
- adenosindeaminasa * genetika metabolismus MeSH
- buněčná diferenciace * genetika MeSH
- crista neuralis * metabolismus MeSH
- IFIH1 genetika metabolismus MeSH
- myelinová pochva metabolismus MeSH
- myši knockoutované * MeSH
- myši MeSH
- Schwannovy buňky * metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH