• This record comes from PubMed

Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation

. 2019 Sep 02 ; 11 (9) : . [epub] 20190902

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
01M01 Universiti Teknologi Malaysia
AMIC/AM/P02-01 Aerospace Malaysia Innovation Center
CZ.02.1.01/0.0/0.0/16_025/0007293 Ministry of Education, Youth and Sports of the Czech Republic and European Union

The mechanical behavior of graphene/polymer interfaces in the graphene-reinforced epoxy nanocomposite is one of the factors that dictates the deformation and damage response of the nanocomposites. In this study, hybrid molecular dynamic (MD) and finite element (FE) simulations of a graphene/polymer nanocomposite are developed to characterize the elastic-damage behavior of graphene/polymer interfaces under a tensile separation condition. The MD results show that the graphene/epoxy interface behaves in the form of elastic-softening exponential regressive law. The FE results verify the adequacy of the cohesive zone model in accurate prediction of the interface damage behavior. The graphene/epoxy cohesive interface is characterized by normal stiffness, tensile strength, and fracture energy of 5 × 10-8 (aPa·nm-1), 9.75 × 10-10 (nm), 2.1 × 10-10 (N·nm-1) respectively, that is followed by an exponential regressive law with the exponent, α = 7.74. It is shown that the commonly assumed bilinear softening law of the cohesive interface could lead up to 55% error in the predicted separation of the interface.

See more in PubMed

Du Y., Li D., Liu L., Gai G. Recent achievements of self-healing graphene/polymer composites. Polymers. 2018;10:114. doi: 10.3390/polym10020114. PubMed DOI PMC

Meng F., Huang F., Guo Y., Chen J., Chen X., Hui D., He P., Zhou X., Zhou Z. In situ intercalation polymerization approach to polyamide-6/graphite nanoflakes for enhanced thermal conductivity. Compos. Part B Eng. 2017;117:165–173. doi: 10.1016/j.compositesb.2017.02.043. DOI

Meng F., Zhong J., Chen Y., Liu X. The influence of cross-linking reaction on the mechanical and thermal properties of polyarylene ether nitrile. J. Appl. Polym. Sci. 2011;120:1822–1828. doi: 10.1002/app.33399. DOI

Kim H., Abdala A.A., Macosko C.W. Graphene/polymer nanocomposites. Macromolecules. 2010;43:6515–6530. doi: 10.1021/ma100572e. DOI

Stankovich S., Dikin D.A., Dommett G.H.B., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.T., Ruoff R.S. Graphene-based composite materials. Nature. 2006;442:282. doi: 10.1038/nature04969. PubMed DOI

Huang C.-L., Wu H.-H., Jeng Y.-C., Liang W.-Z. Electrospun graphene nanosheet-filled poly(trimethylene terephthalate) composite fibers: Effects of the graphene nanosheet content on morphologies, electrical conductivity, crystallization behavior, and mechanical properties. Polymers. 2019;11:164. doi: 10.3390/polym11010164. PubMed DOI PMC

Kim S., Do I., Drzal L.T. Multifunctional xgnp/lldpe nanocomposites prepared by solution compounding using various screw rotating systems. Macromol. Mater. Eng. 2009;294:196–205. doi: 10.1002/mame.200800319. DOI

Rahimian-Koloor S.M., Moshrefzadeh-Sani H., Hashemianzadeh S.M., Shokrieh M.M. The effective stiffness of an embedded graphene in a polymeric matrix. Curr. Appl. Phys. 2018;18:559–566. doi: 10.1016/j.cap.2018.02.007. DOI

Díez-Pascual M.A., Luceño Sánchez A.J., Peña Capilla R., García Díaz P. Recent developments in graphene/polymer nanocomposites for application in polymer solar cells. Polymers. 2018;10:217. doi: 10.3390/polym10020217. PubMed DOI PMC

Dewapriya M.A.N., Rajapakse R.K.N.D. Development of a homogenous nonlinear spring model characterizing the interfacial adhesion properties of graphene with surface defects. Compos. Part B Eng. 2016;98:339–349. doi: 10.1016/j.compositesb.2016.04.052. DOI

Ahmad A.I., Koziol K.K., Deveci S., Kim H.-K., Kumar V.R. Advancing the use of high-performance graphene-based multimodal polymer nanocomposite at scale. Nanomaterials. 2018;8:947. doi: 10.3390/nano8110947. PubMed DOI PMC

Meng F., Ishida H., Liu X. Introduction of benzoxazine onto the graphene oxide surface by click chemistry and the properties of graphene oxide reinforced polybenzoxazine nanohybrids. RSC Adv. 2014;4:9471–9475. doi: 10.1039/c3ra47345g. DOI

Agnihotri P.K., Kar K.K., Basu S. Cohesive zone model of carbon nanotube-coated carbon fiber/polyester composites. Model. Simul. Mater. Sci. Eng. 2012;20:035014. doi: 10.1088/0965-0393/20/3/035014. DOI

Azoti W.L., Elmarakbi A. Multiscale modelling of graphene platelets-based nanocomposite materials. Compos. Struct. 2017;168:313–321. doi: 10.1016/j.compstruct.2017.02.022. DOI

Dandekar C.R., Shin Y.C. Molecular dynamics based cohesive zone law for describing al–sic interface mechanics. Compos. Part A Appl. Sci. Manuf. 2011;42:355–363. doi: 10.1016/j.compositesa.2010.12.005. DOI

Awasthi A.P., Lagoudas D.C., Hammerand D.C. Modeling of graphene–polymer interfacial mechanical behavior using molecular dynamics. Model. Simul. Mater. Sci. Eng. 2008;17:015002. doi: 10.1088/0965-0393/17/1/015002. DOI

Kolanthai E., Bose S., Bhagyashree K.S., Bhat S.V., Asokan K., Kanjilal D., Chatterjee K. Graphene scavenges free radicals to synergistically enhance structural properties in a gamma-irradiated polyethylene composite through enhanced interfacial interactions. Phys. Chem. Chem. Phys. 2015;17:22900–22910. doi: 10.1039/C5CP02609A. PubMed DOI

Ji X.-Y., Cao Y.-P., Feng X.-Q. Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites. Model. Simul. Mater. Sci. Eng. 2010;18:045005. doi: 10.1088/0965-0393/18/4/045005. DOI

Shiu S.-C., Tsai J.-L. Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos. Part B Eng. 2014;56:691–697. doi: 10.1016/j.compositesb.2013.09.007. DOI

Tsai J.-L., Tu J.-F. Characterizing mechanical properties of graphite using molecular dynamics simulation. Mater. Des. 2010;31:194–199. doi: 10.1016/j.matdes.2009.06.032. DOI

Firouz-Abadi R.D., Moshrefzadeh-Sany H., Mohammadkhani H., Sarmadi M. A modified molecular structural mechanics model for the buckling analysis of single layer graphene sheet. Solid State Commun. 2016;225:12–16. doi: 10.1016/j.ssc.2015.10.009. DOI

Pontefisso A., Mishnaevsky L. Nanomorphology of graphene and cnt reinforced polymer and its effect on damage: Micromechanical numerical study. Compos. Part B Eng. 2016;96:338–349. doi: 10.1016/j.compositesb.2016.04.006. DOI

Liu F., Hu N., Han M., Atobe S., Ning H., Liu Y., Wu L. Investigation of interfacial mechanical properties of graphene-polymer nanocomposites. Mol. Simul. 2016;42:1165–1170. doi: 10.1080/08927022.2016.1154550. DOI

Lin F., Xiang Y., Shen H.-S. Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites – a molecular dynamics simulation. Compos. Part B Eng. 2017;111:261–269. doi: 10.1016/j.compositesb.2016.12.004. DOI

Hosseini Kordkheili S.A., Moshrefzadeh-Sani H. Mechanical properties of double-layered graphene sheets. Comput. Mater. Sci. 2013;69:335–343. doi: 10.1016/j.commatsci.2012.11.027. DOI

Rissanou N.A., Power J.A., Harmandaris V. Structural and dynamical properties of polyethylene/graphene nanocomposites through molecular dynamics simulations. Polymers. 2015;7:390–417. doi: 10.3390/polym7030390. DOI

Tsai J.-L., Tzeng S.-H., Chiu Y.-T. Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos. Part B Eng. 2010;41:106–115. doi: 10.1016/j.compositesb.2009.06.003. DOI

Montazeri A., Rafii-Tabar H. Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites. Phys. Lett. A. 2011;375:4034–4040. doi: 10.1016/j.physleta.2011.08.073. DOI

Taherzadeh M., Baghani M., Baniassadi M., Abrinia K., Safdari M. Modeling and homogenization of shape memory polymer nanocomposites. Compos. Part B Eng. 2016;91:36–43. doi: 10.1016/j.compositesb.2015.12.044. DOI

Dai G., Mishnaevsky L. Graphene reinforced nanocomposites: 3d simulation of damage and fracture. Comput. Mater. Sci. 2014;95:684–692. doi: 10.1016/j.commatsci.2014.08.011. DOI

Rahimian-Koloor S.M., Moshrefzadeh-Sani H., Shokrieh M.M., Hashemianzadeh S.M. On the behavior of isolated and embedded carbon nano-tubes in a polymeric matrix. Mater. Res. Express. 2018;5:025019. doi: 10.1088/2053-1591/aaac4e. DOI

Elices M., Guinea G.V., Gómez J., Planas J. The cohesive zone model: Advantages, limitations and challenges. Eng. Fract. Mech. 2002;69:137–163. doi: 10.1016/S0013-7944(01)00083-2. DOI

Koloor S.S.R., Tamin M.N. Mode-ii interlaminar fracture and crack-jump phenomenon in cfrp composite laminate materials. Compos. Struct. 2018;204:594–606. doi: 10.1016/j.compstruct.2018.07.132. DOI

Guin L., Raphanel J.L., Kysar J.W. Atomistically derived cohesive zone model of intergranular fracture in polycrystalline graphene. J. Appl. Phys. 2016;119:245107. doi: 10.1063/1.4954682. DOI

Dávila C.G., Camanho P.P. Analysis of the Effects of Residual Strains and Defects on Skin/Stiffener Debonding Using Decohesion Elements. NASA Langley Research Center; Hampton, VA, USA: Norfolk, VA, USA: 2003.

Campilho R.D.S.G., Banea M.D., Neto J.A.B.P., da Silva L.F.M. Modelling adhesive joints with cohesive zone models: Effect of the cohesive law shape of the adhesive layer. Int. J. Adhes. Adhes. 2013;44:48–56. doi: 10.1016/j.ijadhadh.2013.02.006. DOI

ASTM . Astm d5528–13, Standard Test Method for Mode i Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International; West Conshohocken, PA, USA: 2013.

ASTM . Astm d7905/d7905m-14, Standard Test Method for Determination of the Mode ii Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International; West Conshohocken, PA, USA: 2014.

Spearot D.E., Jacob K.I., McDowell D.L. Non-local separation constitutive laws for interfaces and their relation to nanoscale simulations. Mech. Mater. 2004;36:825–847. doi: 10.1016/j.mechmat.2003.08.002. DOI

Yamakov V., Saether E., Glaessgen E.H. Multiscale modeling of intergranular fracture in aluminum: Constitutive relation for interface debonding. J. Mater. Sci. 2008;43:7488–7494. doi: 10.1007/s10853-008-2823-7. DOI

Martínez L., Andrade R., Birgin E.G., Martínez J.M. Packmol: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009;30:2157–2164. doi: 10.1002/jcc.21224. PubMed DOI

Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039. DOI

Hadden C.M., Jensen B.D., Bandyopadhyay A., Odegard G.M., Koo A., Liang R. Molecular modeling of epon-862/graphite composites: Interfacial characteristics for multiple crosslink densities. Compos. Sci. Technol. 2013;76:92–99. doi: 10.1016/j.compscitech.2013.01.002. DOI

Aghadavoudi F., Golestanian H., Tadi Beni Y. Investigating the effects of resin crosslinking ratio on mechanical properties of epoxy-based nanocomposites using molecular dynamics. Polym. Compos. 2017;38:E433–E442. doi: 10.1002/pc.24014. DOI

Alian A.R., Meguid S.A. Molecular dynamics simulations of the effect of waviness and agglomeration of cnts on interface strength of thermoset nanocomposites. Phys. Chem. Chem. Phys. 2017;19:4426–4434. doi: 10.1039/C6CP07464B. PubMed DOI

Alian A.R., Kundalwal S.I., Meguid S.A. Multiscale modeling of carbon nanotube epoxy composites. Polymer. 2015;70:149–160. doi: 10.1016/j.polymer.2015.06.004. DOI

Varshney V., Patnaik S.S., Roy A.K., Farmer B.L. A molecular dynamics study of epoxy-based networks: Cross-linking procedure and prediction of molecular and material properties. Macromolecules. 2008;41:6837–6842. doi: 10.1021/ma801153e. DOI

Yarovsky I., Evans E. Computer simulation of structure and properties of crosslinked polymers: Application to epoxy resins. Polymer. 2002;43:963–969. doi: 10.1016/S0032-3861(01)00634-6. DOI

Brown E.N., White S.R., Sottos N.R. Microcapsule induced toughening in a self-healing polymer composite. J. Mater. Sci. 2004;39:1703–1710. doi: 10.1023/B:JMSC.0000016173.73733.dc. DOI

Garcia F.G., Soares B.G., Pita V.J.R.R., Sánchez R., Rieumont J. Mechanical properties of epoxy networks based on dgeba and aliphatic amines. J. Appl. Polym. Sci. 2007;106:2047–2055. doi: 10.1002/app.24895. DOI

Vijayaraghavan V., Wong C.H. Temperature, defect and size effect on the elastic properties of imperfectly straight carbon nanotubes by using molecular dynamics simulation. Comput. Mater. Sci. 2013;71:184–191. doi: 10.1016/j.commatsci.2012.12.025. DOI

Stuart S.J., Tutein A.B., Harrison J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000;112:6472–6486. doi: 10.1063/1.481208. DOI

Sun H., Mumby S.J., Maple J.R., Hagler A.T. An ab initio cff93 all-atom force field for polycarbonates. J. Am. Chem. Soc. 1994;116:2978–2987. doi: 10.1021/ja00086a030. DOI

Lordi V., Yao N. Molecular mechanics of binding in carbon-nanotube–polymer composites. J. Mater. Res. 2000;15:2770–2779. doi: 10.1557/JMR.2000.0396. DOI

Desgranges C., Delhommelle J. Evaluation of the grand-canonical partition function using expanded wang-landau simulations. Iii. Impact of combining rules on mixtures properties. J. Chem. Phys. 2014;140:104109. doi: 10.1063/1.4867498. PubMed DOI

Shenogina N.B., Tsige M., Patnaik S.S., Mukhopadhyay S.M. Molecular modeling of elastic properties of thermosetting polymers using a dynamic deformation approach. Polymer. 2013;54:3370–3376. doi: 10.1016/j.polymer.2013.04.034. DOI

Yang S., Yu S., Cho M. Influence of thrower–stone–wales defects on the interfacial properties of carbon nanotube/polypropylene composites by a molecular dynamics approach. Carbon. 2013;55:133–143. doi: 10.1016/j.carbon.2012.12.019. DOI

Lu Q., Bhattacharya B. The role of atomistic simulations in probing the small-scale aspects of fracture—A case study on a single-walled carbon nanotube. Eng. Fract. Mech. 2005;72:2037–2071. doi: 10.1016/j.engfracmech.2005.01.009. DOI

Martyna G.J., Tobias D.J., Klein M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994;101:4177–4189. doi: 10.1063/1.467468. DOI

Dassault Systemes . Abaqus Documentation. Dassault Systemes; Vélizy-Villacoublay, France: 2009.

Koloor S.S.R., Ayatollahi M., Tamin M. Elastic-damage deformation response of fiber-reinforced polymer composite laminates with lamina interfaces. J. Reinf. Plast. Compos. 2017;36:832–849. doi: 10.1177/0731684417693427. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...