Targeting Human Thrombus by Liposomes Modified with Anti-Fibrin Protein Binders
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
project No. 16-30299A
Ministerstvo Zdravotnictví Ceské Republiky
RVO: 86652036, MZE-RO0518
the Institutional Research Concepts
BIOCEV No. CZ.1.05/1.1.00/02.0109, FIT No. CZ.02.1.01/0.0/0.0/15_003/0000495
The Ministry of Education, Youth and Sports of the Czech Republic
MZE RO0518
Ministerstvo Zemědělství
LQ1605
National Program of Sustainability II (MEYS CR)
CZ.1.05/1.1.00/02.0123
FNUSA-ICRC
CZ.02.1.01/0.0/0.0/16_025/0007397
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31810280
PubMed Central
PMC6955937
DOI
10.3390/pharmaceutics11120642
PII: pharmaceutics11120642
Knihovny.cz E-resources
- Keywords
- ABD scaffold, binding protein, combinatorial library, fibrin, fibrinogen Bβ chain, liposome, metallochelation, thrombus imaging, thrombus targeting,
- Publication type
- Journal Article MeSH
Development of tools for direct thrombus imaging represents a key step for diagnosis and treatment of stroke. Nanoliposomal carriers of contrast agents and thrombolytics can be functionalized to target blood thrombi by small protein binders with selectivity for fibrin domains uniquely formed on insoluble fibrin. We employed a highly complex combinatorial library derived from scaffold of 46 amino acid albumin-binding domain (ABD) of streptococcal protein G, and ribosome display, to identify variants recognizing fibrin cloth in human thrombus. We constructed a recombinant target as a stretch of three identical fibrin fragments of 16 amino acid peptide of the Bβ chain fused to TolA protein. Ribosome display selection followed by large-scale Enzyme-Linked ImmunoSorbent Assay (ELISA) screening provided four protein variants preferentially binding to insoluble form of human fibrin. The most specific binder variant D7 was further modified by C-terminal FLAG/His-Tag or double His-tag for the attachment onto the surface of nanoliposomes via metallochelating bond. D7-His-nanoliposomes were tested using in vitro flow model of coronary artery and their binding to fibrin fibers was demonstrated by confocal and electron microscopy. Thus, we present here the concept of fibrin-targeted binders as a platform for functionalization of nanoliposomes in the development of advanced imaging tools and future theranostics.
See more in PubMed
Skaf E., Stein P.D., Beemath A., Sanchez J., Bustamante M.A., Olson R.E. Venous thromboembolism in patients with ischemic and hemorrhagic stroke. Am. J. Cardiol. 2005;96:1731–1733. doi: 10.1016/j.amjcard.2005.07.097. PubMed DOI
Silvain J., Bellemain A., Ecollan P., Montalescot G., Collet J.P. Myocardial infarction: Role of new antiplatelet agents. Presse Med. 2011;40:615–624. doi: 10.1016/j.lpm.2011.03.002. PubMed DOI
Doherty S. Pulmonary embolism an update. Aust. Fam. Phys. 2017;46:816–820. PubMed
Wendelboe A.M., Raskob G.E. Global burden of thrombosis: Epidemiologic aspects. Circ. Res. 2016;118:1340–1347. doi: 10.1161/CIRCRESAHA.115.306841. PubMed DOI
Heidt T., Ehrismann S., Hovener J.B., Neudorfer I., Hilgendorf I., Reisert M., Hagemeyer C.E., Zirlik A., Reinohl J., Bode C., et al. Molecular imaging of activated platelets allows the detection of pulmonary embolism with magnetic resonance imaging. Sci. Rep. 2016;6:25044. doi: 10.1038/srep25044. PubMed DOI PMC
Von zur Muhlen C., Peter K., Ali Z.A., Schneider J.E., McAteer M.A., Neubauer S., Channon K.M., Bode C., Choudhury R.P. Visualization of activated platelets by targeted magnetic resonance imaging utilizing conformation-specific antibodies against glycoprotein iib/iiia. J. Vasc. Res. 2009;46:6–14. doi: 10.1159/000135660. PubMed DOI PMC
Zhang N., Li C., Zhou D., Ding C., Jin Y., Tian Q., Meng X., Pu K., Zhu Y. Cyclic rgd functionalized liposomes encapsulating urokinase for thrombolysis. Acta Biomater. 2018;70:227–236. doi: 10.1016/j.actbio.2018.01.038. PubMed DOI
Gargan P.E., Gaffney P.J., Pleasants J.R., Ploplis V.A. A monoclonal antibody which recognises an epitopic region unique to the intact fibrin polymeric structure. Fibrinolysis. 1993;7:275–283. doi: 10.1016/0268-9499(93)90136-J. DOI
Soe G., Kohno I., Inuzuka K., Itoh Y., Matsuda M. A monoclonal antibody that recognizes a neo-antigen exposed in the e domain of fibrin monomer complexed with fibrinogen or its derivatives: Its application to the measurement of soluble fibrin in plasma. Blood. 1996;88:2109–2117. doi: 10.1182/blood.V88.6.2109.bloodjournal8862109. PubMed DOI
Wada H., Kobayashi T., Abe Y., Hatada T., Yamada N., Sudo A., Uchida A., Nobori T. Elevated levels of soluble fibrin or d-dimer indicate high risk of thrombosis. J. Thromb. Haemost. 2006;4:1253–1258. doi: 10.1111/j.1538-7836.2006.01942.x. PubMed DOI
Doh H.J., Song K.S., Kang M.S., Kim D.S., Kim K.A., Kang J., Jang Y., Chung K.H. Novel monoclonal antibody that recognizes new neoantigenic determinant of d-dimer. Thromb. Res. 2006;118:353–360. doi: 10.1016/j.thromres.2005.07.024. PubMed DOI
Kolodziej A.F., Nair S.A., Graham P., McMurry T.J., Ladner R.C., Wescott C., Sexton D.J., Caravan P. Fibrin specific peptides derived by phage display: Characterization of peptides and conjugates for imaging. Bioconjugate Chem. 2012;23:548–556. doi: 10.1021/bc200613e. PubMed DOI PMC
Overoye-Chan K., Koerner S., Looby R.J., Kolodziej A.F., Zech S.G., Deng Q., Chasse J.M., McMurry T.J., Caravan P. Ep-2104r: A fibrin-specific gadolinium-based mri contrast agent for detection of thrombus. J. Am. Chem. Soc. 2008;130:6025–6039. doi: 10.1021/ja800834y. PubMed DOI
Vymazal J., Spuentrup E., Cardenas-Molina G., Wiethoff A.J., Hartmann M.G., Caravan P., Parsons E.C., Jr. Thrombus imaging with fibrin-specific gadolinium-based mr contrast agent ep-2104r: Results of a phase ii clinical study of feasibility. Investig. Radiol. 2009;44:697–704. doi: 10.1097/RLI.0b013e3181b092a7. PubMed DOI
Pilch J., Brown D.M., Komatsu M., Jarvinen T.A., Yang M., Peters D., Hoffman R.M., Ruoslahti E. Peptides selected for binding to clotted plasma accumulate in tumor stroma and wounds. Proc. Natl. Acad. Sci. USA. 2006;103:2800–2804. doi: 10.1073/pnas.0511219103. PubMed DOI PMC
Hisada Y., Yasunaga M., Hanaoka S., Saijou S., Sugino T., Tsuji A., Saga T., Tsumoto K., Manabe S., Kuroda J., et al. Discovery of an uncovered region in fibrin clots and its clinical significance. Sci. Rep. 2013;3:2604. doi: 10.1038/srep02604. PubMed DOI PMC
Fuchigami H., Manabe S., Yasunaga M., Matsumura Y. Chemotherapy payload of anti-insoluble fibrin antibody-drug conjugate is released specifically upon binding to fibrin. Sci. Rep. 2018;8:14211. doi: 10.1038/s41598-018-32601-0. PubMed DOI PMC
Obonai T., Fuchigami H., Furuya F., Kozuka N., Yasunaga M., Matsumura Y. Tumour imaging by the detection of fibrin clots in tumour stroma using an anti-fibrin fab fragment. Sci. Rep. 2016;6:23613. doi: 10.1038/srep23613. PubMed DOI PMC
Tiukinhoy-Laing S.D., Buchanan K., Parikh D., Huang S., MacDonald R.C., McPherson D.D., Klegerman M.E. Fibrin targeting of tissue plasminogen activator-loaded echogenic liposomes. J. Drug Target. 2007;15:109–114. doi: 10.1080/10611860601140673. PubMed DOI
Klegerman M.E., Zou Y., McPherson D.D. Fibrin targeting of echogenic liposomes with inactivated tissue plasminogen activator. J. Liposome Res. 2008;18:95–112. doi: 10.1080/08982100802118482. PubMed DOI
Yan J.P., Ko J.H., Qi Y.P. Generation and characterization of a novel single-chain antibody fragment specific against human fibrin clots from phage display antibody library. Thromb. Res. 2004;114:205–211. doi: 10.1016/j.thromres.2004.06.013. PubMed DOI
Putelli A., Kiefer J.D., Zadory M., Matasci M., Neri D. A fibrin-specific monoclonal antibody from a designed phage display library inhibits clot formation and localizes to tumors in vivo. J. Mol. Biol. 2014;426:3606–3618. doi: 10.1016/j.jmb.2014.07.023. PubMed DOI
Koudelka S., Mikulik R., Masek J., Raska M., Turanek Knotigova P., Miller A.D., Turanek J. Liposomal nanocarriers for plasminogen activators. J. Control. Release. 2016;227:45–57. doi: 10.1016/j.jconrel.2016.02.019. PubMed DOI
Nisini R., Poerio N., Mariotti S., De Santis F., Fraziano M. The multirole of liposomes in therapy and prevention of infectious diseases. Front. Immunol. 2018;9:155. doi: 10.3389/fimmu.2018.00155. PubMed DOI PMC
Belfiore L., Saunders D.N., Ranson M., Thurecht K.J., Storm G., Vine K.L. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J. Control. Release. 2018;277:1–13. doi: 10.1016/j.jconrel.2018.02.040. PubMed DOI
Kumar R., Dogra S., Amarji B., Singh B., Kumar S., Sharma S., Vinay K., Mahajan R., Katare O.P. Efficacy of novel topical liposomal formulation of cyclosporine in mild to moderate stable plaque psoriasis: A randomized clinical trial. JAMA Dermatol. 2016;152:807–815. doi: 10.1001/jamadermatol.2016.0859. PubMed DOI
Bartheldyova E., Turanek Knotigova P., Zachova K., Masek J., Kulich P., Effenberg R., Zyka D., Hubatka F., Kotoucek J., Celechovska H., et al. N-oxy lipid-based click chemistry for orthogonal coupling of mannan onto nanoliposomes prepared by microfluidic mixing: Synthesis of lipids, characterisation of mannan-coated nanoliposomes and in vitro stimulation of dendritic cells. Carbohydr. Polym. 2019;207:521–532. doi: 10.1016/j.carbpol.2018.10.121. PubMed DOI
Ramasamy T., Ruttala H.B., Gupta B., Poudel B.K., Choi H.-G., Yong C.S., Kim J.O. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J. Control. Release. 2017;258:226–253. doi: 10.1016/j.jconrel.2017.04.043. PubMed DOI
Bartheldyova E., Effenberg R., Masek J., Prochazka L., Knotigova P.T., Kulich P., Hubatka F., Velinska K., Zelnickova J., Zouharova D., et al. Hyaluronic acid surface modified liposomes prepared via orthogonal aminoxy coupling: Synthesis of nontoxic aminoxylipids based on symmetrically alpha-branched fatty acids, preparation of liposomes by microfluidic mixing, and targeting to cancer cells expressing cd44. Bioconjugate Chem. 2018;29:2343–2356. PubMed
Ahmad J.N., Li J., Biedermannova L., Kuchar M., Sipova H., Semeradtova A., Cerny J., Petrokova H., Mikulecky P., Polinek J., et al. Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of protein g. Proteins. 2012;80:774–789. doi: 10.1002/prot.23234. PubMed DOI
Mareckova L., Petrokova H., Osicka R., Kuchar M., Maly P. Novel binders derived from an albumin-binding domain scaffold targeting human prostate secretory protein 94 (psp94) Protein Cell. 2015;6:774–779. doi: 10.1007/s13238-015-0194-9. PubMed DOI PMC
Hlavnickova M., Kuchar M., Osicka R., Vankova L., Petrokova H., Maly M., Cerny J., Arenberger P., Maly P. Abd-derived protein blockers of human il-17 receptor a as non-igg alternatives for modulation of il-17-dependent pro-inflammatory axis. Int. J. Mol. Sci. 2018;19:3089. doi: 10.3390/ijms19103089. PubMed DOI PMC
Kuchar M., Vankova L., Petrokova H., Cerny J., Osicka R., Pelak O., Sipova H., Schneider B., Homola J., Sebo P., et al. Human interleukin-23 receptor antagonists derived from an albumin-binding domain scaffold inhibit il-23-dependent ex vivo expansion of il-17-producing t-cells. Proteins. 2014;82:975–989. doi: 10.1002/prot.24472. PubMed DOI PMC
Krizova L., Kuchar M., Petrokova H., Osicka R., Hlavnickova M., Pelak O., Cerny J., Kalina T., Maly P. P19-targeted abd-derived protein variants inhibit il-23 binding and exert suppressive control over il-23-stimulated expansion of primary human il-17+ t-cells. Autoimmunity. 2017;50:102–113. doi: 10.1080/08916934.2016.1272598. PubMed DOI
Mašek J., Bartheldyová E., Turánek-Knotigová P., Škrabalová M., Korvasová Z., Plocková J., Koudelka Š., Škodová P., Kulich P., Křupka M., et al. Metallochelating liposomes with associated lipophilised norabumdp as biocompatible platform for construction of vaccines with recombinant his-tagged antigens: Preparation, structural study and immune response towards rhsp90. J. Control. Release. 2011;151:193–201. doi: 10.1016/j.jconrel.2011.01.016. PubMed DOI
Křupka M., Mašek J., Bartheldyová E., Knötigová P.T., Plocková J., Korvasová Z., Škrabalová M., Koudelka Š., Kulich P., Zachová K., et al. Enhancement of immune response towards non-lipidized borrelia burgdorferi recombinant ospc antigen by binding onto the surface of metallochelating nanoliposomes with entrapped lipophilic derivatives of norabumdp. J. Control. Release. 2012;160:374–381. doi: 10.1016/j.jconrel.2012.02.017. PubMed DOI
Zuev Y.F., Litvinov R.I., Sitnitsky A.E., Idiyatullin B.Z., Bakirova D.R., Galanakis D.K., Zhmurov A., Barsegov V., Weisel J.W. Conformational flexibility and self-association of fibrinogen in concentrated solutions. J. Phys. Chem. B. 2017;121:7833–7843. doi: 10.1021/acs.jpcb.7b05654. PubMed DOI
Koo J., Galanakis D., Liu Y., Ramek A., Fields A., Ba X., Simon M., Rafailovich M.H. Control of anti-thrombogenic properties: Surface-induced self-assembly of fibrinogen fibers. Biomacromolecules. 2012;13:1259–1268. doi: 10.1021/bm2015976. PubMed DOI
Lounes K.C., Lefkowitz J.B., Henschen-Edman A.H., Coates A.I., Hantgan R.R., Lord S.T. The impaired polymerization of fibrinogen longmont (bbeta166arg-->cys) is not improved by removal of disulfide-linked dimers from a mixture of dimers and cysteine-linked monomers. Blood. 2001;98:661–666. doi: 10.1182/blood.V98.3.661. PubMed DOI
Schwartz M.L., Pizzo S.V., Hill R.L., McKee P.A. The effect of fibrin-stabilizing factor on the subunit structure of human fibrin. J. Clin. Investig. 1971;50:1506–1513. doi: 10.1172/JCI106636. PubMed DOI PMC
Zadravec P., Mareckova L., Petrokova H., Hodnik V., Perisic Nanut M., Anderluh G., Strukelj B., Maly P., Berlec A. Development of recombinant lactococcus lactis displaying albumin-binding domain variants against shiga toxin 1 b subunit. PLoS ONE. 2016;11:e0162625. doi: 10.1371/journal.pone.0162625. PubMed DOI PMC
Wahl V., Saurugger E., Khinast J., Laggner P. Specific surface, crystallinity, and dissolution of lyophilized fibrinogen. A study by combined small- and wide-angle x-ray scattering (swaxs) Eur. J. Pharm. Biopharm. 2015;89:374–382. doi: 10.1016/j.ejpb.2014.12.018. PubMed DOI
Wahl V., Leitgeb S., Laggner P., Pichler H., Liebminger A., Khinast J. The influence of residual water on the solid-state properties of freeze-dried fibrinogen. Eur. J. Pharm. Biopharm. 2015;91:1–8. doi: 10.1016/j.ejpb.2015.01.006. PubMed DOI
Křupka M., Mašek J., Barkocziová L., Knotigová P.T., Kulich P., Plockova J., Lukac R., Bartheldyová E., Koudelka S., Chaloupková R., et al. The position of his-tag in recombinant ospc and application of various adjuvants affects the intensity and quality of specific antibody response after immunization of experimental mice. PLoS ONE. 2016;11:e0148497. doi: 10.1371/journal.pone.0148497. PubMed DOI PMC
Mašek J., Bartheldyová E., Korvasová Z., Škrabalová M., Koudelka Š., Kulich P., Kratochvílová I., Miller A.D., Ledvina M., Raška M., et al. Immobilization of histidine-tagged proteins on monodisperse metallochelation liposomes: Preparation and study of their structure. Anal. Biochem. 2011;408:95–104. doi: 10.1016/j.ab.2010.08.023. PubMed DOI
Platt V., Huang Z., Cao L., Tiffany M., Riviere K., Szoka F.C., Jr. Influence of multivalent nitrilotriacetic acid lipid-ligand affinity on the circulation half-life in mice of a liposome-attached his6-protein. Bioconjugate Chem. 2010;21:892–902. doi: 10.1021/bc900448f. PubMed DOI PMC