• This record comes from PubMed

Targeting Human Thrombus by Liposomes Modified with Anti-Fibrin Protein Binders

. 2019 Dec 02 ; 11 (12) : . [epub] 20191202

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
project No. 16-30299A Ministerstvo Zdravotnictví Ceské Republiky
RVO: 86652036, MZE-RO0518 the Institutional Research Concepts
BIOCEV No. CZ.1.05/1.1.00/02.0109, FIT No. CZ.02.1.01/0.0/0.0/15_003/0000495 The Ministry of Education, Youth and Sports of the Czech Republic
MZE RO0518 Ministerstvo Zemědělství
LQ1605 National Program of Sustainability II (MEYS CR)
CZ.1.05/1.1.00/02.0123 FNUSA-ICRC
CZ.02.1.01/0.0/0.0/16_025/0007397 Ministerstvo Školství, Mládeže a Tělovýchovy

Links

PubMed 31810280
PubMed Central PMC6955937
DOI 10.3390/pharmaceutics11120642
PII: pharmaceutics11120642
Knihovny.cz E-resources

Development of tools for direct thrombus imaging represents a key step for diagnosis and treatment of stroke. Nanoliposomal carriers of contrast agents and thrombolytics can be functionalized to target blood thrombi by small protein binders with selectivity for fibrin domains uniquely formed on insoluble fibrin. We employed a highly complex combinatorial library derived from scaffold of 46 amino acid albumin-binding domain (ABD) of streptococcal protein G, and ribosome display, to identify variants recognizing fibrin cloth in human thrombus. We constructed a recombinant target as a stretch of three identical fibrin fragments of 16 amino acid peptide of the Bβ chain fused to TolA protein. Ribosome display selection followed by large-scale Enzyme-Linked ImmunoSorbent Assay (ELISA) screening provided four protein variants preferentially binding to insoluble form of human fibrin. The most specific binder variant D7 was further modified by C-terminal FLAG/His-Tag or double His-tag for the attachment onto the surface of nanoliposomes via metallochelating bond. D7-His-nanoliposomes were tested using in vitro flow model of coronary artery and their binding to fibrin fibers was demonstrated by confocal and electron microscopy. Thus, we present here the concept of fibrin-targeted binders as a platform for functionalization of nanoliposomes in the development of advanced imaging tools and future theranostics.

See more in PubMed

Skaf E., Stein P.D., Beemath A., Sanchez J., Bustamante M.A., Olson R.E. Venous thromboembolism in patients with ischemic and hemorrhagic stroke. Am. J. Cardiol. 2005;96:1731–1733. doi: 10.1016/j.amjcard.2005.07.097. PubMed DOI

Silvain J., Bellemain A., Ecollan P., Montalescot G., Collet J.P. Myocardial infarction: Role of new antiplatelet agents. Presse Med. 2011;40:615–624. doi: 10.1016/j.lpm.2011.03.002. PubMed DOI

Doherty S. Pulmonary embolism an update. Aust. Fam. Phys. 2017;46:816–820. PubMed

Wendelboe A.M., Raskob G.E. Global burden of thrombosis: Epidemiologic aspects. Circ. Res. 2016;118:1340–1347. doi: 10.1161/CIRCRESAHA.115.306841. PubMed DOI

Heidt T., Ehrismann S., Hovener J.B., Neudorfer I., Hilgendorf I., Reisert M., Hagemeyer C.E., Zirlik A., Reinohl J., Bode C., et al. Molecular imaging of activated platelets allows the detection of pulmonary embolism with magnetic resonance imaging. Sci. Rep. 2016;6:25044. doi: 10.1038/srep25044. PubMed DOI PMC

Von zur Muhlen C., Peter K., Ali Z.A., Schneider J.E., McAteer M.A., Neubauer S., Channon K.M., Bode C., Choudhury R.P. Visualization of activated platelets by targeted magnetic resonance imaging utilizing conformation-specific antibodies against glycoprotein iib/iiia. J. Vasc. Res. 2009;46:6–14. doi: 10.1159/000135660. PubMed DOI PMC

Zhang N., Li C., Zhou D., Ding C., Jin Y., Tian Q., Meng X., Pu K., Zhu Y. Cyclic rgd functionalized liposomes encapsulating urokinase for thrombolysis. Acta Biomater. 2018;70:227–236. doi: 10.1016/j.actbio.2018.01.038. PubMed DOI

Gargan P.E., Gaffney P.J., Pleasants J.R., Ploplis V.A. A monoclonal antibody which recognises an epitopic region unique to the intact fibrin polymeric structure. Fibrinolysis. 1993;7:275–283. doi: 10.1016/0268-9499(93)90136-J. DOI

Soe G., Kohno I., Inuzuka K., Itoh Y., Matsuda M. A monoclonal antibody that recognizes a neo-antigen exposed in the e domain of fibrin monomer complexed with fibrinogen or its derivatives: Its application to the measurement of soluble fibrin in plasma. Blood. 1996;88:2109–2117. doi: 10.1182/blood.V88.6.2109.bloodjournal8862109. PubMed DOI

Wada H., Kobayashi T., Abe Y., Hatada T., Yamada N., Sudo A., Uchida A., Nobori T. Elevated levels of soluble fibrin or d-dimer indicate high risk of thrombosis. J. Thromb. Haemost. 2006;4:1253–1258. doi: 10.1111/j.1538-7836.2006.01942.x. PubMed DOI

Doh H.J., Song K.S., Kang M.S., Kim D.S., Kim K.A., Kang J., Jang Y., Chung K.H. Novel monoclonal antibody that recognizes new neoantigenic determinant of d-dimer. Thromb. Res. 2006;118:353–360. doi: 10.1016/j.thromres.2005.07.024. PubMed DOI

Kolodziej A.F., Nair S.A., Graham P., McMurry T.J., Ladner R.C., Wescott C., Sexton D.J., Caravan P. Fibrin specific peptides derived by phage display: Characterization of peptides and conjugates for imaging. Bioconjugate Chem. 2012;23:548–556. doi: 10.1021/bc200613e. PubMed DOI PMC

Overoye-Chan K., Koerner S., Looby R.J., Kolodziej A.F., Zech S.G., Deng Q., Chasse J.M., McMurry T.J., Caravan P. Ep-2104r: A fibrin-specific gadolinium-based mri contrast agent for detection of thrombus. J. Am. Chem. Soc. 2008;130:6025–6039. doi: 10.1021/ja800834y. PubMed DOI

Vymazal J., Spuentrup E., Cardenas-Molina G., Wiethoff A.J., Hartmann M.G., Caravan P., Parsons E.C., Jr. Thrombus imaging with fibrin-specific gadolinium-based mr contrast agent ep-2104r: Results of a phase ii clinical study of feasibility. Investig. Radiol. 2009;44:697–704. doi: 10.1097/RLI.0b013e3181b092a7. PubMed DOI

Pilch J., Brown D.M., Komatsu M., Jarvinen T.A., Yang M., Peters D., Hoffman R.M., Ruoslahti E. Peptides selected for binding to clotted plasma accumulate in tumor stroma and wounds. Proc. Natl. Acad. Sci. USA. 2006;103:2800–2804. doi: 10.1073/pnas.0511219103. PubMed DOI PMC

Hisada Y., Yasunaga M., Hanaoka S., Saijou S., Sugino T., Tsuji A., Saga T., Tsumoto K., Manabe S., Kuroda J., et al. Discovery of an uncovered region in fibrin clots and its clinical significance. Sci. Rep. 2013;3:2604. doi: 10.1038/srep02604. PubMed DOI PMC

Fuchigami H., Manabe S., Yasunaga M., Matsumura Y. Chemotherapy payload of anti-insoluble fibrin antibody-drug conjugate is released specifically upon binding to fibrin. Sci. Rep. 2018;8:14211. doi: 10.1038/s41598-018-32601-0. PubMed DOI PMC

Obonai T., Fuchigami H., Furuya F., Kozuka N., Yasunaga M., Matsumura Y. Tumour imaging by the detection of fibrin clots in tumour stroma using an anti-fibrin fab fragment. Sci. Rep. 2016;6:23613. doi: 10.1038/srep23613. PubMed DOI PMC

Tiukinhoy-Laing S.D., Buchanan K., Parikh D., Huang S., MacDonald R.C., McPherson D.D., Klegerman M.E. Fibrin targeting of tissue plasminogen activator-loaded echogenic liposomes. J. Drug Target. 2007;15:109–114. doi: 10.1080/10611860601140673. PubMed DOI

Klegerman M.E., Zou Y., McPherson D.D. Fibrin targeting of echogenic liposomes with inactivated tissue plasminogen activator. J. Liposome Res. 2008;18:95–112. doi: 10.1080/08982100802118482. PubMed DOI

Yan J.P., Ko J.H., Qi Y.P. Generation and characterization of a novel single-chain antibody fragment specific against human fibrin clots from phage display antibody library. Thromb. Res. 2004;114:205–211. doi: 10.1016/j.thromres.2004.06.013. PubMed DOI

Putelli A., Kiefer J.D., Zadory M., Matasci M., Neri D. A fibrin-specific monoclonal antibody from a designed phage display library inhibits clot formation and localizes to tumors in vivo. J. Mol. Biol. 2014;426:3606–3618. doi: 10.1016/j.jmb.2014.07.023. PubMed DOI

Koudelka S., Mikulik R., Masek J., Raska M., Turanek Knotigova P., Miller A.D., Turanek J. Liposomal nanocarriers for plasminogen activators. J. Control. Release. 2016;227:45–57. doi: 10.1016/j.jconrel.2016.02.019. PubMed DOI

Nisini R., Poerio N., Mariotti S., De Santis F., Fraziano M. The multirole of liposomes in therapy and prevention of infectious diseases. Front. Immunol. 2018;9:155. doi: 10.3389/fimmu.2018.00155. PubMed DOI PMC

Belfiore L., Saunders D.N., Ranson M., Thurecht K.J., Storm G., Vine K.L. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J. Control. Release. 2018;277:1–13. doi: 10.1016/j.jconrel.2018.02.040. PubMed DOI

Kumar R., Dogra S., Amarji B., Singh B., Kumar S., Sharma S., Vinay K., Mahajan R., Katare O.P. Efficacy of novel topical liposomal formulation of cyclosporine in mild to moderate stable plaque psoriasis: A randomized clinical trial. JAMA Dermatol. 2016;152:807–815. doi: 10.1001/jamadermatol.2016.0859. PubMed DOI

Bartheldyova E., Turanek Knotigova P., Zachova K., Masek J., Kulich P., Effenberg R., Zyka D., Hubatka F., Kotoucek J., Celechovska H., et al. N-oxy lipid-based click chemistry for orthogonal coupling of mannan onto nanoliposomes prepared by microfluidic mixing: Synthesis of lipids, characterisation of mannan-coated nanoliposomes and in vitro stimulation of dendritic cells. Carbohydr. Polym. 2019;207:521–532. doi: 10.1016/j.carbpol.2018.10.121. PubMed DOI

Ramasamy T., Ruttala H.B., Gupta B., Poudel B.K., Choi H.-G., Yong C.S., Kim J.O. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J. Control. Release. 2017;258:226–253. doi: 10.1016/j.jconrel.2017.04.043. PubMed DOI

Bartheldyova E., Effenberg R., Masek J., Prochazka L., Knotigova P.T., Kulich P., Hubatka F., Velinska K., Zelnickova J., Zouharova D., et al. Hyaluronic acid surface modified liposomes prepared via orthogonal aminoxy coupling: Synthesis of nontoxic aminoxylipids based on symmetrically alpha-branched fatty acids, preparation of liposomes by microfluidic mixing, and targeting to cancer cells expressing cd44. Bioconjugate Chem. 2018;29:2343–2356. PubMed

Ahmad J.N., Li J., Biedermannova L., Kuchar M., Sipova H., Semeradtova A., Cerny J., Petrokova H., Mikulecky P., Polinek J., et al. Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of protein g. Proteins. 2012;80:774–789. doi: 10.1002/prot.23234. PubMed DOI

Mareckova L., Petrokova H., Osicka R., Kuchar M., Maly P. Novel binders derived from an albumin-binding domain scaffold targeting human prostate secretory protein 94 (psp94) Protein Cell. 2015;6:774–779. doi: 10.1007/s13238-015-0194-9. PubMed DOI PMC

Hlavnickova M., Kuchar M., Osicka R., Vankova L., Petrokova H., Maly M., Cerny J., Arenberger P., Maly P. Abd-derived protein blockers of human il-17 receptor a as non-igg alternatives for modulation of il-17-dependent pro-inflammatory axis. Int. J. Mol. Sci. 2018;19:3089. doi: 10.3390/ijms19103089. PubMed DOI PMC

Kuchar M., Vankova L., Petrokova H., Cerny J., Osicka R., Pelak O., Sipova H., Schneider B., Homola J., Sebo P., et al. Human interleukin-23 receptor antagonists derived from an albumin-binding domain scaffold inhibit il-23-dependent ex vivo expansion of il-17-producing t-cells. Proteins. 2014;82:975–989. doi: 10.1002/prot.24472. PubMed DOI PMC

Krizova L., Kuchar M., Petrokova H., Osicka R., Hlavnickova M., Pelak O., Cerny J., Kalina T., Maly P. P19-targeted abd-derived protein variants inhibit il-23 binding and exert suppressive control over il-23-stimulated expansion of primary human il-17+ t-cells. Autoimmunity. 2017;50:102–113. doi: 10.1080/08916934.2016.1272598. PubMed DOI

Mašek J., Bartheldyová E., Turánek-Knotigová P., Škrabalová M., Korvasová Z., Plocková J., Koudelka Š., Škodová P., Kulich P., Křupka M., et al. Metallochelating liposomes with associated lipophilised norabumdp as biocompatible platform for construction of vaccines with recombinant his-tagged antigens: Preparation, structural study and immune response towards rhsp90. J. Control. Release. 2011;151:193–201. doi: 10.1016/j.jconrel.2011.01.016. PubMed DOI

Křupka M., Mašek J., Bartheldyová E., Knötigová P.T., Plocková J., Korvasová Z., Škrabalová M., Koudelka Š., Kulich P., Zachová K., et al. Enhancement of immune response towards non-lipidized borrelia burgdorferi recombinant ospc antigen by binding onto the surface of metallochelating nanoliposomes with entrapped lipophilic derivatives of norabumdp. J. Control. Release. 2012;160:374–381. doi: 10.1016/j.jconrel.2012.02.017. PubMed DOI

Zuev Y.F., Litvinov R.I., Sitnitsky A.E., Idiyatullin B.Z., Bakirova D.R., Galanakis D.K., Zhmurov A., Barsegov V., Weisel J.W. Conformational flexibility and self-association of fibrinogen in concentrated solutions. J. Phys. Chem. B. 2017;121:7833–7843. doi: 10.1021/acs.jpcb.7b05654. PubMed DOI

Koo J., Galanakis D., Liu Y., Ramek A., Fields A., Ba X., Simon M., Rafailovich M.H. Control of anti-thrombogenic properties: Surface-induced self-assembly of fibrinogen fibers. Biomacromolecules. 2012;13:1259–1268. doi: 10.1021/bm2015976. PubMed DOI

Lounes K.C., Lefkowitz J.B., Henschen-Edman A.H., Coates A.I., Hantgan R.R., Lord S.T. The impaired polymerization of fibrinogen longmont (bbeta166arg-->cys) is not improved by removal of disulfide-linked dimers from a mixture of dimers and cysteine-linked monomers. Blood. 2001;98:661–666. doi: 10.1182/blood.V98.3.661. PubMed DOI

Schwartz M.L., Pizzo S.V., Hill R.L., McKee P.A. The effect of fibrin-stabilizing factor on the subunit structure of human fibrin. J. Clin. Investig. 1971;50:1506–1513. doi: 10.1172/JCI106636. PubMed DOI PMC

Zadravec P., Mareckova L., Petrokova H., Hodnik V., Perisic Nanut M., Anderluh G., Strukelj B., Maly P., Berlec A. Development of recombinant lactococcus lactis displaying albumin-binding domain variants against shiga toxin 1 b subunit. PLoS ONE. 2016;11:e0162625. doi: 10.1371/journal.pone.0162625. PubMed DOI PMC

Wahl V., Saurugger E., Khinast J., Laggner P. Specific surface, crystallinity, and dissolution of lyophilized fibrinogen. A study by combined small- and wide-angle x-ray scattering (swaxs) Eur. J. Pharm. Biopharm. 2015;89:374–382. doi: 10.1016/j.ejpb.2014.12.018. PubMed DOI

Wahl V., Leitgeb S., Laggner P., Pichler H., Liebminger A., Khinast J. The influence of residual water on the solid-state properties of freeze-dried fibrinogen. Eur. J. Pharm. Biopharm. 2015;91:1–8. doi: 10.1016/j.ejpb.2015.01.006. PubMed DOI

Křupka M., Mašek J., Barkocziová L., Knotigová P.T., Kulich P., Plockova J., Lukac R., Bartheldyová E., Koudelka S., Chaloupková R., et al. The position of his-tag in recombinant ospc and application of various adjuvants affects the intensity and quality of specific antibody response after immunization of experimental mice. PLoS ONE. 2016;11:e0148497. doi: 10.1371/journal.pone.0148497. PubMed DOI PMC

Mašek J., Bartheldyová E., Korvasová Z., Škrabalová M., Koudelka Š., Kulich P., Kratochvílová I., Miller A.D., Ledvina M., Raška M., et al. Immobilization of histidine-tagged proteins on monodisperse metallochelation liposomes: Preparation and study of their structure. Anal. Biochem. 2011;408:95–104. doi: 10.1016/j.ab.2010.08.023. PubMed DOI

Platt V., Huang Z., Cao L., Tiffany M., Riviere K., Szoka F.C., Jr. Influence of multivalent nitrilotriacetic acid lipid-ligand affinity on the circulation half-life in mice of a liposome-attached his6-protein. Bioconjugate Chem. 2010;21:892–902. doi: 10.1021/bc900448f. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...