Strain Range Dependent Cyclic Hardening of 08Ch18N10T Stainless Steel-Experiments and Simulations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-03282S
Grantová Agentura České Republiky
PubMed
31861206
PubMed Central
PMC6947436
DOI
10.3390/ma12244243
PII: ma12244243
Knihovny.cz E-zdroje
- Klíčová slova
- austenitic steel 08Ch18N10T, cyclic hardening, cyclic plasticity, experiments, finite element method, low-cycle fatigue,
- Publikační typ
- časopisecké články MeSH
This paper describes and presents an experimental program of low-cycle fatigue tests of austenitic stainless steel 08Ch18N10T at room temperature. The low-cycle tests include uniaxial and torsional tests for various specimen geometries and for a vast range of strain amplitude. The experimental data was used to validate the proposed cyclic plasticity model for predicting the strain-range dependent behavior of austenitic steels. The proposed model uses a virtual back-stress variable corresponding to a cyclically stable material under strain control. This internal variable is defined by means of a memory surface introduced in the stress space. The linear isotropic hardening rule is also superposed. A modification is presented that enables the cyclic hardening response of 08Ch18N10T to be simulated correctly under torsional loading conditions. A comparison is made between the real experimental results and the numerical simulation results, demonstrating the robustness of the proposed cyclic plasticity model.
Zobrazit více v PubMed
Halama R., Sedlák J., Šofer M. Phenomenological Modelling of Cyclic Plasticity. In: Miidla P., editor. Numerical Modelling. IntechOpen; Rijeka, Croatia: 2012. pp. 329–354.
Halama R., Fumfera J., Gál P., Kumar T., Makropulos A. Modeling the Strain-Range Dependent Cyclic Hardening of SS304 and 08Ch18N10T Stainless Steel with a Memory Surface. Metals. 2019;9:832. doi: 10.3390/met9080832. PubMed DOI
Jiang Y., Zhang J. Benchmark experiments and characteristic cyclic plastic deformation behavior. Int. J. Plast. 2008;24:1481–1515. doi: 10.1016/j.ijplas.2007.10.003. DOI
Facheris G., Janssens K.G.F., Foletti S. Multiaxial fatigue behavior of AISI 316L subjected to strain-controlled and ratcheting paths. Int. J. Fatigue. 2014;68:195–208. doi: 10.1016/j.ijfatigue.2014.05.003. DOI
Kim C. Nondestructive Evaluation of Strain-Induced Phase Transformation and Damage Accumulation in Austenitic Stainless Steel Subjected to Cyclic Loading. Metals. 2018;8:14. doi: 10.3390/met8010014. DOI
Borodii M., Shukayev S. Additional cyclic strain hardening and its relation to material structure, mechanical characteristics, and lifetime. Int. J. Fatigue. 2007;29:1184–1191. doi: 10.1016/j.ijfatigue.2006.06.014. DOI
Jin D., Tian D.J., Li J.H., Sakane M. Low-cycle fatigue of 316L stainless steel under proportional and nonproportional loadings. Fatigue Fract. Eng. Mater. Struct. 2016;39:850–858. doi: 10.1111/ffe.12399. DOI
Xing R., Dunji Y., Shouwen S., Xu C. Cyclic deformation of 316L stainless steel and constitutive modeling under non-proportional variable loading path. Int. J. Plast. 2019;120:127–146. doi: 10.1016/j.ijplas.2019.04.016. DOI
Srnec Novak J., Benasciutti D., De Bona F., Stanojevic A.S., De Luca A., Raffaglio Y. Estimation of Material Parameters in Nonlinear Hardening Plasticity Models and Strain Life Curves for CuAg Alloy. IOP Conf. Ser. Mater. Sci. Eng. 2016;119:012020. doi: 10.1088/1757-899X/119/1/012020. DOI
Benallal A., Marquis D. Constitutive Equations for Nonproportional Cyclic Elasto-Viscoplasticity. J. Eng. Mater. Technol. 1987;109:326–336. doi: 10.1115/1.3225985. DOI
Tanaka E. A nonproportionality parameter and a cyclic viscoplastic constitutive model taking into account amplitude dependences and memory effects of isotropic hardening. Eur. J. Mech. A/Solids. 1994;13:155–173.
Jiang Y., Sehitoglu H. Modeling of cyclic ratchetting plasticity, part I: Development of constitutive relations. J. Appl. Mech. 1996;63:720–725. doi: 10.1115/1.2823355. DOI
ASTM Standard E606-92 . Standard Practise for Strain-Controlled Fatigue Testing. ASTM International; West Conshohocken, PA, USA: 1998.
Fumfera J., Halama R., Kuželka J., Španiel M. Strain-Range Dependent Cyclic Plasticity Material Model Calibration for the 08Ch18N10T Steel; Proceedings of the 33rd Conference with International Participation on Computational Mechanics; Špičák, Czech Republic. 6–8 November 2017.
Abdel-Karim M., Ohno N. Kinematic hardening model suitable for ratchetting with steady-state. Int. J. Plast. 2000;16:225–240. doi: 10.1016/S0749-6419(99)00052-2. DOI
Peč M., Šebek F., Zapletal J., Petruška J., Hassan T. Automated calibration of advanced cyclic plasticity model parameters with sensitivity analysis for aluminium alloy 2024-T351. Adv. Mech. Eng. 2019;11:1–14. doi: 10.1177/1687814019829982. DOI
Halama R., Pagáč M., Paška Z., Pavlíček P., Chen X. Ratcheting Behaviour of 3D Printed and Conventionally Produced SS316L Material; Proceedings of the ASME 2019 Pressure Vessels & Piping Conference PVP2019; San Antonio, TX, USA. 14–19 July 2019; Paper Number PVP2019-93384.
Special Issue: Mechanical Properties in Progressive Mechanically Processed Metallic Materials