Increasing Veno-Arterial Extracorporeal Membrane Oxygenation Flow Reduces Electrical Impedance of the Lung Regions in Porcine Acute Heart Failure
Language English Country Czech Republic Media print-electronic
Document type Journal Article
PubMed
32584136
PubMed Central
PMC8549886
DOI
10.33549/physiolres.934429
PII: 934429
Knihovny.cz E-resources
- MeSH
- Electric Impedance MeSH
- Hemodynamics MeSH
- Coronary Circulation physiology MeSH
- Extracorporeal Membrane Oxygenation adverse effects methods MeSH
- Disease Models, Animal MeSH
- Lung physiopathology MeSH
- Swine MeSH
- Respiratory Insufficiency etiology pathology MeSH
- Heart Failure metabolism pathology therapy MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Veno-arterial extracorporeal membrane oxygenation (VA ECMO) is a technique used in patients with severe heart failure. The aim of this study was to evaluate its effects on left ventricular afterload and fluid accumulation in lungs with electrical impedance tomography (EIT). In eight swine, incremental increases of extracorporeal blood flow (EBF) were applied before and after the induction of ischemic heart failure. Hemodynamic parameters were continuously recorded and computational analysis of EIT was used to determine lung fluid accumulation. With an increase in EBF from 1 to 4 l/min in acute heart failure the associated increase of arterial pressure (raised by 44%) was accompanied with significant decrease of electrical impedance of lung regions. Increasing EBF in healthy circulation did not cause lung impedance changes. Our findings indicate that in severe heart failure EIT may reflect fluid accumulation in lungs due to increasing EBF.
See more in PubMed
ABRAMS D, COMBES A, BRODIE D. What’s new in extracorporeal membrane oxygenation for cardiac failure and cardiac arrest in adults? Intens Care Med. 2014;40:609–612. doi: 10.1007/s00134-014-3212-0. PubMed DOI
ADLER A, AMYOT R, GUARDO R, BATES JH, BERTHIAUME Y. Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol (1985) 1997;83:1762–1767. doi: 10.1152/jappl.1997.83.5.1762. PubMed DOI
BACHMANN MC, MORAIS C, BUGEDO G, BRUHN A, MORALES A, BORGES JB, COSTA E, RETAMAL J. Electrical impedance tomography in acute respiratory distress syndrome. Crit Care. 2018;22:263. doi: 10.1186/s13054-018-2195-6. PubMed DOI PMC
BECHER T, WENDLER A, EIMER C, WEILER N, FRERICHS I. Changes in electrical impedance tomography findings of ICU patients during rapid infusion of a fluid bolus: a prospective observational study. Am J Respir Crit Care Med. 2019;199:1572–1575. doi: 10.1164/rccm.201812-2252LE. PubMed DOI
BORGES JB, SUAREZ-SIPMANN F, BOHM SH, TUSMAN G, MELO A, MARIPUU E, SANDSTROM M, PARK M, COSTA EL, HEDENSTIERNA G, AMATO M. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol (1985) 2012;112:225–236. doi: 10.1152/japplphysiol.01090.2010. PubMed DOI
BRECHOT N, DEMONDION P, SANTI F, LEBRETON G, PHAM T, DALAKIDIS A, GAMBOTTI L, LUYT CE, SCHMIDT M, HEKIMIAN G, CLUZEL P, CHASTRE J, LEPRINCE P, COMBES A. Intra-aortic balloon pump protects against hydrostatic pulmonary oedema during peripheral venoarterial-extracorporeal membrane oxygenation. Eur Heart J Acute Cardiovasc Care. 2017 doi: 10.1177/2048872617711169. 2048872617711169. PubMed DOI
BURKHOFF D, SAYER G, DOSHI D, URIEL N. Hemodynamics of mechanical circulatory support. J Am Coll Cardiol. 2015;66:2663–2674. doi: 10.1016/j.jacc.2015.10.017. PubMed DOI
CARDINALE L, PRIOLA AM, MORETTI F, VOLPICELLI G. Effectiveness of chest radiography, lung ultrasound and thoracic computed tomography in the diagnosis of congestive heart failure. World J Radiol. 2014;6:230–237. doi: 10.4329/wjr.v6.i6.230. PubMed DOI PMC
DA SILVA RAMOS FJ, HOVNANIAN A, SOUZA R, AZEVEDO LCP, AMATO MBP, COSTA ELV. Estimation of stroke volume and stroke volume changes by electrical impedance tomography. Anesth Analg. 2018;126:102–110. doi: 10.1213/ANE.0000000000002271. PubMed DOI
DONKER DW, BRODIE D, HENRIQUES JPS, BROOME M. Left ventricular unloading during veno-arterial ECMO: a review of percutaneous and surgical unloading interventions. Perfusion. 2019;34:98–105. doi: 10.1177/0267659118794112. PubMed DOI PMC
DOUFLE G, FERGUSON ND. Monitoring during extracorporeal membrane oxygenation. Curr Opin Crit Care. 2016;22:230–238. doi: 10.1097/MCC.0000000000000309. PubMed DOI
FERRARIO D, GRYCHTOL B, ADLER A, SOLA J, BOHM SH, BODENSTEIN M. Toward morphological thoracic EIT: major signal sources correspond to respective organ locations in CT. IEEE Trans Biomed Eng. 2012;59:3000–3008. doi: 10.1109/TBME.2012.2209116. PubMed DOI
FRERICHS I, AMATO MB, van KAAM AH, TINGAY DG, ZHAO Z, GRYCHTOL B, BODENSTEIN M, GAGNON H, BOHM SH, TESCHNER E, STENQVIST O, MAURI T, TORSANI V, CAMPOROTA L, SCHIBLER A, WOLF GK, GOMMERS D, LEONHARDT S, ADLER A TREND study group. Chest electrical impedance tomography examination, data analysis, terminology, clinical use, recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72:83–93. doi: 10.1136/thoraxjnl-2016-208357. PubMed DOI PMC
FUHRMAN P, HERNAN L, ROTTA A. Pathophysiology of cardiac extracorporeal membrane oxygenation. Artificial Organs. 1999;23:966–969. doi: 10.1046/j.1525-1594.1999.06484.x. PubMed DOI
GRAF M, RIEDEL T. Electrical impedance tomography: Amplitudes of cardiac related impedance changes in the lung are highly position dependent. PLoS One. 2017;12:e0188313. doi: 10.1371/journal.pone.0188313. PubMed DOI PMC
HALA P, MLCEK M, OSTADAL P, JANAK D, POPKOVA M, BOUCEK T, LACKO S, KUDLICKA J, NEUZIL P, KITTNAR O. Regional tissue oximetry reflects changes in arterial flow in porcine chronic heart failure treated with venoarterial extracorporeal membrane oxygenation. Physiol Res. 2016;65(Suppl 5):S621–S631. doi: 10.33549/physiolres.933532. PubMed DOI
HALA P, MLCEK M, OSTADAL P, JANAK D, POPKOVA M, BOUCEK T, LACKO S, KUDLICKA J, NEUZIL P, KITTNAR O. Tachycardia-induced cardiomyopathy as a chronic heart failure model in swine. J Vis Exp. 2018 doi: 10.3791/57030. PubMed DOI PMC
HÁLA P, MLČEK M, OŠŤÁDAL P, POPKOVÁ M, JANÁK D, BOUČEK T, LACKO S, KUDLIČKA J, NEUŽIL P, KITTNAR O. Increasing venoarterial extracorporeal membrane oxygenation flow puts higher demands on left ventricular work in a porcine model of chronic heart failure. J Translat Med. 2020;18:75. doi: 10.1186/s12967-020-02250-x. PubMed DOI PMC
ISHIKAWA K, AGUERO J, TILEMANN L, LADAGE D, HAMMOUDI N, KAWASE Y, SANTOS-GALLEGO CG, FISH K, LEVINE RA, HAJJAR RJ. Characterizing preclinical models of ischemic heart failure: differences between LAD and LCx infarctions. Am J Physiol Heart Circ Physiol. 2014;307:H1478–1486. doi: 10.1152/ajpheart.00797.2013. PubMed DOI PMC
JANAK D, HALA P, MLCEK M, POPKOVA M, LACKO S, KUDLICKA J, KITTNAR O. Detection of microembolic signals in the common carotid artery using Doppler sonography in the porcine model of acute heart failure treated by veno-arterial extracorporeal membrane oxygenation. Physiol Res. 2017;66(Suppl 4):S529–S536. doi: 10.33549/physiolres.933806. PubMed DOI
KIM H, PAEK JH, SONG JH, LEE H, JHEE JH, PARK S, YUN HR, KEE YK, HAN SH, YOO TH, KANG SW, KIM S, PARK JT. Permissive fluid volume in adult patients undergoing extracorporeal membrane oxygenation treatment. Crit Care. 2018;22:270. doi: 10.1186/s13054-018-2211-x. PubMed DOI PMC
LACKO S, MLCEK M, HALA P, POPKOVA M, JANAK D, HRACHOVINA M, KUDLICKA J, HRACHOVINA V, OSTADAL P, KITTNAR O. Severe acute heart failure - experimental model with very low mortality. Physiol Res. 2018;67:555–562. doi: 10.33549/physiolres.933774. PubMed DOI
LEQUIER L, LORUSSO R, MacLAREN G, PEEK G, BROHAN TV. ELSO. 2017. Extracorporeal Life Support: The ELSO Red Book.
LI X, SHAO D, WANG G, JIANG T, WU H, GU B, CAO K, ZHANG J, QI L, CHEN Y. Effects of different LAD-blocked sites on the development of acute myocardial infarction and malignant arrhythmia in a swine model. J Thorac Dis. 2014;6:1271–1277. doi: 10.3978/j.issn.2072-1439.2014.07.22. PubMed DOI PMC
MAKDISI G, WANG IW. Extra Corporeal Membrane Oxygenation (ECMO) review of a lifesaving technology. J Thorac Dis. 2015;7:E166–176. doi: 10.3978/j.issn.2072-1439.2015.07.17. PubMed DOI PMC
NOBLE TJ, HARRIS ND, MORICE AH, MILNES P, BROWN BH. Diuretic induced change in lung water assessed by electrical impedance tomography. Physiol Meas. 2000;21:155–163. doi: 10.1088/0967-3334/21/1/319. PubMed DOI
OSTADAL P, BELOHLAVEK J, BALIK M, RIHA H. Manual for use in adult patients. Czech Republic; Maxdorf: 2018. ECMO - Extracorporeal Membrane Oxygenation.
OSTADAL P, MLCEK M, KRUGER A, HALA P, LACKO S, MATES M, VONDRAKOVA D, SVOBODA T, HRACHOVINA M, JANOTKA M, PSOTOVA H, STRUNINA S, KITTNAR O, NEUZIL P. Increasing venoarterial extracorporeal membrane oxygenation flow negatively affects left ventricular performance in a porcine model of cardiogenic shock. J Transl Med. 2015;13:266. doi: 10.1186/s12967-015-0634-6. PubMed DOI PMC
OSTADAL P, MLCEK M, STRUNINA S, HRACHOVINA M, KRUGER A, VONDRAKOVA D, JANOTKA M, HALA P, KITTNAR O, NEUZIL P. Novel porcine model of acute severe cardiogenic shock developed by upper-body hypoxia. Physiol Res. 2016;65:711–715. doi: 10.33549/physiolres.933294. PubMed DOI
REINIUS H, BORGES JB, FREDEN F, JIDEUS L, CAMARGO ED, AMATO MB, HEDENSTIERNA G, LARSSON A, LENNMYR F. Real-time ventilation and perfusion distributions by electrical impedance tomography during one-lung ventilation with capnothorax. Acta Anaesthesiol Scand. 2015;59:354–368. doi: 10.1111/aas.12455. PubMed DOI
RIEDEL T, KYBURZ M, LATZIN P, THAMRIN C, FREY U. Regional and overall ventilation inhomogeneities in preterm and term-born infants. Intensive Care Med. 2009;35:144–151. doi: 10.1007/s00134-008-1299-x. PubMed DOI
SOBOTA V, MÜLLER M, ROUBÍK K. Intravenous administration of normal saline may be misinterpreted as a change of end-expiratory lung volume when using electrical impedance tomography. Scientific Reports. 2019;9:5775. doi: 10.1038/s41598-019-42241-7. PubMed DOI PMC
SOLEIMANI B, PAE WE. Management of left ventricular distension during peripheral extracorporeal membrane oxygenation for cardiogenic shock. Perfusion. 2012;27:326–331. doi: 10.1177/0267659112443722. PubMed DOI
SUZUKI Y, LYONS JK, YEUNG AC, IKENO F. In vivo porcine model of reperfused myocardial infarction: in situ double staining to measure precise infarct area/area at risk. Catheter Cardiovasc Interv. 2008;71:100–107. doi: 10.1002/ccd.21329. PubMed DOI
VONK-NOORDEGRAAF A, 2ND, JANSE A, MARCUS JT, BRONZWAER JG, POSTMUST PE, FAES TJ, De VRIES PM. Determination of stroke volume by means of electrical impedance tomography. Physiol Meas. 2000;21:285–293. doi: 10.1088/0967-3334/21/2/308. PubMed DOI