DUX4r, ZNF384r and PAX5-P80R mutated B-cell precursor acute lymphoblastic leukemia frequently undergo monocytic switch
Language English Country Italy Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32646889
PubMed Central
PMC8327733
DOI
10.3324/haematol.2020.250423
PII: haematol.2020.250423
Knihovny.cz E-resources
- MeSH
- PAX5 Transcription Factor genetics MeSH
- Precursor Cell Lymphoblastic Leukemia-Lymphoma * MeSH
- B-Lymphocytes MeSH
- Immunophenotyping MeSH
- Humans MeSH
- Mutation MeSH
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma * diagnosis genetics MeSH
- Neoplasm, Residual MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- PAX5 Transcription Factor MeSH
- PAX5 protein, human MeSH Browser
Recently, we described B-cell precursor acute lymphoblastic leukemia (BCP-ALL) subtype with early switch to the monocytic lineage and loss of the B-cell immunophenotype, including CD19 expression. Thus far, the genetic background has remained unknown. Among 726 children consecutively diagnosed with BCP-ALL, 8% patients experienced switch detectable by flow cytometry (FC). Using exome and RNA sequencing, switch was found to positively correlate with three different genetic subtypes: PAX5-P80R mutation (5 cases with switch out of 5), rearranged DUX4 (DUX4r; 30 cases of 41) and rearranged ZNF384 (ZNF384r; 4 cases of 10). Expression profiles or phenotypic patterns correlated with genotypes, but within each genotype they could not identify cases who subsequently switched. If switching was not taken into account, the B-cell-oriented FC assessment underestimated the minimal residual disease level. For patients with PAX5-P80R, a discordance between FC-determined and PCR-determined MRD was found on day 15, resulting from a rapid loss of the B-cell phenotype. Discordance on day 33 was observed in all the DUX4r, PAX5-P80R and ZNF384r subtypes. Importantly, despite the substantial phenotypic changes, possibly even challenging the appropriateness of BCP-ALL therapy, the monocytic switch was not associated with a higher incidence of relapse and poorer prognosis in patients undergoing standard ALL treatment.
CLIP Dpt of Paediatric Haematology Oncology Charles University Prague Czech Republic
Comenius University National Institute of Children Diseases Bratislava Slovakia
Department of Internal Medicine 2 University Hospital Schleswig Holstein Kiel Germany
Dpt of Paediatric Haematology Oncology University Hospital Motol Charles University Czech Rep
See more in PubMed
Slamova L, Starkova J, Fronkova E, et al. . CD2-positive B-cell precursor acute lymphoblastic leukemia with an early switch to the monocytic lineage. Leukemia. 2014;28(3):609-620. PubMed
Lilljebjörn H, Fioretos T. New oncogenic subtypes in pediatric B-cell precursor acute lymphoblastic leukemia. Blood. 2017;130(12):1395-1401. PubMed
Passet M, Boissel N, Sigaux F, et al. . PAX5 P80R mutation identifies a novel subtype of B-cell precursor acute lymphoblastic leukemia with favorable outcome. Blood. 2019;133(3):280-284. PubMed
Rayes A, McMasters RL, O’Brien MM. Lineage switch in MLL-rearranged infant leukemia following CD19-directed therapy. Pediatr Blood Cancer. 2016;63(6):1113-1115. PubMed
Zoghbi A, zur Stadt U, Winkler B, Müller I, Escherich G. Lineage switch under blinatumomab treatment of relapsed common acute lymphoblastic leukemia without MLL rearrangement. Pediatr Blood Cancer. 2017;64(11):e26594. PubMed
Wölfl M, Rasche M, Eyrich M, Schmid R, Reinhardt D, Schlegel PG. Spontaneous reversion of a lineage switch following an initial blinatumomab-induced ALL-to-AML switch in MLL -rearranged infant ALL. Blood Adv. 2018;2(12):1382-1385. PubMed PMC
Aldoss I, Song JY. Extramedullary relapse of KMT2A (MLL )-rearranged acute lymphoblastic leukemia with lineage switch following blinatumomab. Blood. 2018;131(22): 2507-2507. PubMed
Haddox CL, Mangaonkar AA, Chen D, et al. . Blinatumomab-induced lineage switch of BALL with t(4:11)(q21;q23) KMT2A/AFF1 into an aggressive AML: pre- and postswitch phenotypic, cytogenetic and molecular analysis. Blood Cancer J. 2017;7(9):e607. PubMed PMC
Jacoby E, Nguyen SM, Fountaine TJ, et al. . CD19 CAR immune pressure induces Bprecursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat. Commun. 2016; 7(1):12320. PubMed PMC
Zaliova M, Hovorkova L, Vaskova M, Hrusak O, Stary J, Zuna J. Slower early response to treatment and distinct expression profile of childhood high hyperdiploid acute lymphoblastic leukaemia with DNA index < 1.16. Genes Chromosom Cancer. 2016;55(9):727-737. PubMed
Dworzak MN, Buldini B, Gaipa G, et al. . AIEOP-BFM Consensus Guidelines 2016 for flow cytometric immunophenotyping of pediatric acute lymphoblastic leukemia. Cytometry B Clin Cytom. 2018;94(1):82-93. PubMed
Mejstrikova E, Volejnikova J, Fronkova E, et al. . Prognosis of children with mixed phenotype acute leukemia treated on the basis of consistent immunophenotypic criteria. Haematologica. 2010;95(6):928-935. PubMed PMC
Vaskova M, Mejstrikova E, Kalina T, et al. . Transfer of genomics information to flow cytometry: expression of CD27 and CD44 discriminates subtypes of acute lymphoblastic leukemia. Leukemia. 2005;19(5):876-878. PubMed
Bene MC, Castoldi G, Knapp W, et al. . Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10): 1783-1786. PubMed
Hrusak O, de Haas V, Stancikova J, et al. . International cooperative study identifies treatment strategy in childhood ambiguous lineage leukemia. Blood. 2018;132(3):264-276. PubMed
Arber DA, Orazi A, Hasserjian R, et al. . The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405. PubMed
Mejstříková E, Froňková E, Kalina T, et al. . Detection of residual B precursor lymphoblastic leukemia by uniform gating flow cytometry. Pediatr Blood Cancer. 2010;54(1): 62-70. PubMed
Theunissen P, Mejstrikova E, Sedek L, et al. . Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 2017;129(3): 347-357. PubMed PMC
Mejstríková E, Hrusak O, Borowitz MJ, et al. . CD19-negative relapse of pediatric B-cell precursor acute lymphoblastic leukemia following blinatumomab treatment. Blood Cancer J. 2017;7(12):659. PubMed PMC
van der Velden VHJ, van Dongen JJM. MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR. Methods Mol Biol. 2009;538:115-150. PubMed
Kotrova M, van der Velden VHJ, van Dongen JJM, et al. . Next-generation sequencing indicates false-positive MRD results and better predicts prognosis after SCT in patients with childhood ALL. Bone Marrow Transplant. 2017;52(7):962-968. PubMed
van der Velden VHJ, Cazzaniga G, Schrauder A, et al. . Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of realtime quantitative PCR data. Leukemia. 2007;21(4):604-611. PubMed
R Core Team. R: a language and environment for statistical computing. R Found Stat Comput. Vienna, Austria. 2014.
Zaliova M, Stuchly J, Winkowska L, et al. . Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort. Haematologica. 2019;104(7):1396-1406. PubMed PMC
Zaliova M, Kotrova M, Bresolin S, et al. . ETV6/RUNX1 -like acute lymphoblastic leukemia: a novel B-cell precursor leukemia subtype associated with the CD27/CD44 immunophenotype. Genes Chromosom Cancer. 2017;56(8):608-616. PubMed
Zaliova M, Potuckova E, Hovorkova L, et al. . ERG deletions in childhood acute lymphoblastic leukemia with DUX4 rearrangements are mostly polyclonal, prognostically relevant and their detection rate strongly depends on screening method sensitivity. Haematologica. 2019;104(7):1407-1416. PubMed PMC
McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation and projection for dimension reduction. ArXiv e-prints 1802.03426. 2018.
Schinnerl D, Mejstrikova E, Schumich A, et al. . CD371 cell surface expression: A unique feature of DUX4 -rearranged acute lymphoblastic leukemia. Haematologica. 2019;104(8):e352-e355. PubMed PMC
Gaipa G, Cazzaniga G, Valsecchi MG, et al. . Time point-dependent concordance of flow cytometry and real-time quantitative polymerase chain reaction for minimal residual disease detection in childhood acute lymphoblastic leukemia. Haematologica. 2012; 97(10):1582-1593. PubMed PMC
Černý J, Stříž I. Adaptive innate immunity or innate adaptive immunity? Clin Sci (Lond). 2019;133(14):1549-1565. PubMed
Pagni F, Fazio G, Zannella S, et al. . The role of PAX5 and C/EBP α/β in atypical non- Langerhans cell histiocytic tumor post acute lymphoblastic leukemia. Leukemia. 2014;28(6):1377-1379. PubMed
Waanders E, Hebeda KM, Kamping EJ, et al. . Independent development of lymphoid and histiocytic malignancies from a shared early precursor. Leukemia. 2016;30(4):955-958. PubMed
Crawford K, Gabuzda D, Pantazopoulos V, et al. . Circulating CD2+ monocytes are dendritic cells. J Immunol. 1999;163(11):5920-5928. PubMed
Creutzig U, Harbott J, Sperling C, et al. . Clinical significance of surface antigen expression in children with acute myeloid leukemia: results of study AML-BFM-87. Blood. 1995;86(8):3097-3108. PubMed
Di Stefano B, Collombet S, Jakobsen JS, et al. . C/EBPα creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 and Brd4. Nat Cell Biol. 2016;18(4):371-381. PubMed
Collombet S, Van Oevelen C, Ortega JLS, et al. . Logical modeling of lymphoid and myeloid cell specification and transdifferentiation. Proc Natl Acad Sci U S A. 2017;114(23):5792-5799. PubMed PMC
Zhang J, McCastlain K, Yoshihara H, et al. . Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet. 2016;48(12):1481-1489. PubMed PMC
Yasuda T, Tsuzuki S, Kawazu M, et al. . Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. Nat Genet. 2016;48(5):569-574. PubMed
Gu Z, Churchman ML, Roberts KG, et al. . PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet. 2019;51(2):296-307. PubMed PMC
Bastian L, Schroeder MP, Eckert C, et al. . PAX5 biallelic genomic alterations define a novel subgroup of B-cell precursor acute lymphoblastic leukemia. Leukemia. 2019;33(8):1895-1909. PubMed
McClellan JS, Dove C, Gentles AJ, Ryan CE, Majeti R. Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages. Proc Natl Acad Sci U S A. 2015;112(13):4074-4079. PubMed PMC
Alexander TB, Gu Z, Iacobucci I, et al. . The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature. 2018;562 (7727):373-379. PubMed PMC
Hirabayashi S, Ohki K, Nakabayashi K, et al. . ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica. 2017;102(1):118-129. PubMed PMC
Griffith M, Griffith OL, Krysiak K, et al. . Comprehensive genomic analysis reveals FLT3 activation and a therapeutic strategy for a patient with relapsed adult B-lymphoblastic leukemia. Exp Hematol. 2016;44(7):603–613. PubMed PMC
Rossi JG, Bernasconi AR, Alonso CN, et al. . Lineage switch in childhood acute leukemia: An unusual event with poor outcome. Am J Hematol. 2012;87(9):890-897. PubMed
Oberley MJ, Gaynon PS, Bhojwani D, et al. . Myeloid lineage switch following chimeric antigen receptor T-cell therapy in a patient with TCF3-ZNF384 fusion-positive B-lymphoblastic leukemia. Pediatr Blood Cancer. 2018;65(9):e27265. PubMed PMC
Grammatico S, Vitale A, La Starza R, et al. . Lineage switch from pro-B acute lymphoid leukemia to acute myeloid leukemia in a case with t(12;17)(p13;q11)/ TAF15–ZNF384 rearrangement. Leuk Lymphoma. 2013;54(8):1802-1805. PubMed
A novel class of ZNF384 aberrations in acute leukemia