Redundant and Diversified Roles Among Selected Arabidopsis thaliana EXO70 Paralogs During Biotic Stress Responses
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
32676093
PubMed Central
PMC7333677
DOI
10.3389/fpls.2020.00960
Knihovny.cz E-resources
- Keywords
- Arabidopsis thaliana, EXO70, biotic stress, exocyst, gene expression, lipid binding, redundancy, root hairs,
- Publication type
- Journal Article MeSH
The heterooctameric vesicle-tethering complex exocyst is important for plant development, growth, and immunity. Multiple paralogs exist for most subunits of this complex; especially the membrane-interacting subunit EXO70 underwent extensive amplification in land plants, suggesting functional specialization. Despite this specialization, most Arabidopsis exo70 mutants are viable and free of developmental defects, probably as a consequence of redundancy among isoforms. Our in silico data-mining and modeling analysis, corroborated by transcriptomic experiments, pinpointed several EXO70 paralogs to be involved in plant biotic interactions. We therefore tested corresponding single and selected double mutant combinations (for paralogs EXO70A1, B1, B2, H1, E1, and F1) in their two biologically distinct responses to Pseudomonas syringae, root hair growth stimulation and general plant susceptibility. A shift in defense responses toward either increased or decreased sensitivity was found in several double mutants compared to wild type plants or corresponding single mutants, strongly indicating both additive and compensatory effects of exo70 mutations. In addition, our experiments confirm the lipid-binding capacity of selected EXO70s, however, without the clear relatedness to predicted C-terminal lipid-binding motifs. Our analysis uncovers that there is less of functional redundancy among isoforms than we could suppose from whole sequence phylogeny and that even paralogs with overlapping expression pattern and similar membrane-binding capacity appear to have exclusive roles in plant development and biotic interactions.
See more in PubMed
Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U. S. A. 98, 1019–1137. 10.1073/pnas.181342398 PubMed DOI PMC
Balla T. (2013). Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol. Rev. 93, 1019–1137. 10.1152/physrev.00028.2012 PubMed DOI PMC
Boyd C., Hughes T., Pypaert M., Novick P. (2004). Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J. Cell Biol. 167, 889–901. 10.1083/jcb.200408124 PubMed DOI PMC
Chong Y. T., Gidda S. K., Sanford C., Parkinson J., Mullen R. T., Goring D. R. (2010). Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytol. 185, 401–419. 10.1111/j.1469-8137.2009.03070.x PubMed DOI
Cole R. A., Synek L., Zarsky V., Fowler J. E. (2005). SEC8, a subunit of the putative arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol. 138, 2005–2018. 10.1104/pp.105.062273 PubMed DOI PMC
Cvrčková F., Grunt M., Bezvoda R., Hála M., Kulich I., Rawat A., et al. (2012). Evolution of the land plant exocyst complexes. Front. Plant Sci. 3, 159. 10.3389/fpls.2012.00159 PubMed DOI PMC
Drdová E. J., Synek L., Pečenková T., Hála M., Kulich I., Fowler J. E., et al. (2013). The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis. Plant J. 73, 709–719 10.1111/tpj.12074 PubMed DOI
Du Y., Mpina M. H., Birch P. R. J., Bouwmeester K., Govers F. (2015). Phytophthora infestans RXLR effector AVR1 interacts with exocyst component Sec5 to manipulate plant immunity. Plant Physiol. 169, 1975–1990. 10.1104/pp.15.01169 PubMed DOI PMC
Du Y., Overdijk E. J. R., Berg J. A., Govers F., Bouwmeester K. (2018). Solanaceous exocyst subunits are involved in immunity to diverse plant pathogens. J. Exp. Bot. 69, 655–666. 10.1093/jxb/erx442 PubMed DOI PMC
Dubuke M. L., Maniatis S., Shaffer S. A., Munson M. (2015). The exocyst subunit Sec6 interacts with assembled exocytic SNARE complexes. J. Biol. Chem. 290, 28245–28256. 10.1074/jbc.M115.673806 PubMed DOI PMC
Dvořáková L., Cvrčková F., Fischer L. (2007). Analysis of the hybrid proline-rich protein families from seven plant species suggests rapid diversification of their sequences and expression patterns. BMC Genomics. 8, 412. 10.1186/1471-2164-8-412 PubMed DOI PMC
Elias M., Drdova E., Ziak D., Bavlnka B., Hala M., Cvrckova F., et al. (2003). The exocyst complex in plants. Cell Biol. Int. 27, 199–201. 10.1016/S1065-6995(02)00349-9 PubMed DOI
Fendrych M., Synek L., Pecenková T., Toupalová H., Cole R., Drdová E., et al. (2010). The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell 22, 3053–3065. 10.1105/tpc.110.074351 PubMed DOI PMC
Fendrych M., Synek L., Pečenková T., Drdová E. J., Sekereš J., de Rycke R., et al. (2013). Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana . Mol. Biol. Cell. 24, 510-520. 10.1091/mbc.E12-06-0492 PubMed DOI PMC
Guo W., Roth D., Walch-Solimena C., Novick P. (1999). The exocyst is an effector for Sec4P, targeting secretory vesicles to sites of exocytosis. EMBO J.f. 18, 1071–1080. 10.1093/emboj/18.4.1071 PubMed DOI PMC
Hála M., Cole R., Synek L., Drdová E., Pečenková T., Nordheim A., et al. (2008). An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell. 20, 1330–1345. 10.1105/tpc.108.059105 PubMed DOI PMC
Hála M., Soukupová H., Synek L., Žárský V. (2010). Arabidopsis RAB geranylgeranyl transferase β-subunit mutant is constitutively photomorphogenic, and has shoot growth and gravitropic defects. Plant J. 62, 615–627. 10.1111/j.1365-313X.2010.04172.x PubMed DOI
Hall T. A. (1999). BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 41, 95–98.
He B., Xi F., Zhang X., Zhang J., Guo W. (2007). Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J. 26, 4053–4065. 10.1038/sj.emboj.7601834 PubMed DOI PMC
Hekkelman M. L., te Beek T. A. H., Pettifer S. R., Thorne D., Attwood T. K., Vriend G. (2010). WIWS: A protein structure bioinformatics web service collection. Nucleic Acids Res. 38, W719–W723. 10.1093/nar/gkq453 PubMed DOI PMC
Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., et al. (2008). Genevestigator V3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinf. 2008, 420747. 10.1155/2008/420747 PubMed DOI PMC
Hsu S. C., TerBush D., Abraham M., Guo W. (2004). The exocyst complex in polarized exocytosis. Int. Rev. Cytol. 21, 537–542. 10.1016/S0074-7696(04)33006-8 PubMed DOI
Ishiga Y., Ishiga T., Uppalapati S. R., Mysore K. S. (2011). Arabidopsis seedling flood-inoculation technique: A rapid and reliable assay for studying plant-bacterial interactions. Plant Methods. 7, 32. 10.1186/1746-4811-7-32 PubMed DOI PMC
Janková Drdová E., Klejchová M., Janko K., Hála M., Soukupová H., Cvrćková F., et al. (2019). Developmental plasticity of Arabidopsis hypocotyl is dependent on exocyst complex function. J. Exp. Bot. 70, 1255–1265. 10.1093/jxb/erz005 PubMed DOI PMC
Jones J. D. G., Dangl J. L. (2006). The plant immune system. Nature. 444, 323–329. 10.1038/nature05286 PubMed DOI
Kalachova T., Janda M., Šašek V., Ortmannová J., Nováková P., Dobrev I. P., et al. (2019). Identification of salicylic acid-independent responses in an Arabidopsis phosphatidylinositol 4-kinase beta double mutant. Ann. Bot. 125, 775–784. 10.1093/aob/mcz112 PubMed DOI PMC
Koumandou V. L., Dacks J. B., Coulson R. M. R., Field M. C. (2007). Control systems for membrane fusion in the ancestral eukaryote; Evolution of tethering complexes and SM proteins. BMC Evol. Biol. 7, 29. 10.1186/1471-2148-7-29 PubMed DOI PMC
Kulich I., Pečenková T., Sekereš J., Smetana O., Fendrych M., Foissner I., et al. (2013). Arabidopsis exocyst subcomplexcontaining subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic. 14, 1155–1165. 10.1111/tra.12101 PubMed DOI
Kulich I., Vojtíková Z., Glanc M., Ortmannová J., Rasmann S., Zárský V. (2015). Cell wall maturation of arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiol. 168, 120–131. 10.1104/pp.15.00112 PubMed DOI PMC
Kulich I., Vojtíková Z., Sabol P., Ortmannová J., Neděla V., Tihlaříková E., et al. (2018). Exocyst subunit EXO70H4 has a specific role in callose synthase secretion and silica accumulation. Plant Physiol. 176, 2040–2051. 10.1104/pp.17.01693 PubMed DOI PMC
Laxalt A. M., Munnik T. (2002). Phospholipid signalling in plant defence. Curr. Opin. Plant Biol. 5, 332–338. 10.1016/s1369-5266(02)00268-6 PubMed DOI
Liu J., Zuo X., Yue P., Guo W. (2007). Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells. Mol. Biol. Cell. 18, 4483–4492. 10.1091/mbc.E07-05-0461 PubMed DOI PMC
Ma J., Chen J., Wang M., Ren Y., Wang S., Lei C., et al. (2018). Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. J. Exp. Bot. 69, 1051–1064. 10.1093/jxb/erx458 PubMed DOI PMC
Markovic V., Cvrckova F., Potocky M., Pejchar P., Kolarova E., Kulich I., et al. (2020). EXO70A2 is critical for the exocyst complex function in Arabidopsis pollen. bioRxiv. 10.1101/831875 PubMed DOI PMC
Martin-Urdiroz M., Deeks M. J., Horton C. G., Dawe H. R., Jourdain I. (2016). The exocyst complex in health and disease. Front. Cell Dev. Biol. 4, 24. 10.3389/fcell.2016.00024 PubMed DOI PMC
Moskalenko S., Henry D. O., Rosse C., Mirey G., Camonis J. H., White M. A. (2002). The exocyst is a Ral effector complex. Nat. Cell Biol. 4, 66–72. 10.1038/ncb728 PubMed DOI
Pečenková T., Janda M., Ortmannová J., Hajná V., Stehlíková Z., Žárský V. (2017. a). Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae. Ann. Bot. 120, 437–446. 10.1093/aob/mcx073 PubMed DOI PMC
Pečenková T., Marković V., Sabol P., Kulich I., Zárský V. (2017. b). Exocyst and autophagy-related membrane trafficking in plants. J. Exp. Bot. 69, 47–57. 10.1093/jxb/erx363 PubMed DOI
Pecenková T., Hála M., Kulich I., Kocourková D., Drdová E., Fendrych M., et al. (2011). The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. J. Exp. Bot. 62, 2107–2116. 10.1093/jxb/erq402 PubMed DOI PMC
Picco A., Irastorza-Azcarate I., Specht T., Böke D., Pazos I., Rivier-Cordey A. S., et al. (2017). The in vivo architecture of the exocyst provides structural basis for exocytosis. Cell. 168, 400–412.e18. 10.1016/j.cell.2017.01.004 PubMed DOI
Platre M. P., Noack L. C., Doumane M., Bayle V., Simon M. L. A., Maneta-Peyret L., et al. (2018). A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes. Dev. Cell. 45, 465–480. 10.1016/j.devcel.2018.04.011 PubMed DOI
Pleskot R., Cwiklik L., Jungwirth P., Žárský V., Potocký M. (2015). Membrane targeting of the yeast exocyst complex. Biochim. Biophys. Acta Biomembr. 1848, 1481–1489. 10.1016/j.bbamem.2015.03.026 PubMed DOI
Rawat A., Brejšková L., Hála M., Cvrčková F., Žárský V. (2017). The Physcomitrella patens exocyst subunit EXO70.3d has distinct roles in growth and development, and is essential for completion of the moss life cycle. New Phytol. 216, 438–454. 10.1111/nph.14548 PubMed DOI
Redditt T. J., Chung E. H., Zand Karimi H., Rodibaugh N., Zhang Y., Trinidad J. C., et al. (2019). AvrRpm1 functions as an ADP-ribosyl transferase to modify NOI-domain containing proteins, including Arabidopsis and soybean RPM1-interacting protein 4. Plant Cell. (Epub ahead of print). 10.1105/tpc.19.00020 PubMed DOI
Rossi G., Lepore D., Kenner L., Czuchra A. B., Plooster M., Frost A., et al. (2020). Exocyst structural changes associated with activation of tethering downstream of Rho/Cdc42 GTPases. J. Cell Biol. 219, e201904161. 10.1083/jcb.201904161 PubMed DOI PMC
Roth D., Guo W., Novick P. (1998). Dominant negative alleles of SEC10 reveal distinct domains involved in secretion and morphogenesis in yeast. Mol. Biol. Cell. 9, 1725–1739. 10.1091/mbc.9.7.1725 PubMed DOI PMC
Sabol P., Kulich I., Žárský V. (2017). RIN4 recruits the exocyst subunit EXO70B1 to the plasma membrane. J. Exp. Bot. 68, 3253–3265. 10.1093/jxb/erx007 PubMed DOI PMC
Schindelin J., Rueden C. T., Hiner M. C., Eliceiri K. W. (2015). The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 82, 518–529. 10.1002/mrd.22489 PubMed DOI PMC
Sekereš J., Pejchar P., Šantrůček J., Vukasinovic N., Žárský V., Potocký M. (2017). Analysis of exocyst subunit EXO70 family reveals distinct membrane polar domains in Tobacco pollen tubes. Plant Physiol. 173, 1659–1675. 10.1104/pp.16.01709 PubMed DOI PMC
Stegmann M., Anderson R. G., Ichimura K., Pecenkova T., Reuter P., Žárský V., et al. (2012). The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP-triggered responses in arabidopsis c w. Plant Cell. 24, 4703–4716. 10.1105/tpc.112.104463 PubMed DOI PMC
Stegmann M., Anderson R. G., Westphal L., Rosahl S., McDowell J. M., Trujillo M. (2014). The exocyst subunit Exo70B1 is involved in the immune response of Arabidopsis thaliana to different pathogens and cell death. Plant Signal. Behav. 8, e27421. 10.4161/psb.27421 PubMed DOI PMC
Synek L., Schlager N., Eliáš M., Quentin M., Hauser M. T., Žárský V. (2006). AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 48, 54–72. 10.1111/j.1365-313X.2006.02854.x PubMed DOI PMC
Synek L., Vukašinović N., Kulich I., Hála M., Aldorfová K., Fendrych M., et al. (2017). EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiol. 174, 223–240. 10.1104/pp.16.01282 PubMed DOI PMC
TerBush D. R., Maurice T., Roth D., Novick P. (1996). The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494. 10.1002/j.1460-2075.1996.tb01039.x PubMed DOI PMC
van Wersch R., Li X., Zhang Y. (2016). Mighty dwarfs: Arabidopsis autoimmune mutants and their usages in genetic dissection of plant immunity. Front. Plant Sci. 7, 1717. 10.3389/fpls.2016.01717 PubMed DOI PMC
Vukašinović N., Oda Y., Pejchar P., Synek L., Pečenková T., Rawat A., et al. (2017). Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis. New Phytol. 213, 1052–1067. 10.1111/nph.14267 PubMed DOI
Wang W., Liu N., Gao C., Cai H., Romeis T., Tang D. (2020). The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytol. 227, 529–544. 10.1111/nph.16515 PubMed DOI
Wang X. (2004). Lipid signaling. Curr. Opin. Plant Biol. 7, 329–336. 10.1016/j.pbi.2004.03.012 PubMed DOI
Webb B., Sali A. (2016). Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinforma. 1654, 39–54. 10.1002/cpbi.3 PubMed DOI PMC
Wiederstein M., Sippl M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35, W407–W410. 10.1093/nar/gkm290 PubMed DOI PMC
Wu H., Turner C., Gardner J., Temple B., Brennwald P. (2010). The Exo70 subunit of the exocyst is an effector for both Cdc42 and Rho3 function in polarized exocytosis. Mol. Biol. Cell. 21, 430–442. 10.1091/mbc.E09-06-0501 PubMed DOI PMC
Yuan J., He S. Y. (1996). The Pseudomonas syringae Hrp regulation and secretion system controls the production and secretion of multiple extracellular proteins. J. Bacteriol. 178, 6399–6402. 10.1128/jb.178.21.6399-6402.1996 PubMed DOI PMC
Yuan S., Chan H. C. S., Filipek S., Vogel H. (2016). PyMOL and inkscape bridge the data and the data visualization. Structure. 24, 2041–2042. 10.1016/j.str.2016.11.012 PubMed DOI
Žárský V., Cvrčková F., Potocký M., Hála M. (2009). Exocytosis and cell polarity in plants - Exocyst and recycling domains: Tansley review. New Phytol. 183, 255–272. 10.1111/j.1469-8137.2009.02880.x PubMed DOI
Žárský V., Kulich I., Fendrych M., Pečenková T. (2013). Exocyst complexes multiple functions in plant cells secretory pathways. Curr. Opin. Plant Biol. 16, 726–733. 10.1016/j.pbi.2013.10.013 PubMed DOI
Žárský V., Sekereš J., Kubátová Z., Pečenková T., Cvrčková F. (2020). Three subfamilies of exocyst EXO70 family subunits in land plants: early divergence and ongoing functional specialization. J. Exp. Bot. 71, 49–62. 10.1093/jxb/erz423 PubMed DOI
Zhang Z., Feechan A., Pedersen C., Newman M. A., Qiu J. L., Olesen K. L., et al. (2007). A SNARE-protein has opposing functions in penetration resistance and defense signalling pathways. Plant J. 49, 302–312. 10.1111/j.1365-313X.2006.02961.x PubMed DOI
Zhao Y., Liu J., Yang C., Capraro B. R., Baumgart T., Bradley R. P., et al. (2013). Exo70 generates membrane curvature for morphogenesis and cell migration. Dev. Cell. 26, 266–278. 10.1016/j.devcel.2013.07.007 PubMed DOI PMC
Zhao T., Rui L., Li J., Nishimura M. T., Vogel J. P., Liu N., et al. (2015). A Truncated NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant. PloS Genet. 11, e1004945. 10.1371/journal.pgen.1004945 PubMed DOI PMC
Small secreted proteins and exocytosis regulators: do they go along?
Functional Specialization within the EXO70 Gene Family in Arabidopsis