In Vitro Cultures of Adipose-Derived Stem Cells: An Overview of Methods, Molecular Analyses, and Clinical Applications
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
32726947
PubMed Central
PMC7463427
DOI
10.3390/cells9081783
PII: cells9081783
Knihovny.cz E-resources
- Keywords
- adipose-derived stem cells, clinical trials, in vitro, molecular studies,
- MeSH
- Cell Differentiation MeSH
- Cell Culture Techniques MeSH
- Humans MeSH
- Models, Animal MeSH
- Adipocytes cytology metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Adipose-derived stem cells (ASCs) exhibiting mesenchymal stem cell (MSC) characteristics, have been extensively studied in recent years. Because they have been shown to differentiate into lineages such as osteogenic, chondrogenic, neurogenic or myogenic, the focus of most of the current research concerns either their potential to replace bone marrow as a readily available and abundant source of MSCs, or to employ them in regenerative and reconstructive medicine. There is close to consensus regarding the methodology used for ASC isolation and culture, whereas a number of molecular analyses implicates them in potential therapies of a number of pathologies. When it comes to clinical application, there is a range of examples of animal trials and clinical studies employing ASCs, further emphasizing the advancement of studies leading to their more widespread use. Nevertheless, in vitro studies will most likely continue to play a significant role in ASC studies, both providing the molecular knowledge of their ex vivo properties and possibly serving as an important step in purification and application of those cells in a clinical setting. Therefore, it is important to consider current methods of ASC isolation, culture, and processing. Furthermore, molecular analyses and cell surface properties of ASCs are essential for animal studies, clinical studies, and therapeutic applications of the MSC properties.
Department of Anatomy Poznan University of Medical Sciences 60 781 Poznan Poland
Department of Histology and Embryology Poznan University of Medical Sciences 60 781 Poznan Poland
Physiology Graduate Program North Carolina State University Raleigh NC 27695 USA
The School of Medicine Medical Sciences and Nutrition Aberdeen University Aberdeen AB25 2ZD UK
See more in PubMed
Frese L., Dijkman P.E., Hoerstrup S.P. Adipose Tissue-Derived Stem Cells in Regenerative Medicine. Transfus. Med. Hemother. 2016;43:268–274. doi: 10.1159/000448180. PubMed DOI PMC
Astori G., Vignati F., Bardelli S., Tubio M., Gola M., Albertini V., Bambi F., Scali G., Castelli D., Rasini V., et al. “In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J. Transl. Med. 2007;5:55. doi: 10.1186/1479-5876-5-55. PubMed DOI PMC
Zuk P.A., Zhu M., Mizuno H., Huang J., Futrell J.W., Katz A.J., Benhaim P., Lorenz H.P., Hedrick M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. In Proceedings of the Tissue Engineering. Tissue Eng. 2001;7:211–228. doi: 10.1089/107632701300062859. PubMed DOI
Qomi R.T., Sheykhhasan M. Adipose-derived stromal cell in regenerative medicine: A review. World J. Stem Cells. 2017;9:107–117. doi: 10.4252/wjsc.v9.i8.107. PubMed DOI PMC
Bora P., Majumdar A.S. Adipose tissue-derived stromal vascular fraction in regenerative medicine: A brief review on biology and translation. Stem Cell Res. Ther. 2017;8:145. doi: 10.1186/s13287-017-0598-y. PubMed DOI PMC
Ma T., Sun J., Zhao Z., Lei W., Chen Y., Wang X., Yang J., Shen Z. A brief review: Adipose-derived stem cells and their therapeutic potential in cardiovascular diseases. Stem Cell Res. Ther. 2017;8:124. doi: 10.1186/s13287-017-0585-3. PubMed DOI PMC
Chun S.Y., Lim J.O., Lee E.H., Han M.H., Ha Y.S., Lee J.N., Kim B.S., Park M.J., Yeo M.G., Jung B., et al. Preparation and Characterization of Human Adipose Tissue-Derived Extracellular Matrix, Growth Factors, and Stem Cells: A Concise Review. Tissue Eng. Regen. Med. 2019;16:385–393. doi: 10.1007/s13770-019-00199-7. PubMed DOI PMC
Aust L., Devlin B., Foster S.J., Halvorsen Y.D.C., Hicok K., du Laney T., Sen A., Willingmyre G.D., Gimble J.M. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6:7–14. doi: 10.1080/14653240310004539. PubMed DOI
Yoshimura K., Shigeura T., Matsumoto D., Sato T., Takaki Y., Aiba-Kojima E., Sato K., Inoue K., Nagase T., Koshima I., et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J. Cell. Physiol. 2006;208:64–76. doi: 10.1002/jcp.20636. PubMed DOI
Boquest A.C., Shahdadfar A., Brinchmann J.E., Collas P. Isolation of stromal stem cells from human adipose tissue. Methods Mol. Biol. 2006;325:35–46. doi: 10.1385/1-59745-005-7:35. PubMed DOI
Illouz Y.G. Body contouring by lipolysis: A 5-year experience with over 3000 cases. Plast. Reconstr. Surg. 1983;72:591–597. doi: 10.1097/00006534-198311000-00001. PubMed DOI
Lalikos J.F., Li Y.Q., Roth T.P., Doyle J.W., Matory W.E., Lawrence W.T. Biochemical assessment of cellular damage after adipocyte harvest. J. Surg. Res. 1997;70:95–100. doi: 10.1006/jsre.1997.5090. PubMed DOI
Bunnell B.A., Flaat M., Gagliardi C., Patel B., Ripoll C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods. 2008;45:115–120. doi: 10.1016/j.ymeth.2008.03.006. PubMed DOI PMC
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI
Bourin P., Bunnell B.A., Casteilla L., Dominici M., Katz A.J., March K.L., Redl H., Rubin J.P., Yoshimura K., Gimble J.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International So. Cytotherapy. 2013;15:641–648. doi: 10.1016/j.jcyt.2013.02.006. PubMed DOI PMC
Nery A.A., Nascimento I.C., Glaser T., Bassaneze V., Krieger J.E., Ulrich H. Human mesenchymal stem cells: From immunophenotyping by flow cytometry to clinical applications. Cytom. Part A. 2013;83:48–61. doi: 10.1002/cyto.a.22205. PubMed DOI
De Girolamo L., Sartori M.F., Albisetti W., Brini A.T. Osteogenic differentiation of human adipose-derived stem cells: Comparison of two different inductive media. J. Tissue Eng. Regen. Med. 2007;1:154–157. doi: 10.1002/term.12. PubMed DOI
Mead T.J. Alizarin Red and Alcian Blue Preparations to Visualize the Skeleton. Volume 2043. Humana; New York, NY, USA: 2020. pp. 207–212. PubMed
Lin Y., Luo E., Chen X., Liu L., Qiao J., Yan Z., Li Z., Tang W., Zheng X., Tian W. Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo. J. Cell. Mol. Med. 2005;9:929–939. doi: 10.1111/j.1582-4934.2005.tb00389.x. PubMed DOI PMC
Ogawa R., Mizuno H., Watanabe A., Migita M., Shimada T., Hyakusoku H. Osteogenic and chondrogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice. Biochem. Biophys. Res. Commun. 2004;313:871–877. doi: 10.1016/j.bbrc.2003.12.017. PubMed DOI
Fink T., Zachar V. Adipogenic differentiation of human mesenchymal stem cells. Methods Mol. Biol. 2011;698:243–251. doi: 10.1007/978-1-60761-999-4_19. PubMed DOI
Legzdina D., Romanauska A., Nikulshin S., Kozlovska T., Berzins U. Characterization of senescence of culture-expanded human adipose-derived mesenchymal stem cells. Int. J. Stem Cells. 2016;9:124–136. doi: 10.15283/ijsc.2016.9.1.124. PubMed DOI PMC
Cowper M., Frazier T., Wu X., Curley J., Ma M., Mohiuddin O., Dietrich M., McCarthy M., Bukowska J., Gimble J. Human Platelet Lysate as a Functional Substitute for Fetal Bovine Serum in the Culture of Human Adipose Derived Stromal/Stem Cells. Cells. 2019;8:724. doi: 10.3390/cells8070724. PubMed DOI PMC
Trojahn Kølle S.F., Oliveri R.S., Glovinski P.V., Kirchhoff M., Mathiasen A.B., Elberg J.J., Andersen P.S., Drzewiecki K.T., Fischer-Nielsen A. Pooled human platelet lysate versus fetal bovine serum-investigating the proliferation rate, chromosome stability and angiogenic potential of human adipose tissue-derived stem cells intended for clinical use. Cytotherapy. 2013;15:1086–1097. doi: 10.1016/j.jcyt.2013.01.217. PubMed DOI
Kakudo N., Morimoto N., Ma Y., Kusumoto K. Differences between the Proliferative Effects of Human Platelet Lysate and Fetal Bovine Serum on Human Adipose-Derived Stem Cells. Cells. 2019;8:1218. doi: 10.3390/cells8101218. PubMed DOI PMC
Lindroos B., Aho K.-L., Kuokkanen H., Räty S., Huhtala H., Lemponen R., Yli-Harja O., Suuronen R., Miettinen S. Differential Gene Expression in Adipose Stem Cells Cultured in Allogeneic Human Serum Versus Fetal Bovine Serum. Tissue Eng. Part A. 2010;16:2281–2294. doi: 10.1089/ten.tea.2009.0621. PubMed DOI PMC
Kim D.S., Lee M.W., Yoo K.H., Lee T.H., Kim H.J., Jang I.K., Chun Y.H., Kim H.J., Park S.J., Lee S.H., et al. Gene expression profiles of human adipose tissue-derived mesenchymal stem cells are modified by cell culture density. PLoS ONE. 2014;9:e83363. doi: 10.1371/journal.pone.0083363. PubMed DOI PMC
Wang W.Z., Fang X.H., Williams S.J., Stephenson L.L., Baynosa R.C., Wong N., Khiabani K.T., Zamboni W.A. The effect of lipoaspirates cryopreservation on adipose-derived stem cells. Aesthetic Surg. J. 2013;33:1046–1055. doi: 10.1177/1090820X13501690. PubMed DOI
Oja S., Kaartinen T., Ahti M., Korhonen M., Laitinen A., Nystedt J. The utilization of freezing steps in mesenchymal stromal cell (MSC) manufacturing: Potential impact on quality and cell functionality attributes. Front. Immunol. 2019;10:1627. doi: 10.3389/fimmu.2019.01627. PubMed DOI PMC
An Y., Zhao J., Nie F., Wu Y., Xia Y., Li D. Parathyroid hormone (PTH) promotes ADSC osteogenesis by regulating SIK2 and Wnt4. Biochem. Biophys. Res. Commun. 2019;516:551–557. doi: 10.1016/j.bbrc.2019.06.084. PubMed DOI
Lough D.M., Chambers C., Germann G., Bueno R., Reichensperger J., Swanson E., Dyer M., Cox L., Harrison C., Neumeister M.W. Regulation of ADSC Osteoinductive Potential Using Notch Pathway Inhibition and Gene Rescue: A Potential On/Off Switch for Clinical Applications in Bone Formation and Reconstructive Efforts. Plast. Reconstr. Surg. 2016;138:642–652. doi: 10.1097/PRS.0000000000002551. PubMed DOI
Gabbay J.S., Heller J.B., Mitchell S.A., Zuk P.A., Spoon D.B., Wasson K.L., Jarrahy R., Benhaim P., Bradley J.P. Osteogenic Potentiation of Human Adipose???Derived Stem Cells in a 3-Dimensional Matrix. Ann. Plast. Surg. 2006;57:89–93. doi: 10.1097/01.sap.0000205378.89052.d3. PubMed DOI
Anderson D.G., Levenberg S., Langer R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat. Biotechnol. 2004;22:863–866. doi: 10.1038/nbt981. PubMed DOI
Webb K., Li W., Hitchcock R.W., Smeal R.M., Gray S.D., Tresco P.A. Comparison of human fibroblast ECM-related gene expression on elastic three-dimensional substrates relative to two-dimensional films of the same material. Biomaterials. 2003;24:4681–4690. doi: 10.1016/S0142-9612(03)00368-5. PubMed DOI
Nii M., Lai J.H., Keeney M., Han L.H., Behn A., Imanbayev G., Yang F. The effects of interactive mechanical and biochemical niche signaling on osteogenic differentiation of adipose-derived stem cells using combinatorial hydrogels. Acta Biomater. 2013;9:5475–5483. doi: 10.1016/j.actbio.2012.11.002. PubMed DOI
Yang S., Guo S., Tong S., Sun X. Promoting osteogenic differentiation of human adipose-derived stem cells by altering the expression of exosomal miRNA. Stem Cells Int. 2019;2019:1–15. doi: 10.1155/2019/1351860. PubMed DOI PMC
Chen J., Deng S., Zhang S., Chen Z., Wu S., Cai X., Yang X., Guo B., Peng Q. The Role of miRNAs in the Differentiation of Adipose-Derived Stem Cells. Curr. Stem Cell Res. Ther. 2014;9:268–279. doi: 10.2174/1574888X09666140213203309. PubMed DOI
Jia B., Zhang Z., Qiu X., Chu H., Sun X., Zheng X., Zhao J., Li Q. Analysis of the miRNA and mRNA involved in osteogenesis of adipose-derived mesenchymal stem cells. Exp. Ther. Med. 2018;16:1111–1120. doi: 10.3892/etm.2018.6303. PubMed DOI PMC
Cardozo A.J., Gómez D.E., Argibay P.F. Neurogenic differentiation of human adipose-derived stem cells: Relevance of different signaling molecules, transcription factors, and key marker genes. Gene. 2012;511:427–436. doi: 10.1016/j.gene.2012.09.038. PubMed DOI
Kingham P.J., Kalbermatten D.F., Mahay D., Armstrong S.J., Wiberg M., Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp. Neurol. 2007;207:267–274. doi: 10.1016/j.expneurol.2007.06.029. PubMed DOI
Kingham P.J., Kolar M.K., Novikova L.N., Novikov L.N., Wiberg M. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev. 2014;23:741–754. doi: 10.1089/scd.2013.0396. PubMed DOI
Liu G., Pan Y., Liu Y., Hu J., Zhang X., Zhang D., Wang Y., Feng Y., Yu J., Cheng Y. Ghrelin promotes neural differentiation of adipose tissue-derived mesenchymal stem cell via AKT/mTOR and β-catenin signaling pathways. Kaohsiung J. Med. Sci. 2020;36:405–416. doi: 10.1002/kjm2.12188. PubMed DOI PMC
Di Summa P.G., Kalbermatten D.F., Raffoul W., Terenghi G., Kingham P.J. Extracellular matrix molecules enhance the neurotrophic effect of schwann cell-like differentiated adipose-derived stem cells and increase cell survival under stress conditions. Tissue Eng. Part A. 2013;19:368–379. doi: 10.1089/ten.tea.2012.0124. PubMed DOI PMC
Wong C.W., Xu Y., Liu X., Xu S., Zhang Y., Zhu Z., He B. Effect of Induction Time on the Proliferation and Differentiation of Induced Schwann-Like Cells from Adipose-Derived Stem Cells. Cell. Mol. Neurobiol. 2020:1–12. doi: 10.1007/s10571-020-00795-5. PubMed DOI PMC
DeLany J.P., Floyd Z.E., Zvonic S., Smith A., Gravois A., Reiners E., Wu X., Kilroy G., Lefevre M., Gimble J.M. Proteomic analysis of primary cultures of human adipose-derived stem cells. Mol. Cell. Proteomics. 2005;4:731–740. doi: 10.1074/mcp.M400198-MCP200. PubMed DOI
Zvonic S., Lefevre M., Kilroy G., Floyd Z.E., DeLany J.P., Kheterpal I., Gravois A., Dow R., White A., Wu X., et al. Secretome of primary cultures of human adipose-derived stem cells: Modulation of serpins by adipogenesis. Mol. Cell. Proteomics. 2007;6:18–28. doi: 10.1074/mcp.M600217-MCP200. PubMed DOI
Pan Z., Zhou Z., Zhang H., Zhao H., Song P., Wang D., Yin J., Zhao W., Xie Z., Wang F., et al. CD90 serves as differential modulator of subcutaneous and visceral adipose-derived stem cells by regulating AKT activation that influences adipose tissue and metabolic homeostasis. Stem Cell Res. Ther. 2019;10:355. doi: 10.1186/s13287-019-1459-7. PubMed DOI PMC
Rehman J., Traktuev D., Li J., Merfeld-Clauss S., Temm-Grove C.J., Bovenkerk J.E., Pell C.L., Johnstone B.H., Considine R.V., March K.L. Secretion of Angiogenic and Antiapoptotic Factors by Human Adipose Stromal Cells. Circulation. 2004;109:1292–1298. doi: 10.1161/01.CIR.0000121425.42966.F1. PubMed DOI
Kakkar A., Nandy S.B., Gupta S., Bharagava B., Airan B., Mohanty S. Adipose tissue derived mesenchymal stem cells are better respondents to TGFβ1 for in vitro generation of cardiomyocyte-like cells. Mol. Cell. Biochem. 2019;460:53–66. doi: 10.1007/s11010-019-03570-3. PubMed DOI
Gardin C., Bressan E., Ferroni L., Nalesso E., Vindigni V., Stellini E., Pinton P., Sivolella S., Zavan B. In vitro concurrent endothelial and osteogenic commitment of adipose-derived stem cells and their genomical analyses through comparative genomic hybridization array: Novel strategies to increase the successful engraftment of tissue-engineered bone grafts. Stem Cells Dev. 2012;21:767–777. doi: 10.1089/scd.2011.0147. PubMed DOI
Tang H., Chu Y., Huang Z., Cai J., Wang Z. The metastatic phenotype shift toward myofibroblast of adipose-derived mesenchymal stem cells promotes ovarian cancer progression. Carcinogenesis. 2019;44:182–193. doi: 10.1093/carcin/bgz083. PubMed DOI
Chu Y.J., You M., Zhang J.J., Gao G.Q., Han R.D., Luo W.Q., Liu T.T., Zuo J.X., Wang F.L. Adipose-Derived Mesenchymal Stem Cells Enhance Ovarian Cancer Growth and Metastasis by Increasing Thymosin Beta 4X-Linked Expression. Stem Cells Int. 2019;2019:1–9. doi: 10.1155/2019/9037197. PubMed DOI PMC
Levi B., Glotzbach J.P., Sorkin M., Hyun J., Januszyk M., Wan D.C., Li S., Nelson E.R., Longaker M.T., Gurtner G.C. Molecular analysis and differentiation capacity of adipose-derived stem cells from lymphedema tissue. Plast. Reconstr. Surg. 2013;132:580–589. doi: 10.1097/PRS.0b013e31829ace13. PubMed DOI PMC
Satish L., Krill-Burger J.M., Gallo P.H., Des Etages S., Liu F., Philips B.J., Ravuri S., Marra K.G., LaFramboise W.A., Kathju S., et al. Expression analysis of human adipose-derived stem cells during in vitro differentiation to an adipocyte lineage. BMC Med. Genom. 2015;8:41. doi: 10.1186/s12920-015-0119-8. PubMed DOI PMC
Yamamoto T., Furuhashi M., Sugaya T., Oikawa T., Matsumoto M., Funahashi Y., Matsukawa Y., Gotoh M., Miura T. Transcriptome and metabolome analyses in exogenous fabp4- and fabp5-treated adipose-derived stem cells. PLoS ONE. 2016;11:e0167825. doi: 10.1371/journal.pone.0167825. PubMed DOI PMC
Sayegh S., El Atat O., Diallo K., Rauwel B., Degboé Y., Cavaignac E., Constantin A., Cantagrel A., Trak-Smayra V., Alaaeddine N., et al. Rheumatoid Synovial Fluids Regulate the Immunomodulatory Potential of Adipose-Derived Mesenchymal Stem Cells Through a TNF/NF-κB-Dependent Mechanism. Front. Immunol. 2019;10:1482. doi: 10.3389/fimmu.2019.01482. PubMed DOI PMC
Efimenko A.Y., Kalinina N.I., Klink G.V., Gluhanyuk E.V., Makarevich P.I., Parfyonova Y.V., Tkachuk V.A. 587. MiRNA-92a Is Involved in the Regulation of Adipose-Derived Stromal Cell (ADSC) Angiogenic Properties. Mol. Ther. 2015;23:S233–S234. doi: 10.1016/S1525-0016(16)34196-X. DOI
Xing X., Han S., Cheng G., Ni Y., Li Z., Li Z. Proteomic Analysis of Exosomes from Adipose-Derived Mesenchymal Stem Cells: A Novel Therapeutic Strategy for Tissue Injury. Biomed Res. Int. 2020;2020:1–10. doi: 10.1155/2020/6094562. PubMed DOI PMC
Kim W.S., Park B.S., Kim H.K., Park J.S., Kim K.J., Choi J.S., Chung S.J., Kim D.D., Sung J.H. Evidence supporting antioxidant action of adipose-derived stem cells: Protection of human dermal fibroblasts from oxidative stress. J. Dermatol. Sci. 2008;49:133–142. doi: 10.1016/j.jdermsci.2007.08.004. PubMed DOI
Chen J., Li Z., Huang Z., Liang L., Chen M. Chyle Fat–Derived Stem Cells Conditioned Medium Inhibits Hypertrophic Scar Fibroblast Activity. Ann. Plast. Surg. 2019;83:271–277. doi: 10.1097/SAP.0000000000001932. PubMed DOI
Hartwig S., De Filippo E., Göddeke S., Knebel B., Kotzka J., Al-Hasani H., Roden M., Lehr S., Sell H. Exosomal proteins constitute an essential part of the human adipose tissue secretome. Biochim. Biophys. Acta-Proteins Proteom. 2019;1867:1–12. doi: 10.1016/j.bbapap.2018.11.009. PubMed DOI
Kalinina N., Kharlampieva D., Loguinova M., Butenko I., Pobeguts O., Efimenko A., Ageeva L., Sharonov G., Ischenko D., Alekseev D., et al. Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes. Stem Cell Res. Ther. 2015;6:221. doi: 10.1186/s13287-015-0209-8. PubMed DOI PMC
Cao Y. Science in medicine Angiogenesis modulates adipogenesis and obesity. Diversity. 2007;117:2362–2368. doi: 10.1172/JCI32239.2362. PubMed DOI PMC
Du Y., Roh D.S., Funderburgh M.L., Mann M.M., Marra K.G., Peter Rubin J., Li X., Funderburgh J.L. Adipose-derived stem cells differentiate to keratocytes in vitro. Mol. Vis. 2010;16:2680–2689. PubMed PMC
Geburek F., Roggel F., van Schie H.T.M., Beineke A., Estrada R., Weber K., Hellige M., Rohn K., Jagodzinski M., Welke B., et al. Effect of single intralesional treatment of surgically induced equine superficial digital flexor tendon core lesions with adipose-derived mesenchymal stromal cells: A controlled experimental trial. Stem Cell Res. Ther. 2017;8:129. doi: 10.1186/s13287-017-0564-8. PubMed DOI PMC
De Carvalho A.M., Badial P.R., Álvarez L.E.C., Yamada A.L.M., Borges A.S., Deffune E., Hussni C.A., Garcia Alves A.L. Equine tendonitis therapy using mesenchymal stem cells and platelet concentrates: A randomized controlled trial. Stem Cell Res. Ther. 2013;4:85. doi: 10.1186/scrt236. PubMed DOI PMC
Ahrberg A.B., Horstmeier C., Berner D., Brehm W., Gittel C., Hillmann A., Josten C., Rossi G., Schubert S., Winter K., et al. Effects of mesenchymal stromal cells versus serum on tendon healing in a controlled experimental trial in an equine model. BMC Musculoskelet. Disord. 2018;19:230. doi: 10.1186/s12891-018-2163-y. PubMed DOI PMC
Conze P., Van Schie H.T.M., Van Weeren R., Staszyk C., Conrad S., Skutella T., Hopster K., Rohn K., Stadler P., Geburek F. Effect of autologous adipose tissue-derived mesenchymal stem cells on neovascularization of artificial equine tendon lesions. Regen. Med. 2014;9:743–757. doi: 10.2217/rme.14.55. PubMed DOI
Romero A., Barrachina L., Ranera B., Remacha A.R., Moreno B., de Blas I., Sanz A., Vázquez F.J., Vitoria A., Junquera C., et al. Comparison of autologous bone marrow and adipose tissue derived mesenchymal stem cells, and platelet rich plasma, for treating surgically induced lesions of the equine superficial digital flexor tendon. Vet. J. 2017;224:76–84. doi: 10.1016/j.tvjl.2017.04.005. PubMed DOI
Ueyama H., Okano T., Orita K., Mamoto K., Sobajima S., Iwaguro H., Nakamura H. Local transplantation of adipose-derived stem cells has a significant therapeutic effect in a mouse model of rheumatoid arthritis. Sci. Rep. 2020;10:3076. doi: 10.1038/s41598-020-60041-2. PubMed DOI PMC
Puissant B., Barreau C., Bourin P., Clavel C., Corre J., Bousquet C., Taureau C., Cousin B., Abbal M., Laharrague P., et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: Comparison with bone marrow mesenchymal stem cells. Br. J. Haematol. 2005;129:118–129. doi: 10.1111/j.1365-2141.2005.05409.x. PubMed DOI
Mora M.V., Antuña S.A., Arranz M.G., Carrascal M.T., Barco R. Application of adipose tissue-derived stem cells in a rat rotator cuff repair model. Injury. 2014;45:22–27. doi: 10.1016/S0020-1383(14)70006-3. PubMed DOI
Kaizawa Y., Franklin A., Leyden J., Behn A.W., Tulu U.S., Sotelo Leon D., Wang Z., Abrams G.D., Chang J., Fox P.M. Augmentation of chronic rotator cuff healing using adipose-derived stem cell-seeded human tendon-derived hydrogel. J. Orthop. Res. 2019;37:877–886. doi: 10.1002/jor.24250. PubMed DOI
Rothrauff B.B., Smith C.A., Ferrer G.A., Novaretti J.V., Pauyo T., Chao T., Hirsch D., Beaudry M.F., Herbst E., Tuan R.S., et al. The effect of adipose-derived stem cells on enthesis healing after repair of acute and chronic massive rotator cuff tears in rats. J. Shoulder Elb. Surg. 2019;28:654–664. doi: 10.1016/j.jse.2018.08.044. PubMed DOI
Lipner J., Shen H., Cavinatto L., Liu W., Havlioglu N., Xia Y., Galatz L.M., Thomopoulos S. In Vivo Evaluation of Adipose-Derived Stromal Cells Delivered with a Nanofiber Scaffold for Tendon-to-Bone Repair. Tissue Eng.-Part A. 2015;21:2766–2774. doi: 10.1089/ten.tea.2015.0101. PubMed DOI PMC
Barco R., Encinas C., Valencia M., Carrascal M.T., García-Arranz M., Antuña S. Use of adipose-derived stem cells in an experimental rotator cuff fracture animal model. Rev. Española Cirugía Ortopédica Traumatol. 2015;59:3–8. doi: 10.1016/j.recote.2014.11.003. PubMed DOI
Olsen A., Johnson V., Webb T., Santangelo K.S., Dow S., Duerr F.M. Evaluation of Intravenously Delivered Allogeneic Mesenchymal Stem Cells for Treatment of Elbow Osteoarthritis in Dogs: A Pilot Study. Vet. Comp. Orthop. Traumatol. 2019;32:173–181. doi: 10.1055/s-0039-1678547. PubMed DOI
Sakamoto T., Miyazaki T., Watanabe S., Takahashi A., Honjoh K., Nakajima H., Oki H., Kokubo Y., Matsumine A. Intraarticular injection of processed lipoaspirate cells has anti-inflammatory and analgesic effects but does not improve degenerative changes in murine monoiodoacetate-induced osteoarthritis. BMC Musculoskelet. Disord. 2019;20:335. doi: 10.1186/s12891-019-2710-1. PubMed DOI PMC
Mariñas-Pardo L., García-Castro J., Rodríguez-Hurtado I., Rodríguez-García M.I., Núñez-Naveira L., Hermida-Prieto M. Allogeneic Adipose-Derived Mesenchymal Stem Cells (Horse Allo 20) for the Treatment of Osteoarthritis-Associated Lameness in Horses: Characterization, Safety, and Efficacy of Intra-Articular Treatment. Stem Cells Dev. 2018;27:1147–1160. doi: 10.1089/scd.2018.0074. PubMed DOI
Shah K., Drury T., Roic I., Hansen P., Malin M., Boyd R., Sumer H., Ferguson R. Outcome of allogeneic adult stem cell therapy in dogs suffering from osteoarthritis and other joint defects. Stem Cells Int. 2018;2018:7309201. doi: 10.1155/2018/7309201. PubMed DOI PMC
Lv X., He J., Zhang X., Luo X., He N., Sun Z., Xia H., Liu V., Zhang L., Lin X., et al. Comparative Efficacy of Autologous Stromal Vascular Fraction and Autologous Adipose-Derived Mesenchymal Stem Cells Combined With Hyaluronic Acid for the Treatment of Sheep Osteoarthritis. Cell Transplant. 2018;27:1111–1125. doi: 10.1177/0963689718773333. PubMed DOI PMC
Skorupa A., Ciszek M., Pilny E., Smolarczyk R., Jarosz–Biej M., Boguszewicz Ł., Krakowczyk Ł., Szala S., Sokół M., Cichoń T. Monitoring of diffusion properties and transverse relaxation time of mouse ischaemic muscle after administration of human mesenchymal stromal cells derived from adipose tissue. Cell Prolif. 2019;52:e12672. doi: 10.1111/cpr.12672. PubMed DOI PMC
Ryu S., Lee J.M., Bae C.A., Moon C.E., Cho K.O. Therapeutic efficacy of neuregulin 1-expressing human adipose-derived mesenchymal stem cells for ischemic stroke. PLoS ONE. 2019;14:e0222587. doi: 10.1371/journal.pone.0222587. PubMed DOI PMC
Li C., Fei K., Tian F., Gao C., Song Y. Adipose-derived mesenchymal stem cells attenuate ischemic brain injuries in rats by modulating miR-21-3p/MAT2B signaling transduction. Croat. Med. J. 2019;60:439–448. doi: 10.3325/cmj.2019.60.439. PubMed DOI PMC
Qiao L., Kong Y., Shi Y., Sun A., Ji R., Huang C., Li Y., Yang X. Synergistic effects of adipose-derived stem cells combined with decellularized myocardial matrix on the treatment of myocardial infarction in rats. Life Sci. 2019;239:116891. doi: 10.1016/j.lfs.2019.116891. PubMed DOI
Monteiro B.S., Dos Santos B.S., de Almeida B.L., Hiura E., Fiorio W.A.B., Valdetaro G.P., Gonçalves D.V., Silva C.S., Champion T., Campagnol D. Adipose tissue derived mesenchymal stem cell transplantation in the treatment of ischemia/reperfusion induced acute kidney injury in rats. Application route and therapeutic window. Acta Cir. Bras. 2018;33:1016–1026. doi: 10.1590/s0102-865020180110000008. PubMed DOI
Zhang J.-B., Wang X.-Q., Lu G.-L., Huang H.-S., Xu S.-Y. Adipose-derived mesenchymal stem cells therapy for acute kidney injury induced by ischemia-reperfusion in a rat model. Clin. Exp. Pharmacol. Physiol. 2017;44:1232–1240. doi: 10.1111/1440-1681.12811. PubMed DOI
Gong B., Dong Y., He C., Jiang W., Shan Y., Zhou B.Y., Li W. Intravenous Transplants of Human Adipose-Derived Stem Cell Protect the Rat Brain From Ischemia-Induced Damage. J. Stroke Cerebrovasc. Dis. 2019;28:595–603. doi: 10.1016/j.jstrokecerebrovasdis.2018.10.037. PubMed DOI
Burgos-Silva M., Semedo-Kuriki P., Donizetti-Oliveira C., Costa P.B., Cenedeze M.A., Hiyane M.I., Pacheco-Silva A., Câmara N.O.S. Adipose Tissue-Derived Stem Cells Reduce Acute and Chronic Kidney Damage in Mice. PLoS ONE. 2015;10:e0142183. doi: 10.1371/journal.pone.0142183. PubMed DOI PMC
Rosselli D.D., Mumaw J.L., Dickerson V., Brown C.A., Brown S.A., Schmiedt C.W. Efficacy of allogeneic mesenchymal stem cell administration in a model of acute ischemic kidney injury in cats. Res. Vet. Sci. 2016;108:18–24. doi: 10.1016/j.rvsc.2016.07.003. PubMed DOI
Na J., Song S.Y., Kim J.D., Han M., Heo J.S., Yang C.E., Kim H.O., Lew D.H., Kim E. Protein-Engineered Large Area Adipose-derived Stem Cell Sheets for Wound Healing. Sci. Rep. 2018;8:15869. doi: 10.1038/s41598-018-34119-x. PubMed DOI PMC
Edwards N., Feliers D., Zhao Q., Stone R., Christy R., Cheng X. An electrochemically deposited collagen wound matrix combined with adipose-derived stem cells improves cutaneous wound healing in a mouse model of type 2 diabetes. J. Biomater. Appl. 2018;33:553–565. doi: 10.1177/0885328218803754. PubMed DOI
Dong Y., Rodrigues M., Kwon S.H., Li X., Sigen A., Brett E.A., Elvassore N., Wang W., Gurtner G.C. Acceleration of Diabetic Wound Regeneration using an In Situ–Formed Stem-Cell-Based Skin Substitute. Adv. Healthc. Mater. 2018;7:1800432. doi: 10.1002/adhm.201800432. PubMed DOI
Kuo Y.R., Wang C.T., Cheng J.T., Kao G.S., Chiang Y.C., Wang C.J. Adipose-derived stem cells accelerate diabetic wound healing through the induction of autocrine and paracrine effects. Cell Transplant. 2016;25:77–81. doi: 10.3727/096368915X687921. PubMed DOI
Xiao S., Liu Z., Yao Y., Wei Z.R., Wang D., Deng C. Diabetic Human Adipose-Derived Stem Cells Accelerate Pressure Ulcer Healing by Inducing Angiogenesis and Neurogenesis. Stem Cells Dev. 2019;28:319–328. doi: 10.1089/scd.2018.0245. PubMed DOI
Mashiko T., Takada H., Wu S.H., Kanayama K., Feng J., Tashiro K., Asahi R., Sunaga A., Hoshi K., Kurisaki A., et al. Therapeutic effects of a recombinant human collagen peptide bioscaffold with human adipose-derived stem cells on impaired wound healing after radiotherapy. J. Tissue Eng. Regen. Med. 2018;12:1186–1194. doi: 10.1002/term.2647. PubMed DOI
Coelho de Faria A., Chiantia F., Teixeira M., Aloise A., Pelegrine A. Comparative Study Between Mesenchymal Stem Cells Derived from Bone Marrow and from Adipose Tissue, Associated with Xenograft, in Appositional Reconstructions: Histomorphometric Study in Rabbit Calvaria. Int. J. Oral Maxillofac. Implant. 2016;31:155–161. doi: 10.11607/jomi.4606. PubMed DOI
Park S., Heo H.A., Lee K.B., Kim H.G., Pyo S.W. Improved Bone Regeneration with Multiporous PLGA Scaffold and BMP-2-Transduced Human Adipose-Derived Stem Cells by Cell-Permeable Peptide. Implant Dent. 2017;26:4–11. doi: 10.1097/ID.0000000000000523. PubMed DOI
Yoon Y., Jung T., Shahid M.A., Khan I.U., Kim W.H., Kweon O.K. Frozen-thawed gelatin-induced osteogenic cell sheets of canine adipose-derived mesenchymal stromal cells improved fracture healing in canine model. J. Vet. Sci. 2019;20:63. doi: 10.4142/jvs.2019.20.e63. PubMed DOI PMC
Tateno A., Asano M., Akita D., Toriumi T., Tsurumachi-Iwasaki N., Kazama T., Arai Y., Matsumoto T., Kano K., Honda M. Transplantation of dedifferentiated fat cells combined with a biodegradable type i collagen-recombinant peptide scaffold for critical-size bone defects in rats. J. Oral Sci. 2019;61:534–538. doi: 10.2334/josnusd.18-0458. PubMed DOI
Ding L., Tang S., Liang P., Wang C., Zhou P., Zheng L. Bone Regeneration of Canine Peri-implant Defects Using Cell Sheets of Adipose-Derived Mesenchymal Stem Cells and Platelet-Rich Fibrin Membranes. J. Oral Maxillofac. Surg. 2019;77:514–599. doi: 10.1016/j.joms.2018.10.018. PubMed DOI
Sánchez-Garcés M., Alvira-González J., Sánchez C., Barbany Cairó J., Del Pozo M., Gay-Escoda C. Bone Regeneration Using Adipose-Derived Stem Cells with Fibronectin in Dehiscence-Type Defects Associated with Dental Implants: An Experimental Study in a Dog Model. Int. J. Oral Maxillofac. Implant. 2017;32:96–106. doi: 10.11607/jomi.5169. PubMed DOI
Xie M., Qin H., Luo Q., He X., He X., Lan P., Lian L. Comparison of Adipose-Derived and Bone Marrow Mesenchymal Stromal Cells in a Murine Model of Crohn’s Disease. Dig. Dis. Sci. 2017;62:115–123. doi: 10.1007/s10620-016-4166-6. PubMed DOI
Song W.J., Li Q., Ryu M.O., Nam A., An J.H., Jung Y.C., Ahn J.O., Youn H.Y. Canine adipose tissue-derived mesenchymal stem cells pre-treated with TNF-alpha enhance immunomodulatory effects in inflammatory bowel disease in mice. Res. Vet. Sci. 2019;125:176–184. doi: 10.1016/j.rvsc.2019.06.012. PubMed DOI PMC
Forte D., Ciciarello M., Valerii M.C., De Fazio L., Cavazza E., Giordano R., Parazzi V., Lazzari L., Laureti S., Rizzello F., et al. Human cord blood-derived platelet lysate enhances the therapeutic activity of adipose-derived mesenchymal stromal cells isolated from Crohn’s disease patients in a mouse model of colitis. Stem Cell Res. Ther. 2015;6:170. doi: 10.1186/s13287-015-0166-2. PubMed DOI PMC
Pérez-Merino E.M., Usón-Casaús J.M., Zaragoza-Bayle C., Duque-Carrasco J., Mariñas-Pardo L., Hermida-Prieto M., Barrera-Chacón R., Gualtieri M. Safety and efficacy of allogeneic adipose tissue-derived mesenchymal stem cells for treatment of dogs with inflammatory bowel disease: Clinical and laboratory outcomes. Vet. J. 2015;206:385–390. doi: 10.1016/j.tvjl.2015.08.003. PubMed DOI
Pérez-Merino E.M., Usón-Casaús J.M., Duque-Carrasco J., Zaragoza-Bayle C., Mariñas-Pardo L., Hermida-Prieto M., Vilafranca-Compte M., Barrera-Chacón R., Gualtieri M. Safety and efficacy of allogeneic adipose tissue-derived mesenchymal stem cells for treatment of dogs with inflammatory bowel disease: Endoscopic and histological outcomes. Vet. J. 2015;206:391–397. doi: 10.1016/j.tvjl.2015.07.023. PubMed DOI
Alves V.B.F., de Sousa B.C., Fonseca M.T.C., Ogata H., Caliári-Oliveira C., Yaochite J.N.U., Rodrigues Júnior V., Chica J.E.L., da Silva J.S., Malmegrim K.C.R., et al. A single administration of human adipose tissue-derived mesenchymal stromal cells (MSC) induces durable and sustained long-term regulation of inflammatory response in experimental colitis. Clin. Exp. Immunol. 2019;196:139–154. doi: 10.1111/cei.13262. PubMed DOI PMC
Lopez-Santalla M., Mancheño-Corvo P., Escolano A., Menta R., Delarosa O., Redondo J.M., Bueren J.A., Dalemans W., Lombardo E., Garin M.I. Comparative analysis between the in vivo biodistribution and therapeutic efficacy of adipose-derived mesenchymal stromal cells administered intraperitoneally in experimental colitis. Int. J. Mol. Sci. 2018;19:1853. doi: 10.3390/ijms19071853. PubMed DOI PMC
Iwazawa R., Kozakai S., Kitahashi T., Nakamura K., Hata K.I. The Therapeutic Effects of Adipose-Derived Stem Cells and Recombinant Peptide Pieces on Mouse Model of DSS Colitis. Cell Transplant. 2018;27:1390–1400. doi: 10.1177/0963689718782442. PubMed DOI PMC
Ryska O., Serclova Z., Mestak O., Matouskova E., Vesely P., Mrazova I. Local application of adipose-derived mesenchymal stem cells supports the healing of fistula: Prospective randomised study on rat model of fistulising Crohn’s disease. Scand. J. Gastroenterol. 2017;52:543–550. doi: 10.1080/00365521.2017.1281434. PubMed DOI
Trzil J.E., Masseau I., Webb T.L., Chang C.-H., Dodam J.R., Liu H., Quimby J.M., Dow S.W., Reinero C.R. Intravenous adipose-derived mesenchymal stem cell therapy for the treatment of feline asthma: A pilot study. J. Feline Med. Surg. 2015;18:981–990. doi: 10.1177/1098612X15604351. PubMed DOI PMC
De Castro L.L., Xisto D.G., Kitoko J.Z., Cruz F.F., Olsen P.C., Redondo P.A.G., Ferreira T.P.T., Weiss D.J., Martins M.A., Morales M.M., et al. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Res. Ther. 2017;8:151. doi: 10.1186/s13287-017-0600-8. PubMed DOI PMC
Castro L.L., Kitoko J.Z., Xisto D.G., Olsen P.C., Guedes H.L.M., Morales M.M., Lopes-Pacheco M., Cruz F.F., Rocco P.R.M. Multiple doses of adipose tissue-derived mesenchymal stromal cells induce immunosuppression in experimental asthma. Stem Cells Transl. Med. 2020;9:250–260. doi: 10.1002/sctm.19-0120. PubMed DOI PMC
Dai R., Liu J., Cai S., Zheng C., Zhou X. Delivery of adipose-derived mesenchymal stem cells attenuates airway responsiveness and inflammation in a mouse model of ovalbumin-induced asthma. Am. J. Transl. Res. 2017;9:2421–2428. PubMed PMC
Dai R., Yu Y., Yan G., Hou X., Ni Y., Shi G. Intratracheal administration of adipose derived mesenchymal stem cells alleviates chronic asthma in a mouse model. BMC Pulm. Med. 2018;18:131. doi: 10.1186/s12890-018-0701-x. PubMed DOI PMC
Abreu S.C., Antunes M.A., Xisto D.G., Cruz F.F., Branco V.C., Bandeira E., Kitoko J.Z., De Araú Jo A.F., Dellatorre-Texeira L., Olsen P.C., et al. Bone marrow, adipose, and lung tissue-derived murine mesenchymal stromal cells release different mediators and differentially affect airway and lung parenchyma in experimental asthma. Stem Cells Transl. Med. 2017;6:1557–1567. doi: 10.1002/sctm.16-0398. PubMed DOI PMC
Ehlert M., Roszek K., Jędrzejewski T., Bartmański M., Radtke A. Titania nanofiber scaffolds with enhanced biointegration activity—Preliminary in vitro studies. Int. J. Mol. Sci. 2019;20:5642. doi: 10.3390/ijms20225642. PubMed DOI PMC
Wu S., Zhou R., Zhou F., Streubel P.N., Chen S., Duan B. Electrospun thymosin Beta-4 loaded PLGA/PLA nanofiber/ microfiber hybrid yarns for tendon tissue engineering application. Mater. Sci. Eng. C. 2020;106:110268. doi: 10.1016/j.msec.2019.110268. PubMed DOI PMC
Kazimierczak P., Benko A., Nocun M., Przekora A. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: Comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells. Int. J. Nanomed. 2019;14:6615–6630. doi: 10.2147/IJN.S217245. PubMed DOI PMC
Coetzee J.C., Myerson M.S., Anderson J.G. The Use of Allostem in Subtalar Fusions. Foot Ankle Clin. 2016;21:863–868. doi: 10.1016/j.fcl.2016.07.011. PubMed DOI
Freitag J., Bates D., Wickham J., Shah K., Huguenin L., Tenen A., Paterson K., Boyd R. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: A randomized controlled trial. Regen. Med. 2019;14:213–230. doi: 10.2217/rme-2018-0161. PubMed DOI
Song Y., Du H., Dai C., Zhang L., Li S., Hunter D.J., Lu L., Bao C. Human adipose-derived mesenchymal stem cells for osteoarthritis: A pilot study with long-term follow-up and repeated injections. Regen. Med. 2018;13:295–307. doi: 10.2217/rme-2017-0152. PubMed DOI
Kuah D., Sivell S., Longworth T., James K., Guermazi A., Cicuttini F., Wang Y., Craig S., Comin G., Robinson D., et al. Safety, tolerability and efficacy of intra-articular Progenza in knee osteoarthritis: A randomized double-blind placebo-controlled single ascending dose study. J. Transl. Med. 2018;16:49. doi: 10.1186/s12967-018-1420-z. PubMed DOI PMC
Myerson C.L., Myerson M.S., Coetzee J.C., Stone McGaver R., Giveans M.R. Subtalar Arthrodesis with Use of Adipose-Derived Cellular Bone Matrix Compared with Autologous Bone Graft: A Multicenter, Randomized Controlled Trial. J. Bone Jt. Surg. 2019;101:1904–1911. doi: 10.2106/JBJS.18.01300. PubMed DOI
Kumar H., Ha D.-H., Lee E.-J., Park J.H., Shim J.H., Ahn T.-K., Kim K.-T., Ropper A.E., Sohn S., Kim C.-H., et al. Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase I study. Stem Cell Res. Ther. 2017;8:262. doi: 10.1186/s13287-017-0710-3. PubMed DOI PMC
Grønhøj C., Jensen D.H., Vester-Glowinski P., Jensen S.B., Bardow A., Oliveri R.S., Fog L.M., Specht L., Thomsen C., Darkner S., et al. Safety and Efficacy of Mesenchymal StemCells for Radiation-Induced Xerostomia: A Randomized, Placebo-Controlled Phase 1/2Trial (MESRIX) Int. J. Radiat. Oncol. Biol. Phys. 2018;101:581–592. doi: 10.1016/j.ijrobp.2018.02.034. PubMed DOI
Grønhøj C., Jensen D.H., Glovinski P.V., Jensen S.B., Bardow A., Oliveri R.S., Specht L., Thomsen C., Darkner S., Kiss K., et al. First-in-man mesenchymal stem cells for radiation-induced xerostomia (MESRIX): Study protocol for a randomized controlled trial. Trials. 2017;18:108. doi: 10.1186/s13063-017-1856-0. PubMed DOI PMC
Moon K.C., Suh H.S., Kim K.B., Han S.K., Young K.W., Lee J.W., Kim M.H. Potential of allogeneic adipose-derived stem cell–hydrogel complex for treating diabetic foot ulcers. Diabetes. 2019;68:837–846. doi: 10.2337/db18-0699. PubMed DOI
Panés J., García-Olmo D., Van Assche G., Colombel J.F., Reinisch W., Baumgart D.C., Dignass A., Nachury M., Ferrante M., Kazemi-Shirazi L., et al. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: A phase 3 randomised, double-blind controlled trial. Lancet. 2016;388:1281–1290. doi: 10.1016/S0140-6736(16)31203-X. PubMed DOI
Panés J., García-Olmo D., Van Assche G., Colombel J.F., Reinisch W., Baumgart D.C., Dignass A., Nachury M., Ferrante M., Kazemi-Shirazi L., et al. Long-term Efficacy and Safety of Stem Cell Therapy (Cx601) for Complex Perianal Fistulas in Patients With Crohn’s Disease. Gastroenterology. 2018;154:1334–1342.e4. doi: 10.1053/j.gastro.2017.12.020. PubMed DOI
Choi S., Ryoo S.-B., Park K.J., Kim D.-S., Song K.-H., Kim K.H., Chung S.S., Shin E.J., Cho Y.B., Oh S.T., et al. Autologous adipose tissue-derived stem cells for the treatment of complex perianal fistulas not associated with Crohn’s disease: A phase II clinical trial for safety and efficacy. Tech. Coloproctol. 2017;21:345–353. doi: 10.1007/s10151-017-1630-z. PubMed DOI
Cho Y.B., Park K.J., Yoon S.N., Song K.H., Kim D.S., Jung S.H., Kim M., Jeong H.Y., Yu C.S. Long-Term Results of Adipose-Derived Stem Cell Therapy for the Treatment of Crohn’s Fistula. Stem Cells Transl. Med. 2015;4:532–537. doi: 10.5966/sctm.2014-0199. PubMed DOI PMC
Dozois E.J., Lightner A.L., Mathis K.L., Chua H.K., Kelley S.R., Fletcher J.G., Dietz A.B., Friton J.J., Butler G.W., Faubion W.A. Early results of a phase I trial using an adipose-derived mesenchymal stem cell-coated fistula plug for the treatment of transsphincteric cryptoglandular fistulas. Dis. Colon Rectum. 2019;62:615–622. doi: 10.1097/DCR.0000000000001333. PubMed DOI
Piejko M., Romaniszyn M., Borowczyk-Michal owska J., Drukala J., Walega P. Cell therapy in surgical treatment of fistulas—Preliminary report. Pol. Prz. Chir. Polish J. Surg. 2017;89:48–51. doi: 10.5604/01.3001.0010.1019. PubMed DOI
Sarveazad A., Newstead G.L., Mirzaei R., Joghataei M.T., Bakhtiari M., Babahajian A., Mahjoubi B. A new method for treating fecal incontinence by implanting stem cells derived from human adipose tissue: Preliminary findings of a randomized double-blind clinical trial. Stem Cell Res. Ther. 2017;8:40. doi: 10.1186/s13287-017-0489-2. PubMed DOI PMC
Khojasteh A., Kheiri L., Behnia H., Tehranchi A., Nazeman P., Nadjmi N., Soleimani M. Lateral Ramus Cortical Bone Plate in Alveolar Cleft Osteoplasty with Concomitant Use of Buccal Fat Pad Derived Cells and Autogenous Bone: Phase I Clinical Trial. Biomed Res. Int. 2017;2017:6560234. doi: 10.1155/2017/6560234. PubMed DOI PMC
Sándor G.K., Numminen J., Wolff J., Thesleff T., Miettinen A., Tuovinen V.J., Mannerström B., Patrikoski M., Seppänen R., Miettinen S., et al. Adipose Stem Cells Used to Reconstruct 13 Cases With Cranio-Maxillofacial Hard-Tissue Defects. Stem Cells Transl. Med. 2014;3:530–540. doi: 10.5966/sctm.2013-0173. PubMed DOI PMC
Waked K., Colle J., Doornaert M., Cocquyt V., Blondeel P. Systematic review: The oncological safety of adipose fat transfer after breast cancer surgery. Breast. 2017;31:128–136. doi: 10.1016/j.breast.2016.11.001. PubMed DOI
Koellensperger E., Bonnert L.C., Zoernig I., Marmé F., Sandmann S., Germann G., Gramley F., Leimer U. The impact of human adipose tissue-derived stem cells on breast cancer cells: Implications for cell-assisted lipotransfers in breast reconstruction. Stem Cell Res. Ther. 2017;8:121. doi: 10.1186/s13287-017-0579-1. PubMed DOI PMC
Kastrup J., Haack-Sørensen M., Juhl M., Harary Søndergaard R., Follin B., Drozd Lund L., Mønsted Johansen E., Ali Qayyum A., Bruun Mathiasen A., Jørgensen E., et al. Cryopreserved Off-the-Shelf Allogeneic Adipose-Derived Stromal Cells for Therapy in Patients with Ischemic Heart Disease and Heart Failure—A Safety Study. Stem Cells Transl. Med. 2017;6:1963–1971. doi: 10.1002/sctm.17-0040. PubMed DOI PMC
Saad A., Dietz A.B., Herrmann S.M.S., Hickson L.J., Glockner J.F., McKusick M.A., Misra S., Bjarnason H., Armstrong A.S., Gastineau D.A., et al. Autologous mesenchymal stem cells increase cortical perfusion in renovascular disease. J. Am. Soc. Nephrol. 2017;28:2777–2785. doi: 10.1681/ASN.2017020151. PubMed DOI PMC
Hur J.W., Cho T.-H., Park D.-H., Lee J.-B., Park J.-Y., Chung Y.-G. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: A human trial. J. Spinal Cord Med. 2016;39:655–664. doi: 10.1179/2045772315Y.0000000048. PubMed DOI PMC
Tsai Y.-A., Liu R.-S., Lirng J.-F., Yang B.-H., Chang C.-H., Wang Y.-C., Wu Y.-S., Ho J.H.-C., Lee O.K., Soong B.-W. Treatment of Spinocerebellar Ataxia With Mesenchymal Stem Cells: A Phase I/IIa Clinical Study. Cell Transplant. 2017;26:503–512. doi: 10.3727/096368916X694373. PubMed DOI PMC
Singer W., Dietz A.B., Zeller A.D., Gehrking T.L., Schmelzer J.D., Schmeichel A.M., Gehrking J.A., Suarez M.D., Sletten D.M., Minota Pacheco K.V., et al. Intrathecal administration of autologous mesenchymal stem cells in multiple system atrophy. Neurology. 2019;93:77–87. doi: 10.1212/WNL.0000000000007720. PubMed DOI PMC
Fernández O., Izquierdo G., Fernández V., Leyva L., Reyes V., Guerrero M., León A., Arnaiz C., Navarro G., Páramo M.D., et al. Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: A triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS ONE. 2018;13:e0195891. doi: 10.1371/journal.pone.0195891. PubMed DOI PMC
Almadori A., Griffin M., Ryan C.M., Hunt D.F., Hansen E., Kumar R., Abraham D.J., Denton C.P., Butler P.E.M. Stem cell enriched lipotransfer reverses the effects of fibrosis in systemic sclerosis. PLoS ONE. 2019;14:e0218068. doi: 10.1371/journal.pone.0218068. PubMed DOI PMC
Alió del Barrio J.L., El Zarif M., Azaar A., Makdissy N., Khalil C., Harb W., El Achkar I., Jawad Z.A., de Miguel M.P., Alió J.L. Corneal Stroma Enhancement With Decellularized Stromal Laminas With or Without Stem Cell Recellularization for Advanced Keratoconus. Am. J. Ophthalmol. 2018;186:4758. doi: 10.1016/j.ajo.2017.10.026. PubMed DOI
Alió Del Barrio J.L., El Zarif M., De Miguel M.P., Azaar A., Makdissy N., Harb W., El Achkar I., Arnalich-Montiel F., Alió J.L. Cellular Therapy with Human Autologous Adipose-Derived Adult Stem Cells for Advanced Keratoconus. Cornea. 2017;36:952–960. doi: 10.1097/ICO.0000000000001228. PubMed DOI