Hydrogen sulfide, oxygen, and calcium regulation in developing human airway smooth muscle
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 HL160570
NHLBI NIH HHS - United States
T32 HL105355
NHLBI NIH HHS - United States
R01 HL056470
NHLBI NIH HHS - United States
R01 HL 13840
NIH HHS - United States
R01 HL138402
NHLBI NIH HHS - United States
PubMed
32777143
PubMed Central
PMC7857779
DOI
10.1096/fj.202001180r
Knihovny.cz E-zdroje
- Klíčová slova
- calcium, contractility, fetal airway, oxygen, prematurity,
- MeSH
- dýchací soustava embryologie MeSH
- hladké svalstvo embryologie MeSH
- hyperoxie metabolismus MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- myocyty hladké svaloviny cytologie metabolismus MeSH
- novorozenec nedonošený metabolismus MeSH
- novorozenec MeSH
- plod MeSH
- sulfan metabolismus MeSH
- vápník metabolismus MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- kyslík MeSH
- sulfan MeSH
- vápník MeSH
Preterm infants can develop airway hyperreactivity and impaired bronchodilation following supplemental O2 (hyperoxia) in early life, making it important to understand mechanisms of hyperoxia effects. Endogenous hydrogen sulfide (H2 S) has anti-inflammatory and vasodilatory effects with oxidative stress. There is little understanding of H2 S signaling in developing airways. We hypothesized that the endogenous H2 S system is detrimentally influenced by O2 and conversely H2 S signaling pathways can be leveraged to attenuate deleterious effects of O2 . Using human fetal airway smooth muscle (fASM) cells, we investigated baseline expression of endogenous H2 S machinery, and effects of exogenous H2 S donors NaHS and GYY4137 in the context of moderate hyperoxia, with intracellular calcium regulation as a readout of contractility. Biochemical pathways for endogenous H2 S generation and catabolism are present in fASM, and are differentially sensitive to O2 toward overall reduction in H2 S levels. H2 S donors have downstream effects of reducing [Ca2+ ]i responses to bronchoconstrictor agonist via blunted plasma membrane Ca2+ influx: effects blocked by O2 . However, such detrimental O2 effects are targetable by exogenous H2 S donors such as NaHS and GYY4137. These data provide novel information regarding the potential for H2 S to act as a bronchodilator in developing airways in the context of oxygen exposure.
Department of Anesthesiology and Intensive Care Masaryk University Brno Czech Republic
Department of Anesthesiology Mayo Clinic Rochester MN USA
Department of Physiology and Biomedical Engineering Mayo Clinic Rochester MN USA
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Britt RD Jr, Faksh A, Vogel E, Martin RJ, Pabelick CM, Prakash YS. Perinatal factors in neonatal and pediatric lung diseases. Expert Rev Respir Med. 2013;7:515–531. PubMed PMC
Martin RJ, Prakash YS, Hibbs AM. Why do former preterm infants wheeze? J Pediatr. 2013;162:443–444. PubMed PMC
Edwards MO, Kotecha SJ, Lowe J, Richards L, Watkins WJ, Kotecha S. Early-term birth is a risk factor for wheezing in childhood: a cross-sectional population study. J Allergy Clin Immunol. 2015;136:581–587. PubMed
Cherian S, Morris I, Evans J, Kotecha S. Oxygen therapy in preterm infants. Paediatr Respir Rev. 2014;15:135–141. PubMed
Vogel ER, Britt RD Jr, Trinidad MC, et al. Perinatal oxygen in the developing lung. Can J Physiol Pharmacol. 2015;93:119–127. PubMed PMC
Faksh A, Britt RD Jr, Vogel ER, et al. Effects of antenatal lipopolysaccharide and postnatal hyperoxia on airway reactivity and remodeling in a neonatal mouse model. Pediatr Res. 2016;79:391–400. PubMed PMC
Vogel ER, Britt RD Jr, Faksh A, et al. Moderate hyperoxia induces extracellular matrix remodeling by human fetal airway smooth muscle cells. Pediatr Res. 2017;81:376–383. PubMed PMC
Wang H, Jafri A, Martin RJ, et al. Severity of neonatal hyperoxia determines structural and functional changes in developing mouse airway. Am J Physiol Lung Cell Mol Physiol. 2014;307:L295–301. PubMed PMC
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol. 2016;311:L1113–L1140. PubMed PMC
Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol. 2013;305:L912–L933. PubMed PMC
Hartman WR, Smelter DF, Sathish V, et al. Oxygen dose responsiveness of human fetal airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2012;303:L711–L719. PubMed PMC
Parikh P, Britt RD Jr, Manlove LJ, et al. Hyperoxia-induced cellular senescence in fetal airway smooth muscle cells. Am J Respir Cell Mol Biol. 2019;61:51–60. PubMed PMC
Onugha H, MacFarlane PM, Mayer CA, Abrah A, Jafri A, Martin RJ. Airway hyperreactivity is delayed after mild neonatal hyperoxic exposure. Neonatology. 2015;108:65–72. PubMed PMC
Hilgendorff A, Reiss I, Gortner L, Schuler D, Weber K, Lindemann H. Impact of airway obstruction on lung function in very preterm infants at term. Pediatr Crit Care Med. 2008;9:629–635. PubMed
Prakash YS, Halayko AJ, Gosens R, et al. An official American thoracic society research statement: current challenges facing research and therapeutic advances in airway remodeling. Am J Respir Crit Care Med. 2017;195:e4–e19. PubMed
Ali NK, Jafri A, Sopi RB, Prakash YS, Martin RJ, Zaidi SI. Role of arginase in impairing relaxation of lung parenchyma of hyperoxia-exposed neonatal rats. Neonatology. 2012;101:106–115. PubMed PMC
Britt RD Jr, Thompson MA, Kuipers I, et al. Soluble guanylate cyclase modulators blunt hyperoxia effects on calcium responses of developing human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2015;309(6):L537–L542. PubMed PMC
Cole FS, Alleyne C, Barks JD, et al. NIH Consensus Development Conference statement: inhaled nitric-oxide therapy for premature infants. Pediatrics. 2011;127:363–369. PubMed
Kotecha S, Clemm H, Halvorsen T, Kotecha SJ. Bronchial hyper-responsiveness in preterm-born subjects: a systematic review and meta-analysis. Pediatr Allergy Immunol. 2018;29(7):715–725. 10.1111/pai.12957 PubMed DOI
Kimura H Physiological roles of hydrogen sulfide and polysulfides. Handb Exp Pharmacol. 2015;230:61–81. PubMed
Linden DR. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid Redox Signal. 2014;20:818–830. PubMed PMC
Bazhanov N, Ansar M, Ivanciuc T, Garofalo RP, Casola A. Hydrogen sulfide: a novel player in airway development, pathophysiology of respiratory diseases, and antiviral defenses. Am J Respir Cell Mol Biol. 2017;57:403–410. PubMed PMC
Kimura H The physiological role of hydrogen sulfide and beyond. Nitric Oxide. 2014;41:4–10. PubMed
Szabo C Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov. 2007;6:917–935. PubMed
Kimura H Production and physiological effects of hydrogen sulfide. Antioxid Redox Signal. 2014;20:783–793. PubMed PMC
Olson KR, Straub KD. The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology. 2016;31:60–72. PubMed
Dunn WR, Alexander SP, Ralevic V, Roberts RE. Effects of hydrogen sulphide in smooth muscle. Pharmacol Ther. 2016;158:101–113. PubMed
Kanagy NL, Szabo C, Papapetropoulos A. Vascular biology of hydrogen sulfide. Am J Physiol Cell Physiol. 2017;312:C537–C549. PubMed PMC
Zhang G, Wang P, Yang G, Cao Q, Wang R. The inhibitory role of hydrogen sulfide in airway hyperresponsiveness and inflammation in a mouse model of asthma. Am J Pathol. 2013;182:1188–1195. PubMed
Gheibi S, Jeddi S, Kashfi K, Ghasemi A. Regulation of vascular tone homeostasis by NO and H2S: Implications in hypertension. Biochem Pharmacol. 2018;149:42–59. PubMed PMC
Dongo E, Beliczai-Marosi G, Dybvig AS, Kiss L. The mechanism of action and role of hydrogen sulfide in the control of vascular tone. Nitric Oxide. 2017;81:75–87. 10.1016/j.niox.2017.10.010 PubMed DOI
Cacanyiova S, Berenyiova A, Kristek F. The role of hydrogen sulphide in blood pressure regulation. Physiol Res. 2016;65:S273–S289. PubMed
Li N, Wang MJ, Jin S, et al. The H2S donor NaHS changes the expression pattern of H2S-producing enzymes after myocardial infarction. Oxid Med Cell Longev. 2016;2016:6492469. PubMed PMC
Madurga A, Mizikova I, Ruiz-Camp J, et al. Systemic hydrogen sulfide administration partially restores normal alveolarization in an experimental animal model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2014;306:L684–L697. PubMed
Madurga A, Golec A, Pozarska A, et al. The H2S-generating enzymes cystathionine beta-synthase and cystathionine gamma-lyase play a role in vascular development during normal lung alveolarization. Am J Physiol Lung Cell Mol Physiol. 2015;309:L710–724. PubMed
Vina J, Vento M, Garcia-Sala F, et al. L-cysteine and glutathione metabolism are impaired in premature infants due to cystathionase deficiency. Am J Clin Nutr. 1995;61:1067–1069. PubMed
Zlotkin SH, Anderson GH. The development of cystathionase activity during the first year of life. Pediatr Res. 1982;16:65–68. PubMed
Pandya HC, Innes J, Hodge R, Bustani P, Silverman M, Kotecha S. Spontaneous contraction of pseudoglandular-stage human airspaces is associated with the presence of smooth muscle-alpha-actin and smooth muscle-specific myosin heavy chain in recently differentiated fetal human airway smooth muscle. Biol Neonate. 2006;89:211–219. PubMed
Britt RD Jr, Faksh A, Vogel ER, et al. Vitamin D attenuates cytokine-induced remodeling in human fetal airway smooth muscle cells. J Cell Physiol. 2015;230:1189–1198. PubMed PMC
Freeman MR, Sathish V, Manlove L, et al. Brain-derived neurotrophic factor and airway fibrosis in asthma. Am J Physiol Lung Cell Mol Physiol. 2017;313:L360–L370. PubMed PMC
Linden DR, Furne J, Stoltz GJ, Abdel-Rehim MS, Levitt MD, Szurszewski JH. Sulphide quinone reductase contributes to hydrogen sulphide metabolism in murine peripheral tissues but not in the CNS. Br J Pharmacol. 2012;165:2178–2190. PubMed PMC
Linden DR, Sha L, Mazzone A, et al. Production of the gaseous signal molecule hydrogen sulfide in mouse tissues. J Neurochem. 2008;106:1577–1585. PubMed PMC
Singha S, Kim D, Moon H, et al. Toward a selective, sensitive, fast-responsive, and biocompatible two-photon probe for hydrogen sulfide in live cells. Anal Chem. 2015;87:1188–1195. PubMed
Sathish V, Abcejo AJ, Thompson MA, Sieck GC, Prakash YS, Pabelick CM. Caveolin-1 regulation of store-operated Ca(2+) influx in human airway smooth muscle. Eur Respir J. 2012;40:470–478. PubMed PMC
Szabo C, Papapetropoulos A. International union of basic and clinical pharmacology. CII: pharmacological modulation of H2S levels: H2S donors and H2S biosynthesis inhibitors. Pharmacol Rev. 2017;69:497–564. PubMed PMC
Zhou Y, Yu J, Lei X, et al. High-throughput tandem-microwell assay identifies inhibitors of the hydrogen sulfide signaling pathway. Chem Commun. 2013;49:11782–11784. PubMed
Vohra PK, Thompson MA, Sathish V, et al. TRPC3 regulates release of brain-derived neurotrophic factor from human airway smooth muscle. Biochim Biophys Acta. 2013;1833:2953–2960. PubMed PMC
Ay B, Prakash YS, Pabelick CM, Sieck GC. Store-operated Ca2+ entry in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2004;286:L909–917. PubMed
Halvorsen T, Skadberg BT, Eide GE, Roksund O, Aksnes L, Oymar K. Characteristics of asthma and airway hyper-responsiveness after premature birth. Pediatr Allergy Immunol. 2005;16:487–494. PubMed
Islam JY, Keller RL, Aschner JL, Hartert TV, Moore PE. Understanding the short-and long-term respiratory outcomes of prematurity and bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2015;192:134–156. PubMed PMC
Lavoie PM, Dube MP. Genetics of bronchopulmonary dysplasia in the age of genomics. Curr Opin Pediatr. 2010;22:134–138. PubMed PMC
O’Reilly M, Harding R, Sozo F. Altered small airways in aged mice following neonatal exposure to hyperoxic gas. Neonatology. 2014;105:39–45. PubMed
Murphy B, Bhattacharya R, Mukherjee P. Hydrogen sulfide signaling in mitochondria and disease. FASEB J. 2019;33:13098–13125. PubMed PMC
Prudova A, Bauman Z, Braun A, Vitvitsky V, Lu SC, Banerjee R. S-adenosylmethionine stabilizes cystathionine beta-synthase and modulates redox capacity. Proc Natl Acad Sci USA. 2006;103:6489–6494. PubMed PMC
Agrawal N, Banerjee R. Human polycomb 2 protein is a SUMO E3 ligase and alleviates substrate-induced inhibition of cystathionine beta-synthase sumoylation. PLoS One. 2008;3:e4032. PubMed PMC
Niu WN, Yadav PK, Adamec J, Banerjee R. S-glutathionylation enhances human cystathionine beta-synthase activity under oxidative stress conditions. Antioxid Redox Signal. 2015;22:350–361. PubMed PMC
Kandil S, Brennan L, McBean GJ. Glutathione depletion causes a JNK and p38MAPK-mediated increase in expression of cystathionine-gamma-lyase and upregulation of the transsulfuration pathway in C6 glioma cells. Neurochem Int. 2010;56:611–619. PubMed
Sbodio JI, Snyder SH, Paul BD. Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington’s disease. Proc Natl Acad Sci USA. 2018;115:780–785. PubMed PMC
Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–633. PubMed
Sen N, Paul BD, Gadalla MM, et al. Hydrogen sulfide-linked sulfhydration of NF-kappaB mediates its antiapoptotic actions. Mol Cell. 2012;45:13–24. PubMed PMC
Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R. Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem. 2009;284:22457–22466. PubMed PMC
Olson KR, Whitfield NL, Bearden SE, et al. Hypoxic pulmonary vasodilation: a paradigm shift with a hydrogen sulfide mechanism. Am J Physiol Regul Integr Comp Physiol. 2010;298:R51–R60. PubMed PMC
Perry MM, Tildy B, Papi A, et al. The anti-proliferative and anti-inflammatory response of COPD airway smooth muscle cells to hydrogen sulfide. Respir Res. 2018;19:85. PubMed PMC
Hu H, Shi Y, Chen Q, et al. Endogenous hydrogen sulfide is involved in regulation of respiration in medullary slice of neonatal rats. Neuroscience. 2008;156:1074–1082. PubMed
Li H, Hou X, Ding Y, et al. Effects of H2S on the central regulation of respiration in adult rats. NeuroReport. 2014;25:358–366. PubMed
Zhang J, Wang X, Chen Y, Yao W. Correlation between levels of exhaled hydrogen sulfide and airway inflammatory phenotype in patients with chronic persistent asthma. Respirology. 2014;19:1165–1169. PubMed
Chen YH, Wu R, Geng B, et al. Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. Cytokine. 2009;45:117–123. PubMed
Faller S, Ryter SW, Choi AM, Loop T, Schmidt R, Hoetzel A. Inhaled hydrogen sulfide protects against ventilator-induced lung injury. Anesthesiology. 2010;113:104–115. PubMed
Faller S, Seiler R, Donus R, Engelstaedter H, Hoetzel A, Spassov SG. Pre- and posttreatment with hydrogen sulfide prevents ventilator-induced lung injury by limiting inflammation and oxidation. PLoS One. 2017;12:e0176649. PubMed PMC
Guan R, Wang J, Li D, et al. Hydrogen sulfide inhibits cigarette smoke-induced inflammation and injury in alveolar epithelial cells by suppressing PHD2/HIF-1alpha/MAPK signaling pathway. Int Immunopharmacol. 2020;81:105979. PubMed
Lin F, Liao C, Sun Y, et al. Hydrogen sulfide inhibits cigarette smoke-induced endoplasmic reticulum stress and apoptosis in bronchial epithelial cells. Front Pharmacol. 2017;8:675. PubMed PMC
Zimmermann KK, Spassov SG, Strosing KM, et al. Hydrogen sulfide exerts anti-oxidative and anti-inflammatory effects in acute lung injury. Inflammation. 2018;41:249–259. PubMed
Liu WL, Liu ZW, Li TS, Wang C, Zhao B. Hydrogen sulfide donor regulates alveolar epithelial cell apoptosis in rats with acute lung injury. Chin Med J (Engl). 2013;126:494–499. PubMed
Li HD, Zhang ZR, Zhang QX, Qin ZC, He DM, Chen JS. Treatment with exogenous hydrogen sulfide attenuates hyperoxia-induced acute lung injury in mice. Eur J Appl Physiol. 2013;113:1555–1563. PubMed
Liu CX, Tan YR, Xiang Y, Liu C, Liu XA, Qin XQ. Hydrogen sulfide protects against chemical hypoxia-induced injury via attenuation of ROS-mediated Ca(2+) overload and mitochondrial dysfunction in human bronchial epithelial cells. Biomed Res Int. 2018;2018:2070971. PubMed PMC
Hong J, Zhou W, Wang X. Involvement of miR-455 in the protective effect of H2S against chemical hypoxia-induced injury in BEAS-2B cells. Pathol Res Pract. 2018;214:1804–1810. PubMed
Li H, Ma Y, Escaffre O, et al. Role of hydrogen sulfide in paramyxovirus infections. J Virol. 2015;89:5557–5568. PubMed PMC
Ivanciuc T, Sbrana E, Ansar M, et al. Hydrogen sulfide is an antiviral and antiinflammatory endogenous gasotransmitter in the airways. Role in respiratory syncytial virus infection. Am J Respir Cell Mol Biol. 2016;55:684–696. PubMed PMC
Bazhanov N, Ivanciuc T, Wu H, et al. Thiol-activated hydrogen sulfide donors antiviral and anti-inflammatory activity in respiratory syncytial virus infection. Viruses. 2018;10:249. PubMed PMC
Filipovic MR. Persulfidation (S-sulfhydration) and H2S. Handb Exp Pharmacol. 2015;230:29–59. PubMed
Lu A, Chu C, Mulvihill E, Wang R, Liang W. ATP-sensitive K(+) channels and mitochondrial permeability transition pore mediate effects of hydrogen sulfide on cytosolic Ca(2+) homeostasis and insulin secretion in beta-cells. Pflugers Arch. 2019;471:1551–1564. PubMed
Nagao M, Linden DR, Duenes JA, Sarr MG. Mechanisms of action of the gasotransmitter hydrogen sulfide in modulating contractile activity of longitudinal muscle of rat ileum. J Gastrointest Surg. 2011;15:12–22. PubMed PMC
Kiss L, Deitch EA, Szabo C. Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition. Life Sci. 2008;83:589–594. PubMed PMC
Martelli A, Testai L, Breschi MC, et al. Vasorelaxation by hydrogen sulphide involves activation of Kv7 potassium channels. Pharmacol Res. 2013;70:27–34. PubMed
Jackson-Weaver O, Osmond JM, Riddle MA, et al. Hydrogen sulfide dilates rat mesenteric arteries by activating endothelial large-conductance Ca(2)(+)-activated K(+) channels and smooth muscle Ca(2)(+) sparks. Am J Physiol Heart Circ Physiol. 2013;304:H1446–1454. PubMed PMC
Strange K, Yan X, Lorin-Nebel C, Xing J. Physiological roles of STIM1 and Orai1 homologs and CRAC channels in the genetic model organism Caenorhabditis elegans. Cell Calcium. 2007;42:193–203. PubMed PMC
Musharaf I, Hinton M, Yi M, Dakshinamurti S. Hypoxic challenge of hyperoxic pulmonary artery myocytes increases oxidative stress due to impaired mitochondrial superoxide dismutase activity. Pulm Pharmacol Ther. 2018;48:195–202. PubMed
Farrow KN, Lee KJ, Perez M, et al. Brief hyperoxia increases mitochondrial oxidation and increases phosphodiesterase 5 activity in fetal pulmonary artery smooth muscle cells. Antioxid Redox Signal. 2012;17:460–470. PubMed PMC
Strege PR, Bernard CE, Kraichely RE, et al. Hydrogen sulfide is a partially redox-independent activator of the human jejunum Na+ channel, Nav1.5. Am J Physiol Gastrointest Liver Physiol. 2011;300:G1105–1114. PubMed PMC
Sun Y, Huang Y, Yu W, et al. Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide. Oncotarget. 2017;8:31888–31900. PubMed PMC
Bucci M, Papapetropoulos A, Vellecco V, et al. Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol. 2010;30:1998–2004. PubMed