Preserving Mobility in Older Adults with Physical Frailty and Sarcopenia: Opportunities, Challenges, and Recommendations for Physical Activity Interventions

. 2020 ; 15 () : 1675-1690. [epub] 20200916

Jazyk angličtina Země Nový Zéland Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32982201

One of the most widely conserved hallmarks of aging is a decline in functional capabilities. Mobility loss is particularly burdensome due to its association with negative health outcomes, loss of independence and disability, and the heavy impact on quality of life. Recently, a new condition, physical frailty and sarcopenia, has been proposed to define a critical stage in the disabling cascade. Physical frailty and sarcopenia are characterized by weakness, slowness, and reduced muscle mass, yet with preserved ability to move independently. One of the strategies that have shown some benefits in combatting mobility loss and its consequences for older adults is physical activity. Here, we describe the opportunities and challenges for the development of physical activity interventions in people with physical frailty and sarcopenia. The aim of this article is to review age-related physio(patho)logical changes that impact mobility in old age and to provide recommendations and procedures in accordance with the available literature.

1st Faculty of Medicine Charles University Prague Czech Republic

Clinical Gerontology University Hospital of Limoges Limoges France

Department of Health and Fitness Maastricht University Medical Center Maastricht The Netherlands

Department of Health Services Research Maastricht University Medical Center Maastricht The Netherlands

Department of Respiratory Medicine School of Nutrition and Translational Research in Metabolism Maastricht University Medical Center Maastricht The Netherlands

Faculty of Health Promotion Sports and Leisure Studies School of Education University of Iceland Reykjavik Iceland

Faculty of Social and Health Sciences South Bohemian University Ceske Budejovice Czech Republic

Fondazione Policlinico Universitario Agostino Gemelli IRCCS Rome Italy

Foundation for Biomedical Research Getafe University Hospital Madrid Spain

Foundation for Diabetes Research in Older People Diabetes Frail Ltd Luton UK

Geriatrics Service University Hospital of Getafe Madrid Spain

Institute for Biomedicine of Aging FAU Erlangen Nürnberg Nürnberg Germany

Medical University of Graz Department of Internal Medicine Graz Austria

Medical University of Graz Division of Nephrology Department of Internal Medicine Graz Austria

PRISMATICS Poitiers University Hospital Poitiers France

Scientific Direction IRCCS INRCA Ancona Italy

The Icelandic Gerontological Research Center Landspitali University Hospital and University of Iceland Reykjavik Iceland

Università Cattolica del Sacro Cuore Rome Italy

University Hospital of Ramon Cajal IRYCIS Madrid Spain

University of Helsinki Clinicum Helsinki Finland; Helsinki University Hospital Medicine and Rehabilitation Helsinki Finland

University of Helsinki Department of General Practice and Primary Health Care Helsinki University Central Hospital Unit of Primary Health Care Helsinki Finland

University of Oulu Center for Life Course Health Research Oulu Finland

Zobrazit více v PubMed

Webber SC, Porter MM, Menec VH. Mobility in older adults: a comprehensive framework. Gerontologist. 2010;50(4):443–450. doi:10.1093/geront/gnq013 PubMed DOI

Bülow J, Ulijaszek SJ, Holm L. Rejuvenation of the term sarcopenia. J Appl Physiol. 2019;126(1):255–256. doi:10.1152/japplphysiol.00400.2018 PubMed DOI

Marzetti E, Calvani R, Tosato M, et al. Sarcopenia: an overview. Aging Clin Exp Res. 2017;29(1):11–17. doi:10.1007/s40520-016-0704-5 PubMed DOI

Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997;127(5):990S–991S. doi:10.1093/jn/127.5.990S PubMed DOI

Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(4):601. doi:10.1093/ageing/afz046 PubMed DOI PMC

Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle. 2016;7(5):512–514. doi:10.1002/jcsm.12147 PubMed DOI PMC

Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol a Biol Sci Med Sci. 2001;56(3):M146–156. doi:10.1093/gerona/56.3.m146 PubMed DOI

Morley JE, Vellas B, van Kan GA, et al. Frailty consensus: a call to action. J Am Med Dir Assoc. 2013;14(6):392–397. doi:10.1016/j.jamda.2013.03.022 PubMed DOI PMC

Hollman JH, McDade EM, Petersen RC. Normative spatiotemporal gait parameters in older adults. Gait Posture. 2011;34(1):111–118. doi:10.1016/j.gaitpost.2011.03.024 PubMed DOI PMC

Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–131. PubMed PMC

Mijnarends DM, Luiking YC, Halfens RJG, et al. Muscle, health and costs: a glance at their relationship. J Nutr Health Aging. 2018;22(7):766–773. doi:10.1007/s12603-018-1058-9 PubMed DOI PMC

Pahor M, Guralnik JM, Ambrosius WT, et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA. 2014;311(23):2387–2396. doi:10.1001/jama.2014.5616 PubMed DOI PMC

Macaluso A, De Vito G. Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol. 2004;91(4):450–472. doi:10.1007/s00421-003-0991-3 PubMed DOI

Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260. doi:10.3389/fphys.2012.00260 PubMed DOI PMC

Skelton DA, Greig CA, Davies JM, Young A. Strength, power and related functional ability of healthy people aged 65–89 years. Age Ageing. 1994;23(5):371–377. doi:10.1093/ageing/23.5.371 PubMed DOI

Kallman DA, Plato CC, Tobin JD. The role of muscle loss in the age-related decline of grip strength: cross-sectional and longitudinal perspectives. J Gerontol. 1990;45(3):M82–88. doi:10.1093/geronj/45.3.m82 PubMed DOI

Metter EJ, Conwit R, Tobin J, Fozard JL. Age-associated loss of power and strength in the upper extremities in women and men. J Gerontol a Biol Sci Med Sci. 1997;52(5):B267–276. doi:10.1093/gerona/52a.5.b267 PubMed DOI

Vandervoort AA, McComas AJ. Contractile changes in opposing muscles of the human ankle joint with aging. J Appl Physiol. 1986;61(1):361–367. doi:10.1152/jappl.1986.61.1.361 PubMed DOI

Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R. Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol. 2000;88(4):1321–1326. doi:10.1152/jappl.2000.88.4.1321 PubMed DOI

Winegard KJ, Hicks AL, Sale DG, Vandervoort AA. A 12-year follow-up study of ankle muscle function in older adults. J Gerontol a Biol Sci Med Sci. 1996;51(3):B202–207. doi:10.1093/gerona/51a.3.b202 PubMed DOI

Simoneau EM, Billot M, Martin A, Van Hoecke J. Antagonist mechanical contribution to resultant maximal torque at the ankle joint in young and older men. J Electromyogr Kinesiol. 2009;19(2):e123–131. doi:10.1016/j.jelekin.2007.11.006 PubMed DOI

Clark BC, Manini TM. Sarcopenia != Dynapenia. J Gerontol a Biol Sci Med Sci. 2008;63(8):829–834. doi:10.1093/gerona/63.8.829 PubMed DOI

Vandervoort AA. Aging of the human neuromuscular system. Muscle Nerve. 2002;25(1):17–25. doi:10.1002/mus.1215 PubMed DOI

Billot M, Duclay J, Simoneau-Buessinger EM, Ballay Y, Martin A. Is co-contraction responsible for the decline in maximal knee joint torque in older males? Age (Dordr). 2014;36(2):899–910. doi:10.1007/s11357-014-9616-5 PubMed DOI PMC

Bilodeau M, Erb MD, Nichols JM, Joiner KL, Weeks JB. Fatigue of elbow flexor muscles in younger and older adults. Muscle Nerve. 2001;24(1):98–106. doi:10.1002/1097-4598(200101)24:1<98::AID-MUS11>3.0.CO;2-D PubMed DOI

Jakobi JM, Rice CL. Voluntary muscle activation varies with age and muscle group. J Appl Physiol. 2002;93(2):457–462. doi:10.1152/japplphysiol.00012.2002 PubMed DOI

Morse CI, Thom JM, Davis MG, Fox KR, Birch KM, Narici MV. Reduced plantarflexor specific torque in the elderly is associated with a lower activation capacity. Eur J Appl Physiol. 2004;92(1–2):219–226. doi:10.1007/s00421-004-1056-y PubMed DOI

Stackhouse SK, Stevens JE, Lee SC, Pearce KM, Snyder-Mackler L, Binder-Macleod SA. Maximum voluntary activation in nonfatigued and fatigued muscle of young and elderly individuals. Phys Ther. 2001;81(5):1102–1109. doi:10.1093/ptj/81.5.1102 PubMed DOI

Stevens JE, Binder-Macleod S, Snyder-Mackler L. Characterization of the human quadriceps muscle in active elders. Arch Phys Med Rehabil. 2001;82(7):973–978. doi:10.1053/apmr.2001.23995 PubMed DOI

Stevens JE, Stackhouse SK, Binder-Macleod SA, Snyder-Mackler L. Are voluntary muscle activation deficits in older adults meaningful? Muscle Nerve. 2003;27(1):99–101. doi:10.1002/mus.10279 PubMed DOI

Yue GH, Ranganathan VK, Siemionow V, Liu JZ, Sahgal V. Older adults exhibit a reduced ability to fully activate their biceps brachii muscle. J Gerontol a Biol Sci Med Sci. 1999;54(5):M249–253. doi:10.1093/gerona/54.5.m249 PubMed DOI

Hortobágyi T, Del Olmo MF, Rothwell JC. Age reduces cortical reciprocal inhibition in humans. Exp Brain Res. 2006;171(3):322–329. doi:10.1007/s00221-005-0274-9 PubMed DOI

Kido A, Tanaka N, Stein RB. Spinal excitation and inhibition decrease as humans age. Can J Physiol Pharmacol. 2004;82(4):238–248. doi:10.1139/y04-017 PubMed DOI

Kamen G. Aging, resistance training, and motor unit discharge behavior. Can J Appl Physiol. 2005;30(3):341–351. doi:10.1139/h05-126 PubMed DOI

Lexell J, Taylor CC, Sjöström M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988;84(2–3):275–294. doi:10.1016/0022-510X(88)90132-3 PubMed DOI

Narici MV, Maganaris CN. Adaptability of elderly human muscles and tendons to increased loading. J Anat. 2006;208(4):433–443. doi:10.1111/j.1469-7580.2006.00548.x PubMed DOI PMC

Delbono O. Regulation of excitation contraction coupling by insulin-like growth factor-1 in aging skeletal muscle. J Nutr Health Aging. 2000;4(3):162–164. PubMed

Roubenoff R, Hughes VA. Sarcopenia: current concepts. J Gerontol a Biol Sci Med Sci. 2000;55(12):M716–724. doi:10.1093/gerona/55.12.m716 PubMed DOI

Welle S. Cellular and molecular basis of age-related sarcopenia. Can J Appl Physiol. 2002;27(1):19–41. doi:10.1139/h02-002 PubMed DOI

Bean JF, Kiely DK, Herman S, et al. The relationship between leg power and physical performance in mobility-limited older people. J Am Geriatr Soc. 2002;50(3):461–467. doi:10.1046/j.1532-5415.2002.50111.x PubMed DOI

Hyatt RH, Whitelaw MN, Bhat A, Scott S, Maxwell JD. Association of muscle strength with functional status of elderly people. Age Ageing. 1990;19(5):330–336. doi:10.1093/ageing/19.5.330 PubMed DOI

Reid KF, Fielding RA. Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc Sport Sci Rev. 2012;40(1):4–12. doi:10.1097/JES.0b013e31823b5f13 PubMed DOI PMC

Suzuki T, Bean JF, Fielding RA. Muscle power of the ankle flexors predicts functional performance in community-dwelling older women. J Am Geriatr Soc. 2001;49(9):1161–1167. doi:10.1046/j.1532-5415.2001.49232.x PubMed DOI

Bean JF, Leveille SG, Kiely DK, Bandinelli S, Guralnik JM, Ferrucci L. A comparison of leg power and leg strength within the InCHIANTI study: which influences mobility more? J Gerontol a Biol Sci Med Sci. 2003;58(8):728–733. doi:10.1093/gerona/58.8.m728 PubMed DOI

Byrne C, Faure C, Keene DJ, Lamb SE. Ageing, muscle power and physical function: a systematic review and implications for pragmatic training interventions. Sports Med. 2016;46(9):1311–1332. doi:10.1007/s40279-016-0489-x PubMed DOI

Rantanen T, Avela J. Leg extension power and walking speed in very old people living independently. J Gerontol a Biol Sci Med Sci. 1997;52(4):M225–231. doi:10.1093/gerona/52a.4.m225 PubMed DOI

Cruz-Jentoft AJ, Landi F, Topinková E, Michel J-P. Understanding sarcopenia as a geriatric syndrome. Curr Opin Clin Nutr Metab Care. 2010;13(1):1–7. doi:10.1097/MCO.0b013e328333c1c1 PubMed DOI

Lauretani F, Russo CR, Bandinelli S, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95(5):1851–1860. doi:10.1152/japplphysiol.00246.2003 PubMed DOI

Morley JE, Anker SD, von Haehling S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology-update 2014. J Cachexia Sarcopenia Muscle. 2014;5(4):253–259. doi:10.1007/s13539-014-0161-y PubMed DOI PMC

Kyle UG, Genton L, Hans D, Karsegard L, Slosman DO, Pichard C. Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years. Eur J Clin Nutr. 2001;55(8):663–672. doi:10.1038/sj.ejcn.1601198 PubMed DOI

Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol. 2000;89(1):81–88. doi:10.1152/jappl.2000.89.1.81 PubMed DOI

Gallagher D, Visser M, De Meersman RE, et al. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol. 1997;83(1):229–239. doi:10.1152/jappl.1997.83.1.229 PubMed DOI

Evans WJ. Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr. 2010;91(4):1123S–1127S. doi:10.3945/ajcn.2010.28608A PubMed DOI

Steffl M, Bohannon RW, Sontakova L, Tufano JJ, Shiells K, Holmerova I. Relationship between sarcopenia and physical activity in older people: a systematic review and meta-analysis. Clin Interv Aging. 2017;12:835–845. doi:10.2147/CIA.S132940 PubMed DOI PMC

Cerri AP, Bellelli G, Mazzone A, et al. Sarcopenia and malnutrition in acutely ill hospitalized elderly: prevalence and outcomes. Clin Nutr. 2015;34(4):745–751. doi:10.1016/j.clnu.2014.08.015 PubMed DOI

Du Y, Karvellas CJ, Baracos V, Williams DC, Khadaroo RG; Acute Care and Emergency Surgery (ACES) Group. Sarcopenia is a predictor of outcomes in very elderly patients undergoing emergency surgery. Surgery. 2014;156(3):521–527. doi:10.1016/j.surg.2014.04.027 PubMed DOI

Landi F, Liperoti R, Fusco D, et al. Sarcopenia and mortality among older nursing home residents. J Am Med Dir Assoc. 2012;13(2):121–126. doi:10.1016/j.jamda.2011.07.004 PubMed DOI

Landi F, Cruz-Jentoft AJ, Liperoti R, et al. Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing. 2013;42(2):203–209. doi:10.1093/ageing/afs194 PubMed DOI

Vetrano DL, Landi F, Volpato S, et al. Association of sarcopenia with short- and long-term mortality in older adults admitted to acute care wards: results from the CRIME study. J Gerontol a Biol Sci Med Sci. 2014;69(9):1154–1161. doi:10.1093/gerona/glu034 PubMed DOI

Tarantino U, Baldi J, Celi M, et al. Osteoporosis and sarcopenia: the connections. Aging Clin Exp Res. 2013;25(Suppl 1):S93–95. doi:10.1007/s40520-013-0097-7 PubMed DOI

Drey M, Sieber CC, Bertsch T, Bauer JM, Schmidmaier R. FiAT intervention group. Osteosarcopenia is more than sarcopenia and osteopenia alone. Aging Clin Exp Res. 2016;28(5):895–899. doi:10.1007/s40520-015-0494-1 PubMed DOI

Landi F, Liperoti R, Russo A, et al. Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr. 2012;31(5):652–658. doi:10.1016/j.clnu.2012.02.007 PubMed DOI

Tanimoto Y, Watanabe M, Sun W, et al. Sarcopenia and falls in community-dwelling elderly subjects in Japan: defining sarcopenia according to criteria of the European Working Group on sarcopenia in older people. Arch Gerontol Geriatr. 2014;59(2):295–299. doi:10.1016/j.archger.2014.04.016 PubMed DOI

Wu I-C, Lin -C-C, Hsiung CA, et al. Epidemiology of sarcopenia among community-dwelling older adults in Taiwan: a pooled analysis for a broader adoption of sarcopenia assessments. Geriatr Gerontol Int. 2014;14(Suppl 1):52–60. doi:10.1111/ggi.12193 PubMed DOI

Grossman DC, Curry SJ, Owens DK, et al.; US Preventive Services Task Force. Interventions to prevent falls in community-dwelling older adults: US preventive services task force recommendation statement. JAMA. 2018;319(16):1696–1704. doi:10.1001/jama.2018.3097. PubMed DOI

Cathers I, Day BL, Fitzpatrick RC. Otolith and canal reflexes in human standing. J Physiol (Lond). 2005;563(1):229–234. doi:10.1113/jphysiol.2004.079525 PubMed DOI PMC

Kavounoudias A, Roll R, Roll JP. The plantar sole is a “dynamometric map” for human balance control. Neuroreport. 1998;9(14):3247–3252. doi:10.1097/00001756-199810050-00021 PubMed DOI

Paulus WM, Straube A, Brandt T. Visual stabilization of posture. Physiological stimulus characteristics and clinical aspects. Brain. 1984;107(4):1143–1163. doi:10.1093/brain/107.4.1143 PubMed DOI

van Deursen RW, Simoneau GG. Foot and ankle sensory neuropathy, proprioception, and postural stability. J Orthop Sports Phys Ther. 1999;29(12):718–726. doi:10.2519/jospt.1999.29.12.718 PubMed DOI

Billot M, Handrigan GA, Simoneau M, Corbeil P, Teasdale N. Short term alteration of balance control after a reduction of plantar mechanoreceptor sensation through cooling. Neurosci Lett. 2013;535:40–44. doi:10.1016/j.neulet.2012.11.022 PubMed DOI

Billot M, Handrigan GA, Simoneau M, Teasdale N. Reduced plantar sole sensitivity induces balance control modifications to compensate ankle tendon vibration and vision deprivation. J Electromyogr Kinesiol. 2015;25(1):155–160. doi:10.1016/j.jelekin.2014.06.003 PubMed DOI

Hay L, Bard C, Fleury M, Teasdale N. Availability of visual and proprioceptive afferent messages and postural control in elderly adults. Exp Brain Res. 1996;108(1):129–139. doi:10.1007/BF00242910 PubMed DOI

Manchester D, Woollacott M, Zederbauer-Hylton N, Marin O. Visual, vestibular and somatosensory contributions to balance control in the older adult. J Gerontol. 1989;44(4):M118–127. doi:10.1093/geronj/44.4.M118 PubMed DOI

Woollacott MH. Systems contributing to balance disorders in older adults. J Gerontol a Biol Sci Med Sci. 2000;55(8):M424–428. doi:10.1093/gerona/55.8.m424 PubMed DOI

Aartolahti E, Häkkinen A, Lönnroos E, Kautiainen H, Sulkava R, Hartikainen S. Relationship between functional vision and balance and mobility performance in community-dwelling older adults. Aging Clin Exp Res. 2013;25(5):545–552. doi:10.1007/s40520-013-0120-z PubMed DOI

Saftari LN, Kwon O-S. Ageing vision and falls: a review. J Physiol Anthropol. 2018;37(1):11. doi:10.1186/s40101-018-0170-1 PubMed DOI PMC

Allum JHJ, Carpenter MG, Honegger F, Adkin AL, Bloem BR. Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man. J Physiol (Lond). 2002;542(2):643–663. doi:10.1113/jphysiol.2001.015644 PubMed DOI PMC

Billot M, Simoneau EM, Van Hoecke J, Martin A. Age-related relative increases in electromyography activity and torque according to the maximal capacity during upright standing. Eur J Appl Physiol. 2010;109(4):669–680. doi:10.1007/s00421-010-1397-7 PubMed DOI

Nagai K, Yamada M, Uemura K, Yamada Y, Ichihashi N, Tsuboyama T. Differences in muscle coactivation during postural control between healthy older and young adults. Arch Gerontol Geriatr. 2011;53(3):338–343. doi:10.1016/j.archger.2011.01.003 PubMed DOI

Cattagni T, Scaglioni G, Laroche D, Van Hoecke J, Gremeaux V, Martin A. Ankle muscle strength discriminates fallers from non-fallers. Front Aging Neurosci. 2014;6:336. doi:10.3389/fnagi.2014.00336 PubMed DOI PMC

Baudry S, Penzer F, Duchateau J. Vision and proprioception do not influence the excitability of the corticomotoneuronal pathway during upright standing in young and elderly adults. Neuroscience. 2014;268:247–254. doi:10.1016/j.neuroscience.2014.03.026 PubMed DOI

Martínez-Ramírez A, Lecumberri P, Gómez M, Rodriguez-Mañas L, García FJ, Izquierdo M. Frailty assessment based on wavelet analysis during quiet standing balance test. J Biomech. 2011;44(12):2213–2220. doi:10.1016/j.jbiomech.2011.06.007 PubMed DOI

Teasdale N, Bard C, LaRue J, Fleury M. On the cognitive penetrability of posture control. Exp Aging Res. 1993;19(1):1–13. doi:10.1080/03610739308253919 PubMed DOI

Kubicki A, Bonnetblanc F, Petrement G, Ballay Y, Mourey F. Delayed postural control during self-generated perturbations in the frail older adults. Clin Interv Aging. 2012;7:65–75. doi:10.2147/CIA.S28352 PubMed DOI PMC

Yeung SSY, Reijnierse EM, Pham VK, et al. Sarcopenia and its association with falls and fractures in older adults: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2019;10(3):485–500. doi:10.1002/jcsm.12411 PubMed DOI PMC

Zhang X, Huang P, Dou Q, et al. Falls among older adults with sarcopenia dwelling in nursing home or community: a meta-analysis. Clin Nutr. 2019. doi:10.1016/j.clnu.2019.01.002 PubMed DOI

Kim JH, Lim S, Choi SH, et al. Sarcopenia: an independent predictor of mortality in community-dwelling older Korean men. J Gerontol a Biol Sci Med Sci. 2014;69(10):1244–1252. doi:10.1093/gerona/glu050 PubMed DOI

Senior HE, Henwood TR, Beller EM, Mitchell GK, Keogh JWL. Prevalence and risk factors of sarcopenia among adults living in nursing homes. Maturitas. 2015;82(4):418–423. doi:10.1016/j.maturitas.2015.08.006 PubMed DOI

Lord SR, March LM, Cameron ID, et al. Differing risk factors for falls in nursing home and intermediate-care residents who can and cannot stand unaided. J Am Geriatr Soc. 2003;51(11):1645–1650. doi:10.1046/j.1532-5415.2003.51518.x PubMed DOI

Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol a Biol Sci Med Sci. 2006;61(10):1059–1064. doi:10.1093/gerona/61.10.1059 PubMed DOI

Feldman HA, Longcope C, Derby CA, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589–598. doi:10.1210/jcem.87.2.8201 PubMed DOI

Kojima G. Frailty as a predictor of future falls among community-dwelling older people: a systematic review and meta-analysis. J Am Med Dir Assoc. 2015;16(12):1027–1033. doi:10.1016/j.jamda.2015.06.018 PubMed DOI

Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752–762. doi:10.1016/S0140-6736(12)62167-9 PubMed DOI PMC

Laufer Y. Effect of age on characteristics of forward and backward gait at preferred and accelerated walking speed. J Gerontol a Biol Sci Med Sci. 2005;60(5):627–632. doi:10.1093/gerona/60.5.627 PubMed DOI

Samson MM, Crowe A, de Vreede PL, Dessens JA, Duursma SA, Verhaar HJ. Differences in gait parameters at a preferred walking speed in healthy subjects due to age, height and body weight. Aging (Milano). 2001;13(1):16–21. doi:10.1007/BF03351489 PubMed DOI

Beauchet O, Allali G, Annweiler C, et al. Gait variability among healthy adults: low and high stride-to-stride variability are both a reflection of gait stability. Gerontology. 2009;55(6):702–706. doi:10.1159/000235905 PubMed DOI

Dean JC, Alexander NB, Kuo AD. The effect of lateral stabilization on walking in young and old adults. IEEE Trans Biomed Eng. 2007;54(11):1919–1926. doi:10.1109/TBME.2007.901031 PubMed DOI

Schrager MA, Kelly VE, Price R, Ferrucci L, Shumway-Cook A. The effects of age on medio-lateral stability during normal and narrow base walking. Gait Posture. 2008;28(3):466–471. doi:10.1016/j.gaitpost.2008.02.009 PubMed DOI PMC

Blanke DJ, Hageman PA. Comparison of gait of young men and elderly men. Phys Ther. 1989;69(2):144–148. doi:10.1093/ptj/69.2.144 PubMed DOI

Ko S, Stenholm S, Metter EJ, Ferrucci L. Age-associated gait patterns and the role of lower extremity strength - results from the Baltimore longitudinal study of aging. Arch Gerontol Geriatr. 2012;55(2):474–479. doi:10.1016/j.archger.2012.04.004 PubMed DOI PMC

Ng SSM, Au KKC, Chan ELW, et al. Effect of acceleration and deceleration distance on the walking speed of people with chronic stroke. J Rehabil Med. 2016;48(8):666–670. doi:10.2340/16501977-2124 PubMed DOI

Wang C-Y, Chen T-R, Lin Y-H, Liu M-H, Chen Y-C. Gait speed measure: the effect of different measuring distances and the inclusion and exclusion of acceleration and deceleration. Percept Mot Skills. 2012;114(2):469–478. doi:10.2466/10.25.26.PMS.114.2.469-478 PubMed DOI

Callisaya ML, Beare R, Phan TG, et al. Brain structural change and gait decline: a longitudinal population-based study. J Am Geriatr Soc. 2013;61(7):1074–1079. doi:10.1111/jgs.12331 PubMed DOI

Peel NM, Alapatt LJ, Jones LV, Hubbard RE. The association between gait speed and cognitive status in community-dwelling older people: a systematic review and meta-analysis. J Gerontol a Biol Sci Med Sci. 2019;74(6):943–948. doi:10.1093/gerona/gly140 PubMed DOI

Maki BE. Gait changes in older adults: predictors of falls or indicators of fear. J Am Geriatr Soc. 1997;45(3):313–320. doi:10.1111/j.1532-5415.1997.tb00946.x PubMed DOI

Ferrucci L, Bandinelli S, Benvenuti E, et al. Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J Am Geriatr Soc. 2000;48(12):1618–1625. doi:10.1111/j.1532-5415.2000.tb03873.x PubMed DOI

Cesari M, Kritchevsky SB, Penninx BWHJ, et al. Prognostic value of usual gait speed in well-functioning older people–results from the health, aging and body composition study. J Am Geriatr Soc. 2005;53(10):1675–1680. doi:10.1111/j.1532-5415.2005.53501.x PubMed DOI

Newman AB, Simonsick EM, Naydeck BL, et al. Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. JAMA. 2006;295(17):2018–2026. doi:10.1001/jama.295.17.2018 PubMed DOI

Studenski S, Perera S, Wallace D, et al. Physical performance measures in the clinical setting. J Am Geriatr Soc. 2003;51(3):314–322. doi:10.1046/j.1532-5415.2003.51104.x PubMed DOI

Mielke MM, Roberts RO, Savica R, et al. Assessing the temporal relationship between cognition and gait: slow gait predicts cognitive decline in the Mayo Clinic Study of Aging. J Gerontol A Biol Sci Med Sci. 2013;68(8):929–937. doi: 10.1093/gerona/gls256 PubMed DOI PMC

Verghese J, Wang C, Lipton RB, Holtzer R, Xue X. Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry. 2007;78(9):929–935. doi:10.1136/jnnp.2006.106914 PubMed DOI PMC

Watson NL, Rosano C, Boudreau RM, et al. Executive function, memory, and gait speed decline in well-functioning older adults. J Gerontol a Biol Sci Med Sci. 2010;65(10):1093–1100. doi:10.1093/gerona/glq111 PubMed DOI PMC

Studenski S, Perera S, Patel K, et al. Gait speed and survival in older adults. JAMA. 2011;305(1):50–58. doi:10.1001/jama.2010.1923 PubMed DOI PMC

Fritz S, Lusardi M. White paper: “walking speed: the sixth vital sign.”. J Geriatr Phys Ther. 2009;32(2):46–49. doi:10.1519/00139143-200932020-00002 PubMed DOI

Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505–522. doi:10.1038/s41569-018-0064-2 PubMed DOI PMC

Phillips C, Fahimi A. Immune and neuroprotective effects of physical activity on the brain in depression. Front Neurosci. 2018;12:498. doi:10.3389/fnins.2018.00498 PubMed DOI PMC

Phillips C. Physical activity modulates common neuroplasticity substrates in major depressive and bipolar disorder. Neural Plast. 2017;2017:7014146. doi:10.1155/2017/7014146 PubMed DOI PMC

Paterson DH, Warburton DE. Physical activity and functional limitations in older adults: a systematic review related to Canada’s physical activity guidelines. Int J Behav Nutr Phys Act. 2010;7:38. doi:10.1186/1479-5868-7-38 PubMed DOI PMC

Taylor D. Physical activity is medicine for older adults. Postgrad Med J. 2014;90(1059):26–32. doi:10.1136/postgradmedj-2012-131366 PubMed DOI PMC

Amireault S, Baier JM, Spencer JR. Physical activity preferences among older adults: a systematic review. J Aging Phys Act. 2018;1–12. doi:10.1123/japa.2017-0234 PubMed DOI

Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, et al.; American College of Sports Medicine. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41(7):1510–1530. doi:10.1249/MSS.0b013e3181a0c95c. PubMed DOI

Macera CA, Cavanaugh A, Bellettiere J. State of the Art Review: physical Activity and Older Adults. Am J Lifestyle Med. 2017;11(1):42–57. doi:10.1177/1559827615571897 PubMed DOI PMC

WHO. Global Recommendations on Physical Activity for Health. Geneva, Switzerland: World Health Organization; 2010. PubMed

Bijnen FC, Feskens EJ, Caspersen CJ, Mosterd WL, Kromhout D. Age, period, and cohort effects on physical activity among elderly men during 10 years of follow-up: the Zutphen elderly study. J Gerontol a Biol Sci Med Sci. 1998;53(3):M235–241. doi:10.1093/gerona/53a.3.m235 PubMed DOI

Marzetti E, Calvani R, Tosato M, et al. Physical activity and exercise as countermeasures to physical frailty and sarcopenia. Aging Clin Exp Res. 2017;29(1):35–42. doi:10.1007/s40520-016-0705-4 PubMed DOI

Bherer L, Erickson KI, Liu-Ambrose T. A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J Aging Res. 2013;2013:657508. doi:10.1155/2013/657508 PubMed DOI PMC

Colcombe SJ, Erickson KI, Scalf PE, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol a Biol Sci Med Sci. 2006;61(11):1166–1170. doi:10.1093/gerona/61.11.1166 PubMed DOI

Engeroff T, Ingmann T, Banzer W. Physical activity throughout the adult life span and domain-specific cognitive function in old age: a systematic review of cross-sectional and longitudinal data. Sports Med. 2018;48(6):1405–1436. doi:10.1007/s40279-018-0920-6 PubMed DOI

Koščak Tivadar B. Physical activity improves cognition: possible explanations. Biogerontology. 2017;18(4):477–483. doi:10.1007/s10522-017-9708-6 PubMed DOI

Sáez de Asteasu ML, Martínez-Velilla N, Zambom-Ferraresi F, Casas-Herrero Á, Izquierdo M. Role of physical exercise on cognitive function in healthy older adults: a systematic review of randomized clinical trials. Ageing Res Rev. 2017;37:117–134. doi:10.1016/j.arr.2017.05.007 PubMed DOI

Hopewell S, Adedire O, Copsey BJ, et al. Multifactorial and multiple component interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2018;7:CD012221. doi:10.1002/14651858.CD012221.pub2 PubMed DOI PMC

Sherrington C, Fairhall NJ, Wallbank GK, et al. Exercise for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2019;1:CD012424. doi:10.1002/14651858.CD012424.pub2 PubMed DOI PMC

Chastin SFM, Buck C, Freiberger E, et al. Systematic literature review of determinants of sedentary behaviour in older adults: a DEDIPAC study. Int J Behav Nutr Phys Act. 2015;12:127. doi:10.1186/s12966-015-0292-3 PubMed DOI PMC

Kohl HW, Craig CL, Lambert EV, et al. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380(9838):294–305. doi:10.1016/S0140-6736(12)60898-8 PubMed DOI

Koster A, Caserotti P, Patel KV, et al. Association of sedentary time with mortality independent of moderate to vigorous physical activity. PLoS One. 2012;7(6):e37696. doi:10.1371/journal.pone.0037696 PubMed DOI PMC

Lee I-M, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–229. doi:10.1016/S0140-6736(12)61031-9 PubMed DOI PMC

Sánchez-Sánchez JL, Mañas A, García-García FJ, et al. Sedentary behaviour, physical activity, and sarcopenia among older adults in the TSHA: isotemporal substitution model. J Cachexia Sarcopenia Muscle. 2019;10(1):188–198. doi:10.1002/jcsm.12369 PubMed DOI PMC

Suetta C, Haddock B, Alcazar J, et al. The Copenhagen Sarcopenia Study: lean mass, strength, power, and physical function in a Danish cohort aged 20–93 years. J Cachexia Sarcopenia Muscle. 2019;10(6):1316–1329. doi:10.1002/jcsm.12477 PubMed DOI PMC

Wen CP, Wai JPM, Tsai MK, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet. 2011;378(9798):1244–1253. doi:10.1016/S0140-6736(11)60749-6 PubMed DOI

Franco MR, Tong A, Howard K, et al. Older people’s perspectives on participation in physical activity: a systematic review and thematic synthesis of qualitative literature. Br J Sports Med. 2015;49(19):1268–1276. doi:10.1136/bjsports-2014-094015 PubMed DOI

Sun F, Norman IJ, While AE. Physical activity in older people: a systematic review. BMC Public Health. 2013;13:449. doi:10.1186/1471-2458-13-449 PubMed DOI PMC

Petty RE, Cacioppo JT. The elaboration likelihood model of persuasion. Adv Exp Soc Psychol. 1986;19:123–205.

Hagger MS, Chatzisarantis NLD. An integrated behavior change model for physical activity. Exerc Sport Sci Rev. 2014;42(2):62–69. doi:10.1249/JES.0000000000000008 PubMed DOI

Zunft HJ, Friebe D, Seppelt B, et al. Perceived benefits and barriers to physical activity in a nationally representative sample in the European Union. Public Health Nutr. 1999;2(1A):153–160. doi:10.1017/S1368980099000208 PubMed DOI

Chang M, Leveille S, Cohen-Mansfield J, Guralnik JM. The association of physical-performance level with attitude toward exercise in older adults. J Aging Phys Act. 2003;11(2):254–264. doi:10.1123/japa.11.2.254 DOI

Lee -L-L, Arthur A, Avis M. Using self-efficacy theory to develop interventions that help older people overcome psychological barriers to physical activity: a discussion paper. Int J Nurs Stud. 2008;45(11):1690–1699. doi:10.1016/j.ijnurstu.2008.02.012 PubMed DOI

Sales M, Levinger P, Polman R. Relationships between self perceptions and physical activity behaviour, fear of falling, and physical function among older adults. Eur Rev Aging Phys Act. 2017;14:17. doi:10.1186/s11556-017-0185-3 PubMed DOI PMC

Baert V, Gorus E, Mets T, Geerts C, Bautmans I. Motivators and barriers for physical activity in the oldest old: a systematic review. Ageing Res Rev. 2011;10(4):464–474. doi:10.1016/j.arr.2011.04.001 PubMed DOI

Bauman AE, Reis RS, Sallis JF, et al. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012;380(9838):258–271. doi:10.1016/S0140-6736(12)60735-1 PubMed DOI

Newson RS, Kemps EB. Factors that promote and prevent exercise engagement in older adults. J Aging Health. 2007;19(3):470–481. doi:10.1177/0898264307300169 PubMed DOI

Lübs L, Peplies J, Drell C, Bammann K. Cross-sectional and longitudinal factors influencing physical activity of 65 to 75-year-olds: a pan European cohort study based on the survey of health, ageing and retirement in Europe (SHARE). BMC Geriatr. 2018;18(1):94. doi:10.1186/s12877-018-0781-8 PubMed DOI PMC

Kaleta D, Makowiec-Dabrowska T, Dziankowska-Zaborszczyk E, Jegier A. Physical activity and self-perceived health status. Int J Occup Med Environ Health. 2006;19(1):61–69. doi:10.2478/v10001-006-0005-x PubMed DOI

Loprinzi PD, Frith E. Association between perceived physical activity and cognitive function in older adults. Psychol Rep. 2019;122(1):108–116. doi:10.1177/0033294117750632 PubMed DOI

Elskamp ABM, Hartholt KA, Patka P, van Beeck EF, van der Cammen TJM. Why older people refuse to participate in falls prevention trials: a qualitative study. Exp Gerontol. 2012;47(4):342–345. doi:10.1016/j.exger.2012.01.006 PubMed DOI

Gardiner S, Glogowska M, Stoddart C, Pendlebury S, Lasserson D, Jackson D. Older people’s experiences of falling and perceived risk of falls in the community: a narrative synthesis of qualitative research. Int J Older People Nurs. 2017;12(4):e12151. doi:10.1111/opn.12151 PubMed DOI

Hill KD, Day L, Haines TP. What factors influence community-dwelling older people’s intent to undertake multifactorial fall prevention programs? Clin Interv Aging. 2014;9:2045–2053. doi:10.2147/CIA.S72679 PubMed DOI PMC

Yardley L, Donovan-Hall M, Francis K, Todd C. Attitudes and beliefs that predict older people’s intention to undertake strength and balance training. J Gerontol B Psychol Sci Soc Sci. 2007;62(2):P119–125. doi:10.1093/geronb/62.2.p119 PubMed DOI

McMahon S, Talley KM, Wyman JF. Older people’s perspectives on fall risk and fall prevention programs: a literature review. Int J Older People Nurs. 2011;6(4):289–298. doi:10.1111/j.1748-3743.2011.00299.x PubMed DOI PMC

Cruz-Jentoft AJ, Landi F, Schneider SM, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014;43(6):748–759. doi:10.1093/ageing/afu115 PubMed DOI PMC

Ekelund U, Steene-Johannessen J, Brown WJ, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388(10051):1302–1310. doi:10.1016/S0140-6736(16)30370-1 PubMed DOI

Marzetti E, Cesari M, Calvani R, et al. The “Sarcopenia and physical frailty in older people: multi-component treatment strategies” (SPRINTT) randomized controlled trial: case finding, screening and characteristics of eligible participants. Exp Gerontol. 2018;113:48–57. doi:10.1016/j.exger.2018.09.017 PubMed DOI

Landi F, Cesari M, Calvani R, et al. The “Sarcopenia and physical frailty in older people: multi-component treatment strategies” (SPRINTT) randomized controlled trial: design and methods. Aging Clin Exp Res. 2017;29(1):89–100. doi:10.1007/s40520-016-0715-2 PubMed DOI

Fielding RA, Rejeski WJ, Blair S, et al. The lifestyle interventions and independence for elders study: design and methods. J Gerontol a Biol Sci Med Sci. 2011;66(11):1226–1237. doi:10.1093/gerona/glr123 PubMed DOI PMC

Calvani R, Miccheli A, Landi F, et al. Current nutritional recommendations and novel dietary strategies to manage sarcopenia. J Frailty Aging. 2013;2(1):38–53. PubMed PMC

Azzolino D, Arosio B, Marzetti E, Calvani R, Cesari M. Nutritional status as a mediator of fatigue and its underlying mechanisms in older people. Nutrients. 2020;12(2):444. doi:10.3390/nu12020444 PubMed DOI PMC

Lorenzo-López L, Maseda A, de Labra C, Regueiro-Folgueira L, Rodríguez-Villamil JL, Millán-Calenti JC. Nutritional determinants of frailty in older adults: a systematic review. BMC Geriatr. 2017;17(1):108. doi:10.1186/s12877-017-0496-2 PubMed DOI PMC

Robinson SM, Reginster JY, Rizzoli R, et al. Does nutrition play a role in the prevention and management of sarcopenia? Clin Nutr. 2018;37(4):1121–1132. doi:10.1016/j.clnu.2017.08.016 PubMed DOI PMC

Cruz-Jentoft AJ, Kiesswetter E, Drey M, Sieber CC. Nutrition, frailty, and sarcopenia. Aging Clin Exp Res. 2017;29(1):43–48. doi:10.1007/s40520-016-0709-0 PubMed DOI

Ntanasi E, Yannakoulia M, Kosmidis M-H, et al. Adherence to Mediterranean Diet and Frailty. J Am Med Dir Assoc. 2018;19(4):315–322.e2. doi:10.1016/j.jamda.2017.11.005 PubMed DOI

Montiel-Rojas D, Nilsson A, Santoro A, et al. Dietary fibre may mitigate sarcopenia risk: findings from the NU-AGE cohort of older European adults. Nutrients. 2020;12(4):1075. doi:10.3390/nu12041075 PubMed DOI PMC

Behrouzi P, Grootswagers P, Keizer PLC, et al. Dietary intakes of vegetable protein, folate, and vitamins B-6 and B-12 are partially correlated with physical functioning of Dutch older adults using copula graphical models. J Nutr. 2020;150(3):634–643. doi:10.1093/jn/nxz269 PubMed DOI PMC

Ghosh TS, Rampelli S, Jeffery IB, et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut. 2020;69(7):1218–1228. doi:10.1136/gutjnl-2019-319654 PubMed DOI PMC

Dedeyne L, Dewinter L, Lovik A, Verschueren S, Tournoy J, Gielen E. Nutritional and physical exercise programs for older people: program format preferences and (dis)incentives to participate. Clin Interv Aging. 2018;13:1259–1266. doi:10.2147/CIA.S159819 PubMed DOI PMC

Hsieh T-J, Su S-C, Chen C-W, et al. Individualized home-based exercise and nutrition interventions improve frailty in older adults: a randomized controlled trial. Int J Behav Nutr Phys Act. 2019;16(1):119. doi:10.1186/s12966-019-0855-9 PubMed DOI PMC

Correia MITD, Hegazi RA, Higashiguchi T, et al. Evidence-based recommendations for addressing malnutrition in health care: an updated strategy from the feedM.E. Global study group. J Am Med Dir Assoc. 2014;15(8):544–550. doi:10.1016/j.jamda.2014.05.011 PubMed DOI

Bauer J, Biolo G, Cederholm T, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE study group. J Am Med Dir Assoc. 2013;14(8):542–559. doi:10.1016/j.jamda.2013.05.021 PubMed DOI

Deutz NEP, Bauer JM, Barazzoni R, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN expert group. Clin Nutr. 2014;33(6):929–936. doi:10.1016/j.clnu.2014.04.007 PubMed DOI PMC

American Geriatrics Society Workgroup on Vitamin D Supplementation for Older Adults. Recommendations abstracted from the American Geriatrics Society Consensus Statement on vitamin D for prevention of falls and their consequences. J Am Geriatr Soc. 2014;62(1):147–152. doi:10.1111/jgs.12631. PubMed DOI

Guralnik JM, Ferrucci L, Pieper CF, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol a Biol Sci Med Sci. 2000;55(4):M221–231. doi:10.1093/gerona/55.4.m221 PubMed DOI

Tinetti ME, Williams TF, Mayewski R. Fall risk index for elderly patients based on number of chronic disabilities. Am J Med. 1986;80(3):429–434. doi:10.1016/0002-9343(86)90717-5 PubMed DOI

Vellas BJ, Wayne SJ, Romero L, Baumgartner RN, Rubenstein LZ, Garry PJ. One-leg balance is an important predictor of injurious falls in older persons. J Am Geriatr Soc. 1997;45(6):735–738. doi:10.1111/j.1532-5415.1997.tb01479.x PubMed DOI

Berg K, Wood-Dauphine S, Williams JI, Gayton D. Measuring balance in the elderly: preliminary development of an instrument. Physiother Can. 2009. doi:10.3138/ptc.41.6.304 DOI

Rolland YM, Cesari M, Miller ME, Penninx BW, Atkinson HH, Pahor M. Reliability of the 400-m usual-pace walk test as an assessment of mobility limitation in older adults. J Am Geriatr Soc. 2004;52(6):972–976. doi:10.1111/j.1532-5415.2004.52267.x PubMed DOI

Harada ND, Chiu V, Stewart AL. Mobility-related function in older adults: assessment with a 6-minute walk test. Arch Phys Med Rehabil. 1999;80(7):837–841. doi:10.1016/s0003-9993(99)90236-8 PubMed DOI

Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–148. doi:10.1111/j.1532-5415.1991.tb01616.x PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...