• This record comes from PubMed

Tissue mRNA for S100A4, S100A6, S100A8, S100A9, S100A11 and S100P Proteins in Colorectal Neoplasia: A Pilot Study

. 2021 Jan 14 ; 26 (2) : . [epub] 20210114

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
academic project PROGRES Q40-15 Univerzita Karlova v Praze

Links

PubMed 33466593
PubMed Central PMC7828666
DOI 10.3390/molecules26020402
PII: molecules26020402
Knihovny.cz E-resources

S100 proteins are involved in the pathogenesis of sporadic colorectal carcinoma through different mechanisms. The aim of our study was to assess tissue mRNA encoding S100 proteins in patients with non-advanced and advanced colorectal adenoma. Mucosal biopsies were taken from the caecum, transverse colon and rectum during diagnostic and/or therapeutic colonoscopy. Another biopsy was obtained from adenomatous tissue in the advanced adenoma group. The tissue mRNA for each S100 protein (S100A4, S100A6, S100A8, S100A9, S100A11 and S100P) was investigated. Eighteen biopsies were obtained from the healthy mucosa in controls and the non-advanced adenoma group (six individuals in each group) and thirty biopsies in the advanced adenoma group (ten patients). Nine biopsies were obtained from advanced adenoma tissue (9/10 patients). Significant differences in mRNA investigated in the healthy mucosa were identified between (1) controls and the advanced adenoma group for S100A6 (p = 0.012), (2) controls and the non-advanced adenoma group for S100A8 (p = 0.033) and (3) controls and the advanced adenoma group for S100A11 (p = 0.005). In the advanced adenoma group, differences between the healthy mucosa and adenomatous tissue were found in S100A6 (p = 0.002), S100A8 (p = 0.002), S100A9 (p = 0.021) and S100A11 (p = 0.029). Abnormal mRNA expression for different S100 proteins was identified in the pathological adenomatous tissue as well as in the morphologically normal large intestinal mucosa.

See more in PubMed

Haigis K.M., editor. Molecular Pathogenesis of Colorectal Cancer. Springer; Berlin/Heidelberg, Germany: 2013.

Kohoutova D., Pejchal J., Bures J. Mitotic and apoptotic activity in colorectal neoplasia. BMC Gastroenterol. 2018;18:65. doi: 10.1186/s12876-018-0786-y. PubMed DOI PMC

Kohoutova D., Forstlova M., Moravkova P., Cyrany J., Bosak J., Smajs D., Rejchrt S., Bures J. Bacteriocin production by mucosal bacteria in current and previous colorectal neoplasia. BMC Cancer. 2020;20:39. doi: 10.1186/s12885-020-6512-5. PubMed DOI PMC

Nguyen L.H., Goel A., Chung D.C. Pathways of colorectal carcinogenesis. Gastroenterology. 2020;158:291–302. doi: 10.1053/j.gastro.2019.08.059. PubMed DOI PMC

Bresalier R.S. Colorectal cancer. In: Feldman M., Friedman L.S., Brandt L.J., editors. Sleisenger and Fordtran’s Gastrointestinal and Liver Disease. 11th ed. Elsevier; Philadelphia, PA, USA: 2021. pp. 2108–2152.

Stulík J., Osterreicher J., Koupilová K., Knízek J., Bures J., Jandík P., Langr F., Dedic K., Schäfer B.W., Heizmann C.W. Differential expression of the Ca2+ binding S100A6 protein in normal, preneoplastic and neoplastic colon mucosa. Eur. J. Cancer. 2000;36:1050–1059. doi: 10.1016/S0959-8049(00)00043-5. PubMed DOI

Wang W., Yu S., Huang S., Deng R., Ding Y., Wu Y., Li X., Wang A., Wang S., Chen W., et al. A complex role for calcium signaling in colorectal cancer development and progression. Mol. Cancer Res. 2019;17:2145–2153. doi: 10.1158/1541-7786.MCR-19-0429. PubMed DOI

Donato R., Cannon B.R., Sorci G., Riuzzi F., Hsu K., Weber D.J., Geczy C.L. Functions of S100 proteins. Curr. Mol. Med. 2013;13:1, 24–57. doi: 10.2174/156652413804486214. PubMed DOI PMC

Chen H., Xu C., Jin Q., Liu Z. S100 protein family in human cancer. Am. J. Cancer Res. 2014;4:89–115. PubMed PMC

Moravkova P., Kohoutova D., Rejchrt S., Cyrany J., Bures J. Role of S100 proteins in colorectal carcinogenesis. Gastroenterol. Res. Pract. 2016;2016:2632703. doi: 10.1155/2016/2632703. PubMed DOI PMC

Moravkova P., Kohoutova D., Vavrova J., Bures J. Serum S100A6, S100A8, S100A9 and S100A11 proteins in colorectal neoplasia: Results of a single centre prospective study. Scand. J. Clin. Lab. Investig. 2020;80:173–178. doi: 10.1080/00365513.2019.1704050. PubMed DOI

Stulík J., Kovárová H., Macela A., Bures J., Jandík P., Langr F., Otto A., Thiede B., Jungblut P. Overexpression of calcium-binding protein calgranulin B in colonic mucosal diseases. Clin. Chim. Acta. 1997;265:41–55. doi: 10.1016/S0009-8981(97)00101-0. PubMed DOI

Stulík J., Osterreicher J., Koupilová K., Knízek J., Macela A., Bures J., Jandík P., Langr F., Dedic K., Jungblut P.R. The analysis of S100A9 and S100A8 expression in matched sets of macroscopically normal colon mucosa and colorectal carcinoma: The S100A9 and S100A8 positive cells underlie and invade tumor mass. Electrophoresis. 1999;20:1047–1054. doi: 10.1002/(SICI)1522-2683(19990101)20:4/5<1047::AID-ELPS1047>3.0.CO;2-E. PubMed DOI

Stulík J., Koupilova K., Osterreicher J., Knízek J., Macela A., Bures J., Jandík P., Langr F., Dedic K., Jungblut P.R. Protein abundance alterations in matched sets of macroscopically normal colon mucosa and colorectal carcinoma. Electrophoresis. 1999;20:3638–3646. PubMed

Kang Y.G., Jung C.K., Lee A., Kang W.K., Oh S.T., Kang C.S. Prognostic significance of S100A4 mRNA and protein expression in colorectal cancer. J. Surg. Oncol. 2012;105:119–124. doi: 10.1002/jso.22070. PubMed DOI

Masuda T., Ishikawa T., Mogushi K., Okazaki S., Ishiguro M., Iida S., Mizushima H., Tanaka H., Uetake H., Sugihara K. Overexpression of the S100A2 protein as a prognostic marker for patients with stage II and III colorectal cancer. Int. J. Oncol. 2016;48:975–982. doi: 10.3892/ijo.2016.3329. PubMed DOI PMC

Goh J.Y., Feng M., Wang W., Oguz G., Yatim S.M.J.M., Lee P.L., Bao Y., Lim T.H., Wang P., Tam W.L., et al. Chromosome 1q21.3 amplification is a trackable biomarker and actionable target for breast cancer recurrence. Nat. Med. 2017;23:1319–1330. doi: 10.1038/nm.4405. PubMed DOI

Schäfer B.W., Wicki R., Engelkamp D., Mattei M.G., Heizmann C.W. Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: Rationale for a new nomenclature of the S100 calcium-binding protein family. Genomics. 1995;25:638–643. doi: 10.1016/0888-7543(95)80005-7. PubMed DOI

Orlando G., Law P.J., Cornish A.J., Dobbins S.E., Chubb D., Broderick P., Litchfield K., Hariri F., Pastinen T., Osborne C.S., et al. Promoter capture Hi-C-based identification of recurrent noncoding mutations in colorectal cancer. Nat. Genet. 2018;50:1375–1380. doi: 10.1038/s41588-018-0211-z. PubMed DOI PMC

Gibadulinova A., Oveckova I., Parkkila S., Pastorekova S., Pastorek J. Key promoter elements involved in transcriptional activation of the cancer-related gene coding for S100P calcium-binding protein. Oncol. Rep. 2008;20:391–396. PubMed

Nakamura N., Takenaga K. Hypomethylation of the metastasis-associated S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. Clin. Exp. Metastasis. 1998;16:471–479. doi: 10.1023/A:1006589626307. PubMed DOI

Wang X.H., Zhang L.H., Zhong X.Y., Xing X.F., Liu Y.Q., Niu Z.J., Peng Y., Du H., Zhang G.G., Hu Y., et al. S100A6 overexpression is associated with poor prognosis and is epigenetically up-regulated in gastric cancer. Am. J. Pathol. 2010;177:586–597. doi: 10.2353/ajpath.2010.091217. PubMed DOI PMC

Liu K., Zhang Y., Zhang C., Zhang Q., Li J., Xiao F., Li Y., Zhang R., Dou D., Liang J., et al. Methylation of S100A8 is a promising diagnosis and prognostic marker in hepatocellular carcinoma. Oncotarget. 2016;7:56798–56810. doi: 10.18632/oncotarget.10792. PubMed DOI PMC

Zhang Y., Fang L., Zang Y., Xu Z. Identification of Core Genes and Key Pathways via Integrated Analysis of Gene Expression and DNA Methylation Profiles in Bladder Cancer. Med. Sci. Monit. 2018;24:3024–3033. doi: 10.12659/MSM.909514. PubMed DOI PMC

Kim J.H., Kim C.N., Kim S.Y., Lee J.S., Cho D., Kim J.W., Yoon S.Y. Enhanced S100A4 protein expression is clinicopathologically significant to metastatic potential and p53 dysfunction in colorectal cancer. Oncol. Rep. 2009;22:41–47. doi: 10.3892/or_00000404. PubMed DOI

Sorci G., Riuzzi F., Arcuri C., Bianchi R., Brozzi F., Tubaro C., Giambanco I. S100B’s double life: Intracellular regulator and extracellular signal. Biochim. Biophys. Acta. 2009;1793:1008–1022. doi: 10.1016/j.bbamcr.2008.11.009. PubMed DOI

Schmidt-Hansen B., Ornås D., Grigorian M., Klingelhöfer J., Tulchinsky E., Lukanidin E., Ambartsumian N. Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity. Oncogene. 2004;23:5487–5495. doi: 10.1038/sj.onc.1207720. PubMed DOI

Huang L., Xu Y., Cai G., Guan Z., Cai S. Downregulation of S100A4 expression by RNA interference suppresses cell growth and invasion in human colorectal cancer cells. Oncol. Rep. 2012;27:917–922. doi: 10.3892/or.2011.1598. PubMed DOI PMC

Marenholz I., Heizmann C.W., Fritz G. S100 proteins in mouse and man: From evolution to function and pathology (including an update of the nomenclature) Biochem. Biophys. Res. Commun. 2004;322:1111–1122. doi: 10.1016/j.bbrc.2004.07.096. PubMed DOI

Donato R., Sorci G., Giambanco I. S100A6 protein: Functional roles. Cell Mol. Life Sci. 2017;74:2749–2760. doi: 10.1007/s00018-017-2526-9. PubMed DOI PMC

Feng S., Zhou Q., Yang B., Li Q., Liu A., Zhao Y., Qiu C., Ge J., Zhai H. The effect of S100A6 on nuclear translocation of CacyBP/SIP in colon cancer cells. PLoS ONE. 2018;13:e0192208. doi: 10.1371/journal.pone.0192208. PubMed DOI PMC

Kilańczyk E., Graczyk A., Ostrowska H., Kasacka I., Leśniak W., Filipek A. S100A6 is transcriptionally regulated by β-catenin and interacts with a novel target, lamin A/C, in colorectal cancer cells. Cell Calcium. 2012;51:470–477. doi: 10.1016/j.ceca.2012.04.005. PubMed DOI

Króliczak W., Pietrzak M., Puzianowska-Kuznicka M. P53-dependent suppression of the human calcyclin gene (S100A6): The role of Sp1 and of NFkappaB. Acta Biochim. Pol. 2008;55:559–570. doi: 10.18388/abp.2008_3062. PubMed DOI

Komatsu K., Andoh A., Ishiguro S., Suzuki N., Hunai H., Kobune-Fujiwara Y., Kameyama M., Miyoshi J., Akedo H., Nakamura H. Increased expression of S100A6 (Calcyclin), a calcium-binding protein of the S100 family, in human colorectal adenocarcinomas. Clin. Cancer Res. 2000;6:172–177. PubMed

Gebhardt C., Németh J., Angel P., Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem. Pharmacol. 2006;72:1622–1631. doi: 10.1016/j.bcp.2006.05.017. PubMed DOI

Ehrchen J.M., Sunderkötter C., Foell D., Vogl T., Roth J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J. Leukoc. Biol. 2009;86:557–566. doi: 10.1189/jlb.1008647. PubMed DOI

Huang M., Wu R., Chen L., Peng Q., Li S., Zhang Y., Zhou L., Duan L. S100A9 regulates MDSCs-mediated immune suppression via the RAGE and TLR4 signaling pathways in colorectal carcinoma. Front. Immunol. 2019;10:2243. doi: 10.3389/fimmu.2019.02243. PubMed DOI PMC

Ghavami S., Kerkhoff C., Los M., Hashemi M., Sorg C., Karami-Tehrani F. Mechanism of apoptosis induced by S100A8/A9 in colon cancer cell lines: The role of ROS and the effect of metal ions. J. Leukoc. Biol. 2004;76:169–175. doi: 10.1189/jlb.0903435. PubMed DOI

Ghavami S., Rashedi I., Dattilo B.M., Eshraghi M., Chazin W.J., Hashemi M., Wesselborg S., Kerkhoff C., Los M. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J. Leukoc. Biol. 2008;83:1484–1492. doi: 10.1189/jlb.0607397. PubMed DOI PMC

Luley K., Noack F., Lehnert H., Homann N. Local calprotectin production in colorectal cancer and polyps: Active neutrophil recruitment in carcinogenesis. Int. J. Color. Dis. 2011;26:603–607. doi: 10.1007/s00384-011-1165-0. PubMed DOI

Moris D., Spartalis E., Angelou A., Margonis G.A., Papalambros A., Petrou A., Athanasiou A., Schizas D., Dimitroulis D., Felekouras E. The value of calprotectin S100A8/A9 complex as a biomarker in colorectal cancer: A systematic review. J. BUON. 2016;21:859–866. PubMed

Turvill J., Aghahoseini A., Sivarajasingham N., Abbas K., Choudhry M., Polyzois K., Lasithiotakis K., Volanaki D., Kim B., Langlands F., et al. Faecal calprotectin in patients with suspected colorectal cancer: A diagnostic accuracy study. Br. J. Gen. Pract. 2016;66:e499–e506. doi: 10.3399/bjgp16X685645. PubMed DOI PMC

Andrés Cerezo L., Šumová B., Prajzlerová K., Veigl D., Damgaard D., Nielsen C.H., Pavelka K., Vencovský J., Šenolt L. Calgizzarin (S100A11): A novel inflammatory mediator associated with disease activity of rheumatoid arthritis. Arthritis Res. Ther. 2017;19:79. doi: 10.1186/s13075-017-1288-y. PubMed DOI PMC

Anania M.C., Miranda C., Vizioli M.G., Mazzoni M., Cleris L., Pagliardini S., Manenti G., Borrello M.G., Pierotti M.A., Greco A. S100A11 overexpression contributes to the malignant phenotype of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 2013;98:1591–1600. doi: 10.1210/jc.2013-1652. PubMed DOI

Li Y., Zhang J. Expression of S100A11 is a prognostic factor for disease-free survival and overall survival in patients with high-grade serous ovarian vancer. Appl. Immunohistochem. Mol. Morphol. 2017;25:110–116. doi: 10.1097/PAI.0000000000000275. PubMed DOI

Zhang M., Zheng S., Jing C., Zhang J., Shen H., Xu X., Lin J., Zhang B. S100A11 promotes TGF-β1-induced epithelial-mesenchymal transition through SMAD2/3 signaling pathway in intrahepatic cholangiocarcinoma. Future Oncol. 2018;14:837–847. doi: 10.2217/fon-2017-0534. PubMed DOI

Ji Y.F., Li T., Jiang F., Ni W.K., Guan C.Q., Liu Z.X., Lu C.H., Ni R.Z., Wu W., Xiao M.B. Correlation between S100A11 and the TGF-β1/SMAD4 pathway and its effects on the proliferation and apoptosis of pancreatic cancer cell line PANC-1. Mol. Cell. Biochem. 2019;450:53–64. doi: 10.1007/s11010-018-3372-2. PubMed DOI

Xiao M., Li T., Ji Y., Jiang F., Ni W., Zhu J., Bao B., Lu C., Ni R. S100A11 promotes human pancreatic cancer PANC-1 cell proliferation and is involved in the PI3K/AKT signaling pathway. Oncol. Lett. 2018;15:175–182. doi: 10.3892/ol.2017.7295. PubMed DOI PMC

Koh S.A., Lee K.H. HGF-mediated S100A11 overexpression enhances proliferation and invasion of gastric cancer. Am. J. Transl. Res. 2018;10:3385–3394. PubMed PMC

Takamatsu H., Yamamoto K.I., Tomonobu N., Murata H., Inoue Y., Yamauchi A., Sumardika I.W., Chen Y., Kinoshita R., Yamamura M., et al. Extracellular S100A11 plays a critical role in spread of the fibroblast population in pancreatic cancers. Oncol. Res. 2019;27:713–727. doi: 10.3727/096504018X15433161908259. PubMed DOI PMC

Melle C., Ernst G., Schimmel B., Bleul A., Mothes H., Kaufmann R., Settmacher U., Von Eggeling F. Different expression of calgizzarin (S100A11) in normal colonic epithelium, adenoma and colorectal carcinoma. Int. J. Oncol. 2006;28:195–200. doi: 10.3892/ijo.28.1.195. PubMed DOI

Chiang J.M., Tan R., Wang J.Y., Chen J.S., Lee Y.S., Hsieh P.S., Changchien C.R., Chen J.R. S100P, a calcium-binding protein, is preferentially associated with the growth of polypoid tumors in colorectal cancer. Int. J. Mol. Med. 2015;35:675–683. doi: 10.3892/ijmm.2015.2065. PubMed DOI PMC

Zuo Z., Zhang P., Lin F., Shang W., Bi R., Lu F., Wu J., Jiang L. Interplay between Trx-1 and S100P promotes colorectal cancer cell epithelial-mesenchymal transition by up-regulating S100A4 through AKT activation. J. Cell. Mol. Med. 2018;22:2430–2441. doi: 10.1111/jcmm.13541. PubMed DOI PMC

Wang Q., Zhang Y.N., Lin G.L., Qiu H.Z., Wu B., Wu H.Y., Zhao Y., Chen Y.J., Lu C.M. S100P, a potential novel prognostic marker in colorectal cancer. Oncol. Rep. 2012;28:303–310. doi: 10.3892/or.2012.1794. PubMed DOI

Lam F.F., Jankova L., Dent O.F., Molloy M.P., Kwun S.Y., Clarke C., Chapuis P., Robertson G., Beale P., Clarke S., et al. Identification of distinctive protein expression patterns in colorectal adenoma. Proteom. Clin. Appl. 2010;4:60–70. doi: 10.1002/prca.200900084. PubMed DOI

Mahajan D., Downs-Kelly E., Liu X., Pai R.K., Patil D.T., Rybicki L., Bennett A.E., Plesec T., Cummings O., Rex D., et al. Reproducibility of the villous component and high-grade dysplasia in colorectal adenomas <1 cm: Implications for endoscopic surveillance. Am. J. Surg. Pathol. 2013;37:427–433. doi: 10.1097/PAS.0b013e31826cf50f. PubMed DOI

Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI

Bustin S.A., Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin. Sci. (Lond.) 2005;109:365–379. doi: 10.1042/CS20050086. PubMed DOI

Rao X., Huang X., Zhou Z., Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinform. Biomath. 2013;3:71–85. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...