Tocopherol controls D1 amino acid oxidation by oxygen radicals in Photosystem II

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid33479170

Photosystem II (PSII) is an intrinsic membrane protein complex that functions as a light-driven water:plastoquinone oxidoreductase in oxygenic photosynthesis. Electron transport in PSII is associated with formation of reactive oxygen species (ROS) responsible for oxidative modifications of PSII proteins. In this study, oxidative modifications of the D1 and D2 proteins by the superoxide anion (O2•-) and the hydroxyl (HO•) radicals were studied in WT and a tocopherol cyclase (vte1) mutant, which is deficient in the lipid-soluble antioxidant α-tocopherol. In the absence of this antioxidant, high-resolution tandem mass spectrometry was used to identify oxidation of D1:130E to hydroxyglutamic acid by O2•- at the PheoD1 site. Additionally, D1:246Y was modified to either tyrosine hydroperoxide or dihydroxyphenylalanine by O2•- and HO•, respectively, in the vicinity of the nonheme iron. We propose that α-tocopherol is localized near PheoD1 and the nonheme iron, with its chromanol head exposed to the lipid-water interface. This helps to prevent oxidative modification of the amino acid's hydrogen that is bonded to PheoD1 and the nonheme iron (via bicarbonate), and thus protects electron transport in PSII from ROS damage.

Zobrazit více v PubMed

Rappaport F., Diner B. A., Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in photosystem II. Coord. Chem. Rev. 252, 259–272 (2008).

Dau H., Zaharieva I., Haumann M., Recent developments in research on water oxidation by photosystem II. Curr. Opin. Chem. Biol. 16, 3–10 (2012). PubMed

Vinyard D. J., Brudvig G. W., “Progress toward a molecular mechanism of water oxidation in photosystem II” in Annual Review of Physical Chemistry, Johnson M. A., Martinez T. J., Eds. (Annual Reviews, Palo Alto, 2017), vol. 68, pp. 101–116. PubMed

van Eerden F. J., et al. , Molecular dynamics of photosystem II embedded in the thylakoid membrane. J. Phys. Chem. B 121, 3237–3249 (2017). PubMed

Cox N., Pantazis D. A., Lubitz W., Current understanding of the mechanism of water oxidation in photosystem II and its relation to XFEL Data. Annu. Rev. Biochem. 89, 795–820 (2020). PubMed

Triantaphylidès C., Havaux M., Singlet oxygen in plants: Production, detoxification and signaling. Trends Plant Sci. 14, 219–228 (2009). PubMed

Pospíšil P., Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta 1817, 218–231 (2012). PubMed

Fischer B. B., Hideg É., Krieger-Liszkay A., Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid. Redox Signal. 18, 2145–2162 (2013). PubMed

Pospíšil P., Production of reactive oxygen species by photosystem II. Biochim. Biophys. Acta 1787, 1151–1160 (2009). PubMed

Kale R., et al. , Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II. Proc. Natl. Acad. Sci. U.S.A. 114, 2988–2993 (2017). PubMed PMC

Fine P. L., Frasch W. D., The oxygen-evolving complex requires chloride to prevent hydrogen peroxide formation. Biochemistry 31, 12204–12210 (1992). PubMed

Arató A., Bondarava N., Krieger-Liszkay A., Production of reactive oxygen species in chloride- and calcium-depleted photosystem II and their involvement in photoinhibition. Biochim. Biophys. Acta 1608, 171–180 (2004). PubMed

Pospíšil P., Arató A., Krieger-Liszkay A., Rutherford A. W., Hydroxyl radical generation by photosystem II. Biochemistry 43, 6783–6792 (2004). PubMed

Takagi D., Takumi S., Hashiguchi M., Sejima T., Miyake C., Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant Physiol. 171, 1626–1634 (2016). PubMed PMC

Pinnola A., Bassi R., Molecular mechanisms involved in plant photoprotection. Biochem. Soc. Trans. 46, 467–482 (2018). PubMed

Szymanska R., Slesak I., Orzechowska A., Kruk J., Physiological and biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot. 139, 165–177 (2017).

Falk J., Munné-Bosch S., Tocochromanol functions in plants: Antioxidation and beyond. J. Exp. Bot. 61, 1549–1566 (2010). PubMed

Yamamoto Y., Quality control of photosystem II. Plant Cell Physiol. 42, 121–128 (2001). PubMed

Lupínková L., Komenda J., Oxidative modifications of the photosystem II D1 protein by reactive oxygen species: From isolated protein to cyanobacterial cells. Photochem. Photobiol. 79, 152–162 (2004). PubMed

Edelman M., Mattoo A. K., D1-protein dynamics in photosystem II: The lingering enigma. Photosynth. Res. 98, 609–620 (2008). PubMed

Kumar A., Prasad A., Sedlářová M., Pospíšil P., Characterization of protein radicals in Arabidopsis. Front. Physiol. 10, 958 (2019). PubMed PMC

Frankel L. K., Sallans L., Limbach P. A., Bricker T. M., Identification of oxidized amino acid residues in the vicinity of the Mn(4)CaO(5) cluster of photosystem II: Implications for the identification of oxygen channels within the photosystem. Biochemistry 51, 6371–6377 (2012). PubMed PMC

Frankel L. K., Sallans L., Limbach P. A., Bricker T. M., Oxidized amino acid residues in the vicinity of Q(A) and Pheo(D1) of the photosystem II reaction center: Putative generation sites of reducing-side reactive oxygen species. PLoS One 8, e58042 (2013). PubMed PMC

Weisz D. A., Gross M. L., Pakrasi H. B., Reactive oxygen species leave a damage trail that reveals water channels in Photosystem II. Sci. Adv. 3, eaao3013 (2017). PubMed PMC

Sharma J., et al. , Primary structure characterization of the photosystem II D1 and D2 subunits. J. Biol. Chem. 272, 33158–33166 (1997). PubMed

Greenberg B. M., Gaba V., Mattoo A. K., Edelman M., Identification of a primary in vivo degradation product of the rapidly-turning-over 32 kD protein of photosystem II. EMBO J. 6, 2865–2869 (1987). PubMed PMC

Kruk J., Holländer-Czytko H., Oettmeier W., Trebst A., Tocopherol as singlet oxygen scavenger in photosystem II. J. Plant Physiol. 162, 749–757 (2005). PubMed

Price M., Reiners J. J., Santiago A. M., Kessel D., Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy. Photochem. Photobiol. 85, 1177–1181 (2009). PubMed PMC

Pospíšil P., Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Front. Plant Sci. 7, 1950 (2016). PubMed PMC

Pospíšil P., The role of metals in production and scavenging of reactive oxygen species in photosystem II. Plant Cell Physiol. 55, 1224–1232 (2014). PubMed

Davies M. J., Protein oxidation and peroxidation. Biochem. J. 473, 805–825 (2016). PubMed PMC

Bachi A., Dalle-Donne I., Scaloni A., Redox proteomics: Chemical principles, methodological approaches and biological/biomedical promises. Chem. Rev. 113, 596–698 (2013). PubMed

Das A. B., et al. , Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition. Free Radic. Biol. Med. 70, 86–95 (2014). PubMed

Wright A., Bubb W. A., Hawkins C. L., Davies M. J., Singlet oxygen-mediated protein oxidation: Evidence for the formation of reactive side chain peroxides on tyrosine residues. Photochem. Photobiol. 76, 35–46 (2002). PubMed

Krasnovsky A. A., Jr, Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies. Membr. Cell Biol. 12, 665–690 (1998). PubMed

Marquardt D., et al. , Tocopherol activity correlates with its location in a membrane: A new perspective on the antioxidant vitamin E. J. Am. Chem. Soc. 135, 7523–7533 (2013). PubMed

Fukuzawa K., Ikebata W., Shibata A., Sakanaka T., Urano S., “Location of alpha-tocopherol in phospholipid-vesicles and its dynamics in inhibiting lipid-peroxidation” in Vitamin E: Its Usefulness in Health and in Curing Diseases, Mino M., Nakamura H., Diplock A. T., Kayden H., Eds. (Karger, 1993), pp. 31–40.

Katsaras J., Stinson R. H., Davis J. H., Kendall E. J., Location of two antioxidants in oriented model membranes. Small-angle X-ray diffraction study. Biophys. J. 59, 645–653 (1991). PubMed PMC

Vanginkel G., et al. , Impact of oxidized lipids and antioxidants, such as vitamin-E and lazaroids, on the structure and dynamics of unsaturated membranes. J. Chem. Soc. Faraday Trans. 88, 1901–1912 (1992).

Sugiura M., et al. , Modification of the pheophytin redox potential in Thermosynechococcus elongatus photosystem II with PsbA3 as D1. Biochim. Biophys. Acta 1837, 139–148 (2014). PubMed

Saito K., Rutherford A. W., Ishikita H., Mechanism of proton-coupled quinone reduction in Photosystem II. Proc. Natl. Acad. Sci. U.S.A. 110, 954–959 (2013). PubMed PMC

Brinkert K., De Causmaecker S., Krieger-Liszkay A., Fantuzzi A., Rutherford A. W., Bicarbonate-induced redox tuning in photosystem II for regulation and protection. Proc. Natl. Acad. Sci. U.S.A. 113, 12144–12149 (2016). PubMed PMC

De Causmaecker S., Douglass J. S., Fantuzzi A., Nitschke W., Rutherford A. W., Energetics of the exchangeable quinone, QB, in photosystem II. Proc. Natl. Acad. Sci. U.S.A. 116, 19458–19463 (2019). PubMed PMC

Porfirova S., Bergmuller E., Tropf S., Lemke R., Dormann P., Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 99, 12495–12500 (2002). PubMed PMC

Casazza A. P., Tarantino D., Soave C., Preparation and functional characterization of thylakoids from Arabidopsis thaliana. Photosynth. Res. 68, 175–180 (2001). PubMed

Kumar A., Prasad A., Sedlářová M., Pospíšil P., Data on detection of singlet oxygen, hydroxyl radical and organic radical in Arabidopsis thaliana. Data Brief 21, 2246–2252 (2018). PubMed PMC

Prasad A., Sedlářová M., Balukova A., Rác M., Pospíšil P., Reactive oxygen species as a response to wounding: In vivo imaging in Arabidopsis thaliana. Front. Plant Sci. 10, 1660 (2020). PubMed PMC

Kumar A., Prasad A., Sedlářová M., Pospíšil P., Organic radical imaging in plants: Focus on protein radicals. Free Radic. Biol. Med. 130, 568–575 (2019). PubMed

Duling D. R., Simulation of multiple isotropic spin-trap EPR spectra. J. Magn. Reson. B. 104, 105–110 (1994). PubMed

Schägger H., Tricine-SDS-PAGE. Nat. Protoc. 1, 16–22 (2006). PubMed

Rabilloud T., Vincon M., Garin J., Micropreparative one- and two-dimensional electrophoresis: Improvement with new photopolymerization systems. Electrophoresis 16, 1414–1422 (1995). PubMed

Sun G., Anderson V. E., Prevention of artifactual protein oxidation generated during sodium dodecyl sulfate-gel electrophoresis. Electrophoresis 25, 959–965 (2004). PubMed

Xu H., Freitas M. A., A mass accuracy sensitive probability based scoring algorithm for database searching of tandem mass spectrometry data. BMC Bioinformatics 8, 133 (2007). PubMed PMC

Xu H., Freitas M. A., MassMatrix: A database search program for rapid characterization of proteins and peptides from tandem mass spectrometry data. Proteomics 9, 1548–1555 (2009). PubMed PMC

Xu G., Chance M. R., Radiolytic modification and reactivity of amino acid residues serving as structural probes for protein footprinting. Anal. Chem. 77, 4549–4555 (2005). PubMed

Kiselar J. G., Chance M. R., Future directions of structural mass spectrometry using hydroxyl radical footprinting. J. Mass Spectrom. 45, 1373–1382 (2010). PubMed PMC

Wei X., et al. , Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature 534, 69–74 (2016). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...