Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites

. 2021 Jul 01 ; 11 (1) : 13649. [epub] 20210701

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34211049
Odkazy

PubMed 34211049
PubMed Central PMC8249465
DOI 10.1038/s41598-021-93108-9
PII: 10.1038/s41598-021-93108-9
Knihovny.cz E-zdroje

This paper presents a new hybrid approach for the prediction of functional properties i.e., self-cleaning efficiency, antimicrobial efficiency and ultraviolet protection factor (UPF), of titanium dioxide nanoparticles (TiO2 NPs) coated cotton fabric. The proposed approach is based on feedforward artificial neural network (ANN) model called a multilayer perceptron (MLP), trained by an optimized algorithm known as crow search algorithm (CSA). ANN is an effective and widely used approach for the prediction of extremely complex problems. Various studies have been proposed to improve the weight training of ANN using metaheuristic algorithms. CSA is a latest and an effective metaheuristic method relies on the intelligent behavior of crows. CSA has been never proposed to improve the weight training of ANN. Therefore, CSA is adopted to optimize the initial weights and thresholds of the ANN model, in order to improve the training accuracy and prediction performance of functional properties of TiO2 NPs coated cotton composites. Furthermore, our proposed algorithm i.e., multilayer perceptron with crow search algorithm (MLP-CSA) was applied to map out the complex input-output conditions to predict the optimal results. The amount of chemicals and reaction time were selected as input variables and the amount of titanium dioxide coated on cotton, self-cleaning efficiency, antimicrobial efficiency and UPF were evaluated as output results. A sensitivity analysis was carried out to assess the performance of CSA in prediction process. MLP-CSA provided excellent result that were statistically significant and highly accurate as compared to standard MLP model and other metaheuristic algorithms used in the training of ANN reported in the literature.

Zobrazit více v PubMed

Singh J, Juneja S, Soni R, Bhattacharya J. Sunlight mediated enhanced photocatalytic activity of TiO2 nanoparticles functionalized CuO–Cu2O nanorods for removal of methylene blue and oxytetracycline hydrochloride. J. Colloid Interface Sci. 2021;590:60–71. doi: 10.1016/j.jcis.2021.01.022. PubMed DOI

Yu H, et al. Thermal radiation shielded, high strength, fire resistant fiber/nanorod/aerogel composites fabricated by in-situ growth of TiO2 nanorods for thermal insulation. Chem. Eng. J. 2021;418:129342. doi: 10.1016/j.cej.2021.129342. DOI

Shao L, Cheng S, Yang Z, Xia X, Liu Y. Nickel aluminum layered double hydroxide nanosheets grown on oxygen vacancy-rich TiO2 nanobelts for enhanced photodegradation of an antibiotic. J. Photochem. Photobiol. A. 2021;411:113209. doi: 10.1016/j.jphotochem.2021.113209. DOI

Song X, et al. Oxygen vacancies enable the visible light photoactivity of chromium-implanted TiO2 nanowires. J. Energy Chem. 2021;55:154–161. doi: 10.1016/j.jechem.2020.07.013. DOI

Zhang W, et al. Black single-crystal TiO2 nanosheet array films with oxygen vacancy on 001 facets for boosting photocatalytic CO2 reduction. J. Alloys Compd. 2021;870:159400. doi: 10.1016/j.jallcom.2021.159400. DOI

Ismail NJ, et al. Hydrothermal synthesis of TiO2 nanoflower deposited on bauxite hollow fibre membrane for boosting photocatalysis of bisphenol a. J. Water Process Eng. 2020;37:101504. doi: 10.1016/j.jwpe.2020.101504. DOI

Noman MT, et al. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI

Noman MT, Ashraf MA, Jamshaid H, Ali A. A novel green stabilization of TiO2 nanoparticles onto cotton. Fibers Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI

Noman MT, Ashraf MA, Ali A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2018;26:3262–3291. doi: 10.1007/s11356-018-3884-z. PubMed DOI

Ashraf M, Wiener J, Farooq A, Šašková J, Noman M. Development of maghemite glass fibre nanocomposite for adsorptive removal of methylene blue. Fibers Polym. 2018;19:1735–1746. doi: 10.1007/s12221-018-8264-2. DOI

Noman MT, Petru M. Effect of sonication and nano TiO2 on thermophysiological comfort properties of woven fabrics. ACS Omega. 2020;5:11481–11490. doi: 10.1021/acsomega.0c00572. PubMed DOI PMC

Noman MT, Petru M, Amor N, Yang T, Mansoor T. Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-019-56847-4. PubMed DOI PMC

Noman MT, et al. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI

Amor N, Noman MT, Petru M. Prediction of functional properties of nano TiO2 coated cotton composites by artificial neural network. Sci. Rep. 2021 doi: 10.1038/s41598-021-91733-y. PubMed DOI PMC

Daniel GG. Artificial Neural Network. Dordrecht: Springer; 2013. p. 143.

Wang Y, Yu Y, Cao S, Zhang X, Gao S. A review of applications of artificial intelligent algorithms in wind farms. Artif. Intell. Rev. 2019;53:3447–3500. doi: 10.1007/s10462-019-09768-7. DOI

Behera P, Noman MT, Petru M. Enhanced mechanical properties of eucalyptus-basalt-based hybrid-reinforced cement composites. Polymers. 2020 doi: 10.3390/polym12122837. PubMed DOI PMC

Azeem M, Noman MT, Wiener J, Petru M, Louda P. Structural design of efficient fog collectors: A review. Environ. Technol. Innov. 2020;20:101169. doi: 10.1016/j.eti.2020.101169. DOI

Noman MT, Amor N, Petru M, Mahmood A, Kejzlar P. Photocatalytic behaviour of zinc oxide nanostructures on surface activation of polymeric fibres. Polymers. 2021 doi: 10.3390/polym13081227. PubMed DOI PMC

Noman MT, Petru M, Militký J, Azeem M, Ashraf MA. One-pot sonochemical synthesis of ZnO nanoparticles for photocatalytic applications, modelling and optimization. Materials. 2020 doi: 10.3390/ma13010014. PubMed DOI PMC

Malik SA, Farooq A, Gereke T, Cherif C. Prediction of blended yarn evenness and tensile properties by using artificial neural network and multiple linear regression. Autex Res. J. 2016;16:43–50. doi: 10.1515/aut-2015-0018. DOI

Malik SA, Gereke T, Farooq A, Aibibu D, Cherif C. Prediction of yarn crimp in PES multifilament woven barrier fabrics using artificial neural network. J. Text. Inst. 2018;109:942–951. doi: 10.1080/00405000.2017.1393786. DOI

Malik SA, Arain RA, Khatri Z, Saleemi S, Cherif C. Neural network modeling and principal component analysis of antibacterial activity of chitosan/AgCl-TiO2 colloid treated cotton fabric. Fibers Polym. 2015;16:1142–1149. doi: 10.1016/j.expthermflusci.2013.06.006. DOI

Almetwally AA, Idrees HM, Hebeish A. Predicting the tensile properties of cotton/spandex core-spun yarns using artificial neural network and linear regression models. J. Text. Inst. 2014;105:1221–1229. doi: 10.1080/00405000.2014.882043. DOI

Farooq A, et al. Predicting cotton fibre maturity by using artificial neural network. Autex Res. J. 2018;18:429–433. doi: 10.1515/aut-2018-0024. DOI

Farooq A, Irshad F, Azeemi R, Iqbal N. Prognosticating the shade change after softener application using artificial neural networks. Autex Res. J. 2020 doi: 10.2478/aut-2020-0019. DOI

Furferi R, Governi L, Volpe Y. Modelling and simulation of an innovative fabric coating process using artificial neural networks. Text. Res. J. 2012;82:1282–1294. doi: 10.1177/0040517512436828. DOI

Kanat ZE, Özdil N. Application of artificial neural network (ANN) for the prediction of thermal resistance of knitted fabrics at different moisture content. J. Text. Inst. 2018;109:1247–1253. doi: 10.1080/00405000.2017.1423003. DOI

Erbil Y, Babaarslan O, Ilhan I. A comparative prediction for tensile properties of ternary blended open-end rotor yarns using regression and neural network models. J. Text. Inst. 2018;109:560–568. doi: 10.1080/00405000.2017.1361164. DOI

Malik SA, et al. Analysis and prediction of air permeability of woven barrier fabrics with respect to material, fabric construction and process parameters. Fibers Polym. 2017;18:2005–2017. doi: 10.1007/s12221-017-7241-5. DOI

Gao S, et al. Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction. IEEE Trans. Neural Netw. Learn. Syst. 2019;30:601–614. doi: 10.1109/TNNLS.2018.2846646. PubMed DOI

Wang Y, Gao S, Yu Y, Cai Z, Wang Z. A gravitational search algorithm with hierarchy and distributed framework. Knowl.-Based Syst. 2021;218:106877. doi: 10.1016/j.knosys.2021.106877. DOI

Xiao Q, et al. Prediction of pilling of polyester-cotton blended woven fabric using artificial neural network models. J. Eng. Fibers Fabr. 2020 doi: 10.1177/1558925019900152. DOI

Hussain T, Malik ZA, Arshad Z, Nazir A. Comparison of artificial neural network and adaptive neuro-fuzzy inference system for predicting the wrinkle recovery of woven fabrics. J. Text. Inst. 2015;106:934–938. doi: 10.1080/00405000.2014.953790. DOI

Dashti M, Derhami V, Ekhtiyari E. Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms. J. AI Data Min. 2014;2:73–78. doi: 10.22044/jadm.2014.187. DOI

Majumdar A, Das A, Hatua P, Ghosh A. Optimization of woven fabric parameters for ultraviolet radiation protection and comfort using artificial neural network and genetic algorithm. Neural Comput. Appl. 2016;27:2567–2576. doi: 10.1007/s00521-015-2025-6. DOI

Ni C, et al. Online sorting of the film on cotton based on deep learning and hyperspectral imaging. IEEE Access. 2020;8:93028–93038. doi: 10.1109/ACCESS.2020.2994913. DOI

Lazzús JA. Neural network-particle swarm modeling to predict thermal properties. Math. Comput. Model. 2013;57:2408–2418. doi: 10.1016/j.mcm.2012.01.003. DOI

Askarzadeh A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 2016;169:1–12. doi: 10.1016/j.compstruc.2016.03.001. DOI

Wang Z, Di Massimo C, Tham MT, Julian Morris A. A procedure for determining the topology of multilayer feedforward neural networks. Neural Netw. 1994;7:291–300. doi: 10.1016/0893-6080(94)90023-X. DOI

Kalantary S, Jahani A, Jahani R. MLR and ANN approaches for prediction of synthetic/natural nanofibers diameter in the environmental and medical applications. Sci. Rep. 2020;10:1–10. doi: 10.1038/s41598-020-65121-x. PubMed DOI PMC

Jeon JH, Yang SS, Kang YJ. Estimation of sound absorption coefficient of layered fibrous material using artificial neural networks. Appl. Acoust. 2020;169:107476. doi: 10.1016/j.apacoust.2020.107476. DOI

Doran EC, Sahin C. The prediction of quality characteristics of cotton/elastane core yarn using artificial neural networks and support vector machines. Text. Res. J. 2020;90:1558–1580. doi: 10.1177/0040517519896761. DOI

Jain A. K, Jianchang Mao, Mohiuddin K. M. Artificial neural networks: A tutorial. Computer. 1996;29:31–44. doi: 10.1109/2.485891. DOI

Golnaraghi S, Zangenehmadar Z, Moselhi O, Alkass S. Application of artificial neural network(s) in predicting formwork labour productivity. Adv. Civ. Eng. 2019;2019:1–11. doi: 10.1155/2019/5972620. DOI

Ecer F, Ardabili S, Band SS, Mosavi A. Training multilayer perceptron with genetic algorithms and particle swarm optimization for modeling stock price index prediction. Entropy. 2020 doi: 10.3390/e22111239. PubMed DOI PMC

Ansari A, Ahmad IS, Bakar AA, Yaakub MR. A hybrid metaheuristic method in training artificial neural network for bankruptcy prediction. IEEE Access. 2020;8:176640–176650. doi: 10.1109/ACCESS.2020.3026529. DOI

Ram Jethmalani CH, Simon SP, Sundareswaran K, Nayak PSR, Padhy NP. Auxiliary hybrid PSO-BPNN-based transmission system loss estimation in generation scheduling. IEEE Trans. Ind. Inf. 2017;13:1692–1703. doi: 10.1109/TII.2016.2614659. DOI

Das S, Ghosh A, Majumdar A, Banerjee D. Yarn engineering using hybrid artificial neural network-genetic algorithm model. Fibers Polym. 2013;14:1220–1226. doi: 10.1007/s12221-013-1220-2. DOI

Meddeb A, Amor N, Abbes M, Chebbi S. A novel approach based on crow search algorithm for solving reactive power dispatch problem. Energies. 2018 doi: 10.3390/en11123321. DOI

Pianosi F, et al. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 2016;79:214–232. doi: 10.1016/j.envsoft.2016.02.008. DOI

Noman MT, Petru M. Functional properties of sonochemically synthesized zinc oxide nanoparticles and cotton composites. Nanomaterials. 2020 doi: 10.3390/nano10091661. PubMed DOI PMC

Noman MT, Amor N, Petru M. Synthesis and applications of ZnO nanostructures (ZONSs): A review. Crit. Rev. Solid State Mater. Sci. 2021;2:1–44. doi: 10.1080/10408436.2021.1886041. DOI

Noman MT, Petru M, Amor N, Louda P. Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-019-56847-4. PubMed DOI PMC

Stevens JP, Pituch KA. Applied Multivariate Statistics for the Social Sciences: Analyses with SAS and IBM’s SPSS. 6. Routledge; 2015.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...