Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34211049
PubMed Central
PMC8249465
DOI
10.1038/s41598-021-93108-9
PII: 10.1038/s41598-021-93108-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This paper presents a new hybrid approach for the prediction of functional properties i.e., self-cleaning efficiency, antimicrobial efficiency and ultraviolet protection factor (UPF), of titanium dioxide nanoparticles (TiO2 NPs) coated cotton fabric. The proposed approach is based on feedforward artificial neural network (ANN) model called a multilayer perceptron (MLP), trained by an optimized algorithm known as crow search algorithm (CSA). ANN is an effective and widely used approach for the prediction of extremely complex problems. Various studies have been proposed to improve the weight training of ANN using metaheuristic algorithms. CSA is a latest and an effective metaheuristic method relies on the intelligent behavior of crows. CSA has been never proposed to improve the weight training of ANN. Therefore, CSA is adopted to optimize the initial weights and thresholds of the ANN model, in order to improve the training accuracy and prediction performance of functional properties of TiO2 NPs coated cotton composites. Furthermore, our proposed algorithm i.e., multilayer perceptron with crow search algorithm (MLP-CSA) was applied to map out the complex input-output conditions to predict the optimal results. The amount of chemicals and reaction time were selected as input variables and the amount of titanium dioxide coated on cotton, self-cleaning efficiency, antimicrobial efficiency and UPF were evaluated as output results. A sensitivity analysis was carried out to assess the performance of CSA in prediction process. MLP-CSA provided excellent result that were statistically significant and highly accurate as compared to standard MLP model and other metaheuristic algorithms used in the training of ANN reported in the literature.
Zobrazit více v PubMed
Singh J, Juneja S, Soni R, Bhattacharya J. Sunlight mediated enhanced photocatalytic activity of TiO2 nanoparticles functionalized CuO–Cu2O nanorods for removal of methylene blue and oxytetracycline hydrochloride. J. Colloid Interface Sci. 2021;590:60–71. doi: 10.1016/j.jcis.2021.01.022. PubMed DOI
Yu H, et al. Thermal radiation shielded, high strength, fire resistant fiber/nanorod/aerogel composites fabricated by in-situ growth of TiO2 nanorods for thermal insulation. Chem. Eng. J. 2021;418:129342. doi: 10.1016/j.cej.2021.129342. DOI
Shao L, Cheng S, Yang Z, Xia X, Liu Y. Nickel aluminum layered double hydroxide nanosheets grown on oxygen vacancy-rich TiO2 nanobelts for enhanced photodegradation of an antibiotic. J. Photochem. Photobiol. A. 2021;411:113209. doi: 10.1016/j.jphotochem.2021.113209. DOI
Song X, et al. Oxygen vacancies enable the visible light photoactivity of chromium-implanted TiO2 nanowires. J. Energy Chem. 2021;55:154–161. doi: 10.1016/j.jechem.2020.07.013. DOI
Zhang W, et al. Black single-crystal TiO2 nanosheet array films with oxygen vacancy on 001 facets for boosting photocatalytic CO2 reduction. J. Alloys Compd. 2021;870:159400. doi: 10.1016/j.jallcom.2021.159400. DOI
Ismail NJ, et al. Hydrothermal synthesis of TiO2 nanoflower deposited on bauxite hollow fibre membrane for boosting photocatalysis of bisphenol a. J. Water Process Eng. 2020;37:101504. doi: 10.1016/j.jwpe.2020.101504. DOI
Noman MT, et al. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI
Noman MT, Ashraf MA, Jamshaid H, Ali A. A novel green stabilization of TiO2 nanoparticles onto cotton. Fibers Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI
Noman MT, Ashraf MA, Ali A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2018;26:3262–3291. doi: 10.1007/s11356-018-3884-z. PubMed DOI
Ashraf M, Wiener J, Farooq A, Šašková J, Noman M. Development of maghemite glass fibre nanocomposite for adsorptive removal of methylene blue. Fibers Polym. 2018;19:1735–1746. doi: 10.1007/s12221-018-8264-2. DOI
Noman MT, Petru M. Effect of sonication and nano TiO2 on thermophysiological comfort properties of woven fabrics. ACS Omega. 2020;5:11481–11490. doi: 10.1021/acsomega.0c00572. PubMed DOI PMC
Noman MT, Petru M, Amor N, Yang T, Mansoor T. Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-019-56847-4. PubMed DOI PMC
Noman MT, et al. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI
Amor N, Noman MT, Petru M. Prediction of functional properties of nano TiO2 coated cotton composites by artificial neural network. Sci. Rep. 2021 doi: 10.1038/s41598-021-91733-y. PubMed DOI PMC
Daniel GG. Artificial Neural Network. Dordrecht: Springer; 2013. p. 143.
Wang Y, Yu Y, Cao S, Zhang X, Gao S. A review of applications of artificial intelligent algorithms in wind farms. Artif. Intell. Rev. 2019;53:3447–3500. doi: 10.1007/s10462-019-09768-7. DOI
Behera P, Noman MT, Petru M. Enhanced mechanical properties of eucalyptus-basalt-based hybrid-reinforced cement composites. Polymers. 2020 doi: 10.3390/polym12122837. PubMed DOI PMC
Azeem M, Noman MT, Wiener J, Petru M, Louda P. Structural design of efficient fog collectors: A review. Environ. Technol. Innov. 2020;20:101169. doi: 10.1016/j.eti.2020.101169. DOI
Noman MT, Amor N, Petru M, Mahmood A, Kejzlar P. Photocatalytic behaviour of zinc oxide nanostructures on surface activation of polymeric fibres. Polymers. 2021 doi: 10.3390/polym13081227. PubMed DOI PMC
Noman MT, Petru M, Militký J, Azeem M, Ashraf MA. One-pot sonochemical synthesis of ZnO nanoparticles for photocatalytic applications, modelling and optimization. Materials. 2020 doi: 10.3390/ma13010014. PubMed DOI PMC
Malik SA, Farooq A, Gereke T, Cherif C. Prediction of blended yarn evenness and tensile properties by using artificial neural network and multiple linear regression. Autex Res. J. 2016;16:43–50. doi: 10.1515/aut-2015-0018. DOI
Malik SA, Gereke T, Farooq A, Aibibu D, Cherif C. Prediction of yarn crimp in PES multifilament woven barrier fabrics using artificial neural network. J. Text. Inst. 2018;109:942–951. doi: 10.1080/00405000.2017.1393786. DOI
Malik SA, Arain RA, Khatri Z, Saleemi S, Cherif C. Neural network modeling and principal component analysis of antibacterial activity of chitosan/AgCl-TiO2 colloid treated cotton fabric. Fibers Polym. 2015;16:1142–1149. doi: 10.1016/j.expthermflusci.2013.06.006. DOI
Almetwally AA, Idrees HM, Hebeish A. Predicting the tensile properties of cotton/spandex core-spun yarns using artificial neural network and linear regression models. J. Text. Inst. 2014;105:1221–1229. doi: 10.1080/00405000.2014.882043. DOI
Farooq A, et al. Predicting cotton fibre maturity by using artificial neural network. Autex Res. J. 2018;18:429–433. doi: 10.1515/aut-2018-0024. DOI
Farooq A, Irshad F, Azeemi R, Iqbal N. Prognosticating the shade change after softener application using artificial neural networks. Autex Res. J. 2020 doi: 10.2478/aut-2020-0019. DOI
Furferi R, Governi L, Volpe Y. Modelling and simulation of an innovative fabric coating process using artificial neural networks. Text. Res. J. 2012;82:1282–1294. doi: 10.1177/0040517512436828. DOI
Kanat ZE, Özdil N. Application of artificial neural network (ANN) for the prediction of thermal resistance of knitted fabrics at different moisture content. J. Text. Inst. 2018;109:1247–1253. doi: 10.1080/00405000.2017.1423003. DOI
Erbil Y, Babaarslan O, Ilhan I. A comparative prediction for tensile properties of ternary blended open-end rotor yarns using regression and neural network models. J. Text. Inst. 2018;109:560–568. doi: 10.1080/00405000.2017.1361164. DOI
Malik SA, et al. Analysis and prediction of air permeability of woven barrier fabrics with respect to material, fabric construction and process parameters. Fibers Polym. 2017;18:2005–2017. doi: 10.1007/s12221-017-7241-5. DOI
Gao S, et al. Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction. IEEE Trans. Neural Netw. Learn. Syst. 2019;30:601–614. doi: 10.1109/TNNLS.2018.2846646. PubMed DOI
Wang Y, Gao S, Yu Y, Cai Z, Wang Z. A gravitational search algorithm with hierarchy and distributed framework. Knowl.-Based Syst. 2021;218:106877. doi: 10.1016/j.knosys.2021.106877. DOI
Xiao Q, et al. Prediction of pilling of polyester-cotton blended woven fabric using artificial neural network models. J. Eng. Fibers Fabr. 2020 doi: 10.1177/1558925019900152. DOI
Hussain T, Malik ZA, Arshad Z, Nazir A. Comparison of artificial neural network and adaptive neuro-fuzzy inference system for predicting the wrinkle recovery of woven fabrics. J. Text. Inst. 2015;106:934–938. doi: 10.1080/00405000.2014.953790. DOI
Dashti M, Derhami V, Ekhtiyari E. Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms. J. AI Data Min. 2014;2:73–78. doi: 10.22044/jadm.2014.187. DOI
Majumdar A, Das A, Hatua P, Ghosh A. Optimization of woven fabric parameters for ultraviolet radiation protection and comfort using artificial neural network and genetic algorithm. Neural Comput. Appl. 2016;27:2567–2576. doi: 10.1007/s00521-015-2025-6. DOI
Ni C, et al. Online sorting of the film on cotton based on deep learning and hyperspectral imaging. IEEE Access. 2020;8:93028–93038. doi: 10.1109/ACCESS.2020.2994913. DOI
Lazzús JA. Neural network-particle swarm modeling to predict thermal properties. Math. Comput. Model. 2013;57:2408–2418. doi: 10.1016/j.mcm.2012.01.003. DOI
Askarzadeh A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 2016;169:1–12. doi: 10.1016/j.compstruc.2016.03.001. DOI
Wang Z, Di Massimo C, Tham MT, Julian Morris A. A procedure for determining the topology of multilayer feedforward neural networks. Neural Netw. 1994;7:291–300. doi: 10.1016/0893-6080(94)90023-X. DOI
Kalantary S, Jahani A, Jahani R. MLR and ANN approaches for prediction of synthetic/natural nanofibers diameter in the environmental and medical applications. Sci. Rep. 2020;10:1–10. doi: 10.1038/s41598-020-65121-x. PubMed DOI PMC
Jeon JH, Yang SS, Kang YJ. Estimation of sound absorption coefficient of layered fibrous material using artificial neural networks. Appl. Acoust. 2020;169:107476. doi: 10.1016/j.apacoust.2020.107476. DOI
Doran EC, Sahin C. The prediction of quality characteristics of cotton/elastane core yarn using artificial neural networks and support vector machines. Text. Res. J. 2020;90:1558–1580. doi: 10.1177/0040517519896761. DOI
Jain A. K, Jianchang Mao, Mohiuddin K. M. Artificial neural networks: A tutorial. Computer. 1996;29:31–44. doi: 10.1109/2.485891. DOI
Golnaraghi S, Zangenehmadar Z, Moselhi O, Alkass S. Application of artificial neural network(s) in predicting formwork labour productivity. Adv. Civ. Eng. 2019;2019:1–11. doi: 10.1155/2019/5972620. DOI
Ecer F, Ardabili S, Band SS, Mosavi A. Training multilayer perceptron with genetic algorithms and particle swarm optimization for modeling stock price index prediction. Entropy. 2020 doi: 10.3390/e22111239. PubMed DOI PMC
Ansari A, Ahmad IS, Bakar AA, Yaakub MR. A hybrid metaheuristic method in training artificial neural network for bankruptcy prediction. IEEE Access. 2020;8:176640–176650. doi: 10.1109/ACCESS.2020.3026529. DOI
Ram Jethmalani CH, Simon SP, Sundareswaran K, Nayak PSR, Padhy NP. Auxiliary hybrid PSO-BPNN-based transmission system loss estimation in generation scheduling. IEEE Trans. Ind. Inf. 2017;13:1692–1703. doi: 10.1109/TII.2016.2614659. DOI
Das S, Ghosh A, Majumdar A, Banerjee D. Yarn engineering using hybrid artificial neural network-genetic algorithm model. Fibers Polym. 2013;14:1220–1226. doi: 10.1007/s12221-013-1220-2. DOI
Meddeb A, Amor N, Abbes M, Chebbi S. A novel approach based on crow search algorithm for solving reactive power dispatch problem. Energies. 2018 doi: 10.3390/en11123321. DOI
Pianosi F, et al. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 2016;79:214–232. doi: 10.1016/j.envsoft.2016.02.008. DOI
Noman MT, Petru M. Functional properties of sonochemically synthesized zinc oxide nanoparticles and cotton composites. Nanomaterials. 2020 doi: 10.3390/nano10091661. PubMed DOI PMC
Noman MT, Amor N, Petru M. Synthesis and applications of ZnO nanostructures (ZONSs): A review. Crit. Rev. Solid State Mater. Sci. 2021;2:1–44. doi: 10.1080/10408436.2021.1886041. DOI
Noman MT, Petru M, Amor N, Louda P. Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-019-56847-4. PubMed DOI PMC
Stevens JP, Pituch KA. Applied Multivariate Statistics for the Social Sciences: Analyses with SAS and IBM’s SPSS. 6. Routledge; 2015.
Aerogels for Biomedical, Energy and Sensing Applications
Prediction of Methylene Blue Removal by Nano TiO2 Using Deep Neural Network
Classification of Textile Polymer Composites: Recent Trends and Challenges
Combined Use of Modal Analysis and Machine Learning for Materials Classification