Right versus left ventricular remodeling in heart failure due to chronic volume overload
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34429479
PubMed Central
PMC8384875
DOI
10.1038/s41598-021-96618-8
PII: 10.1038/s41598-021-96618-8
Knihovny.cz E-zdroje
- MeSH
- extracelulární matrix - proteiny genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- molekuly buněčné adheze genetika metabolismus MeSH
- myokard metabolismus MeSH
- potkani Sprague-Dawley MeSH
- protein-glutamin:amin-gama-glutamyltransferasa 2 MeSH
- proteom genetika metabolismus MeSH
- pyruvátkinasa genetika metabolismus MeSH
- remodelace komor * MeSH
- srdeční komory metabolismus patologie patofyziologie MeSH
- srdeční selhání metabolismus patologie patofyziologie MeSH
- tepový objem MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- extracelulární matrix - proteiny MeSH
- molekuly buněčné adheze MeSH
- Pkm protein, rat MeSH Prohlížeč
- protein-glutamin:amin-gama-glutamyltransferasa 2 MeSH
- proteom MeSH
- pyruvátkinasa MeSH
- Tgm2 protein, rat MeSH Prohlížeč
Mechanisms of right ventricular (RV) dysfunction in heart failure (HF) are poorly understood. RV response to volume overload (VO), a common contributing factor to HF, is rarely studied. The goal was to identify interventricular differences in response to chronic VO. Rats underwent aorto-caval fistula (ACF)/sham operation to induce VO. After 24 weeks, RV and left ventricular (LV) functions, gene expression and proteomics were studied. ACF led to biventricular dilatation, systolic dysfunction and hypertrophy affecting relatively more RV. Increased RV afterload contributed to larger RV stroke work increment compared to LV. Both ACF ventricles displayed upregulation of genes of myocardial stress and metabolism. Most proteins reacted to VO in a similar direction in both ventricles, yet the expression changes were more pronounced in RV (pslope: < 0.001). The most upregulated were extracellular matrix (POSTN, NRAP, TGM2, CKAP4), cell adhesion (NCAM, NRAP, XIRP2) and cytoskeletal proteins (FHL1, CSRP3) and enzymes of carbohydrate (PKM) or norepinephrine (MAOA) metabolism. Downregulated were MYH6 and FAO enzymes. Therefore, when exposed to identical VO, both ventricles display similar upregulation of stress and metabolic markers. Relatively larger response of ACF RV compared to the LV may be caused by concomitant pulmonary hypertension. No evidence supports RV chamber-specific regulation of protein expression in response to VO.
BIOCEV 1st Faculty of Medicine Charles University Prague Czech Republic
Department of Pathophysiology 2nd Faculty of Medicine Charles University Prague Czech Republic
Faculty of Medicine in Pilsen Charles University Prague Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Melenovsky V, et al. Relationships between right ventricular function, body composition, and prognosis in advanced heart failure. J. Am. Coll. Cardiol. 2013;62:1660–1670. doi: 10.1016/j.jacc.2013.06.046. PubMed DOI
Voelkel NF, et al. Right ventricular function and failure: Report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114:1883–1891. doi: 10.1161/CIRCULATIONAHA.106.632208. PubMed DOI
Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117:1436–1448. doi: 10.1161/CIRCULATIONAHA.107.653576. PubMed DOI
Amsallem M, Mercier O, Kobayashi Y, Moneghetti K, Haddad F. Forgotten no more: A focused update on the right ventricle in cardiovascular disease. JACC Heart Fail. 2018;6:891–903. doi: 10.1016/j.jchf.2018.05.022. PubMed DOI
Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: Pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117:1717–1731. doi: 10.1161/CIRCULATIONAHA.107.653584. PubMed DOI
Sanz J, Sanchez-Quintana D, Bossone E, Bogaard HJ, Naeije R. Anatomy, function, and dysfunction of the right ventricle: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2019;73:1463–1482. doi: 10.1016/j.jacc.2018.12.076. PubMed DOI
Drake JI, et al. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am. J. Respir. Cell. Mol. Biol. 2011;45:1239–1247. doi: 10.1165/rcmb.2010-0412OC. PubMed DOI PMC
Bartelds B, et al. Differential responses of the right ventricle to abnormal loading conditions in mice: Pressure vs. volume load. Eur. J. Heart. Fail. 2011;13:1275–1282. doi: 10.1093/eurjhf/hfr134. PubMed DOI
Wang N, et al. Tricuspid regurgitation is associated with increased mortality independent of pulmonary pressures and right heart failure: A systematic review and meta-analysis. Eur. Heart J. 2019;40:476–484. doi: 10.1093/eurheartj/ehy641. PubMed DOI
Reddy S, Bernstein D. Molecular mechanisms of right ventricular failure. Circulation. 2015;132:1734–1742. doi: 10.1161/CIRCULATIONAHA.114.012975. PubMed DOI PMC
Houston BA, Shah KB, Mehra MR, Tedford RJ. A new “twist” on right heart failure with left ventricular assist systems. J. Heart Lung Transplant. 2017;36:701–707. doi: 10.1016/j.healun.2017.03.014. PubMed DOI
Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J. Heart Lung Transplant. 2015;34:1123–1130. doi: 10.1016/j.healun.2015.06.015. PubMed DOI
Bossers GPL, et al. Volume load-induced right ventricular dysfunction in animal models: Insights in a translational gap in congenital heart disease. Eur. J. Heart. Fail. 2018;20:808–812. doi: 10.1002/ejhf.931. PubMed DOI
Reddy S, et al. Physiologic and molecular characterization of a murine model of right ventricular volume overload. Am. J. Physiol. Heart Circ. Physiol. 2013;304:H1314–1327. doi: 10.1152/ajpheart.00776.2012. PubMed DOI PMC
Borgdorff MA, et al. Distinct loading conditions reveal various patterns of right ventricular adaptation. Am. J. Physiol. Heart Circ. Physiol. 2013;305:H354–364. doi: 10.1152/ajpheart.00180.2013. PubMed DOI
Modesti PA, et al. Different growth factor activation in the right and left ventricles in experimental volume overload. Hypertension. 2004;43:101–108. doi: 10.1161/01.HYP.0000104720.76179.18. PubMed DOI
Toischer K, et al. Differential cardiac remodeling in preload versus afterload. Circulation. 2010;122:993–1003. doi: 10.1161/CIRCULATIONAHA.110.943431. PubMed DOI PMC
Melenovsky V, et al. The course of heart failure development and mortality in rats with volume overload due to aorto-caval fistula. Kidney Blood Press. Res. 2012;35:167–173. doi: 10.1159/000331562. PubMed DOI
Liu Z, Hilbelink DR, Gerdes AM. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 2. Long-term effects. Circ. Res. 1991;69:59–65. doi: 10.1161/01.RES.69.1.59. PubMed DOI
Petrak J, et al. Proteomic and transcriptomic analysis of heart failure due to volume overload in a rat aorto-caval fistula model provides support for new potential therapeutic targets-monoamine oxidase A and transglutaminase 2. Proteome Sci. 2011;9:69. doi: 10.1186/1477-5956-9-69. PubMed DOI PMC
Koop AC, et al. Metabolic remodeling in the pressure-loaded right ventricle: shifts in glucose and fatty acid metabolism—A systematic review and meta-analysis. J. Am. Heart Assoc. 2019;8:e012086. doi: 10.1161/JAHA.119.012086. PubMed DOI PMC
Guggilam A, et al. In vivo and in vitro cardiac responses to beta-adrenergic stimulation in volume-overload heart failure. J. Mol. Cell. Cardiol. 2013;57:47–58. doi: 10.1016/j.yjmcc.2012.11.013. PubMed DOI PMC
Breitling S, Ravindran K, Goldenberg NM, Kuebler WM. The pathophysiology of pulmonary hypertension in left heart disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015;309:924–941. doi: 10.1152/ajplung.00146.2015. PubMed DOI
Rungatscher A, et al. Chronic overcirculation-induced pulmonary arterial hypertension in aorto-caval shunt. Microvasc. Res. 2014;94:73–79. doi: 10.1016/j.mvr.2014.05.005. PubMed DOI
Borgdorff MA, et al. Sildenafil enhances systolic adaptation, but does not prevent diastolic dysfunction, in the pressure-loaded right ventricle. Eur. J. Heart Fail. 2012;14:1067–1074. doi: 10.1093/eurjhf/hfs094. PubMed DOI
Linardi D, et al. Ventricular and pulmonary vascular remodeling induced by pulmonary overflow in a chronic model of pretricuspid shunt. J. Thorac. Cardiovasc. Surg. 2014;148:2609–2617. doi: 10.1016/j.jtcvs.2014.04.044. PubMed DOI
Gealekman O, Abassi Z, Rubinstein I, Winaver J, Binah O. Role of myocardial inducible nitric oxide synthase in contractile dysfunction and beta-adrenergic hyporesponsiveness in rats with experimental volume-overload heart failure. Circulation. 2002;105:236–243. doi: 10.1161/hc0202.102015. PubMed DOI
Ryan TD, et al. Left ventricular eccentric remodeling and matrix loss are mediated by bradykinin and precede cardiomyocyte elongation in rats with volume overload. J. Am. Coll. Cardiol. 2007;49:811–821. doi: 10.1016/j.jacc.2006.06.083. PubMed DOI
Hisamatsu Y, et al. Early changes in the functions of cardiac sarcoplasmic reticulum in volume-overloaded cardiac hypertrophy in rats. J. Mol. Cell. Cardiol. 1997;29:1097–1109. doi: 10.1006/jmcc.1996.0327. PubMed DOI
Sedmera D, et al. Changes in myocardial composition and conduction properties in rat heart failure model induced by chronic volume overload. Front. Physiol. 2016;7:367. doi: 10.3389/fphys.2016.00367. PubMed DOI PMC
Hutchinson KR, Saripalli C, Chung CS, Granzier H. Increased myocardial stiffness due to cardiac titin isoform switching in a mouse model of volume overload limits eccentric remodeling. J. Mol. Cell. Cardiol. 2015;79:104–114. doi: 10.1016/j.yjmcc.2014.10.020. PubMed DOI PMC
Freire G, Ocampo C, Ilbawi N, Griffin AJ, Gupta M. Overt expression of AP-1 reduces alpha myosin heavy chain expression and contributes to heart failure from chronic volume overload. J. Mol. Cell. Cardiol. 2007;43:465–478. doi: 10.1016/j.yjmcc.2007.07.046. PubMed DOI
Wilson K, et al. Effects of a myofilament calcium sensitizer on left ventricular systolic and diastolic function in rats with volume overload heart failure. Am. J. Physiol. Heart Circ. Physiol. 2014;307:H1605–1617. doi: 10.1152/ajpheart.00423.2014. PubMed DOI PMC
Sandhu R, et al. Reciprocal regulation of angiopoietin-1 and angiopoietin-2 following myocardial infarction in the rat. Cardiovasc. Res. 2004;64:115–124. doi: 10.1016/j.cardiores.2004.05.013. PubMed DOI
Dalzell JR, et al. The emerging potential of the apelin-APJ system in heart failure. J. Card. Fail. 2015;21:489–498. doi: 10.1016/j.cardfail.2015.03.007. PubMed DOI
Kanisicak O, et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 2016;7:12260. doi: 10.1038/ncomms12260. PubMed DOI PMC
Landry NM, Cohen S, Dixon IMC. Periostin in cardiovascular disease and development: a tale of two distinct roles. Basic. Res. Cardiol. 2018;113:1. doi: 10.1007/s00395-017-0659-5. PubMed DOI
Bruns DR, et al. The right ventricular fibroblast secretome drives cardiomyocyte dedifferentiation. PLoS ONE. 2019;14:e0220573. doi: 10.1371/journal.pone.0220573. PubMed DOI PMC
Melenovsky V, et al. Metabolic characterization of volume overload heart failure due to aorto-caval fistula in rats. Mol. Cell. Biochem. 2011;354:83–96. doi: 10.1007/s11010-011-0808-3. PubMed DOI
Chen YW, et al. Dynamic molecular and histopathological changes in the extracellular matrix and inflammation in the transition to heart failure in isolated volume overload. Am. J. Physiol. Heart Circ. Physiol. 2011;300:H2251–2260. doi: 10.1152/ajpheart.01104.2010. PubMed DOI PMC
Gladka MM, et al. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation. 2018;138:166–180. doi: 10.1161/CIRCULATIONAHA.117.030742. PubMed DOI
Shinde AV, et al. Tissue transglutaminase induction in the pressure-overloaded myocardium regulates matrix remodelling. Cardiovasc. Res. 2017;113:892–905. doi: 10.1093/cvr/cvx053. PubMed DOI PMC
Bouzeghrane F, Reinhardt DP, Reudelhuber TL, Thibault G. Enhanced expression of fibrillin-1, a constituent of the myocardial extracellular matrix in fibrosis. Am. J. Physiol. Heart Circ. Physiol. 2005;289:H982–991. doi: 10.1152/ajpheart.00151.2005. PubMed DOI
Leber Y, et al. Filamin C is a highly dynamic protein associated with fast repair of myofibrillar microdamage. Hum. Mol. Genet. 2016;25:2776–2788. PubMed
McCalmon SA, et al. Modulation of angiotensin II-mediated cardiac remodeling by the MEF2A target gene Xirp2. Circ. Res. 2010;106:952–960. doi: 10.1161/CIRCRESAHA.109.209007. PubMed DOI PMC
Huang L, et al. Critical roles of XIRP proteins in cardiac conduction and their rare variants identified in sudden unexplained nocturnal death syndrome and Brugada syndrome in Chinese Han population. J. Am. Heart Assoc. 2018;7:e006320. PubMed PMC
Charron S, et al. Identification of region-specific myocardial gene expression patterns in a chronic swine model of repaired tetralogy of fallot. PLoS ONE. 2015;10:e0134146. doi: 10.1371/journal.pone.0134146. PubMed DOI PMC
Lowes BD, et al. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J. Clin. Invest. 1997;100:2315–2324. doi: 10.1172/JCI119770. PubMed DOI PMC
Buyandelger B, et al. MLP (muscle LIM protein) as a stress sensor in the heart. Pflugers Archiv. Eur. J. Physiol. 2011;462:135–142. doi: 10.1007/s00424-011-0961-2. PubMed DOI PMC
Hartmannova H, et al. Isolated X-linked hypertrophic cardiomyopathy caused by a novel mutation of the four-and-a-half LIM domain 1 gene. Circ. Cardiovasc. Genet. 2013;6:543–551. doi: 10.1161/CIRCGENETICS.113.000245. PubMed DOI
Camors E, Monceau V, Charlemagne D. Annexins and Ca2+ handling in the heart. Cardiovasc. Res. 2005;65:793–802. doi: 10.1016/j.cardiores.2004.11.010. PubMed DOI
Ackermann MA, et al. TGF-β1 affects cell-cell adhesion in the heart in an NCAM1-dependent mechanism. J. Mol. Cell. Cardiol. 2017;112:49–57. doi: 10.1016/j.yjmcc.2017.08.015. PubMed DOI PMC
Nagao K, et al. Myocardial expression level of neural cell adhesion molecule correlates with reduced left ventricular function in human cardiomyopathy. Circ. Heart Fail. 2014;7:351–358. doi: 10.1161/CIRCHEARTFAILURE.113.000939. PubMed DOI
Lu S, et al. Cardiac-specific NRAP overexpression causes right ventricular dysfunction in mice. Exp. Cell Res. 2011;317:1226–1237. doi: 10.1016/j.yexcr.2011.01.020. PubMed DOI PMC
Garcia-Pelagio KP, et al. Absence of synemin in mice causes structural and functional abnormalities in heart. J. Mol. Cell. Cardiol. 2018;114:354–363. doi: 10.1016/j.yjmcc.2017.12.005. PubMed DOI PMC
Shults NV, Das D, Suzuki YJ. Major vault protein in cardiac and smooth muscle. Receptors Clin. Investig. 2016;3:e1310. PubMed PMC
Xiong PY, et al. Biventricular increases in mitochondrial fission mediator (MiD51) and proglycolytic pyruvate kinase (PKM2) isoform in experimental group 2 pulmonary hypertension-novel mitochondrial abnormalities. Front. Cardiovasc. Med. 2018;5:195. doi: 10.3389/fcvm.2018.00195. PubMed DOI PMC
Shen W, et al. The fall in creatine levels and creatine kinase isozyme changes in the failing heart are reversible: Complex post-transcriptional regulation of the components of the CK system. J. Mol. Cell. Cardiol. 2005;39:537–544. doi: 10.1016/j.yjmcc.2005.05.003. PubMed DOI
Kaludercic N, Mialet-Perez J, Paolocci N, Parini A, Di Lisa F. Monoamine oxidases as sources of oxidants in the heart. J. Mol. Cell. Cardiol. 2014;73:34–42. doi: 10.1016/j.yjmcc.2013.12.032. PubMed DOI PMC
Mercer EJ, Lin YF, Cohen-Gould L, Evans T. Hspb7 is a cardioprotective chaperone facilitating sarcomeric proteostasis. Dev. Biol. 2018;435:41–55. doi: 10.1016/j.ydbio.2018.01.005. PubMed DOI PMC
Aung N, et al. Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development. Circulation. 2019;140:1318–1330. doi: 10.1161/CIRCULATIONAHA.119.041161. PubMed DOI PMC
Wang D, et al. Dimethylarginine dimethylaminohydrolase 1 deficiency aggravates monocrotaline-induced pulmonary oxidative stress, pulmonary arterial hypertension and right heart failure in rats. Int. J. Cardiol. 2019;295:14–20. doi: 10.1016/j.ijcard.2019.07.078. PubMed DOI
Shao Z, et al. Pulmonary hypertension associated with advanced systolic heart failure: Dysregulated arginine metabolism and importance of compensatory dimethylarginine dimethylaminohydrolase-1. J. Am. Coll. Cardiol. 2012;59:1150–1158. doi: 10.1016/j.jacc.2011.12.022. PubMed DOI PMC
El Hajj MC, Ninh VK, El Hajj EC, Bradley JM, Gardner JD. Estrogen receptor antagonism exacerbates cardiac structural and functional remodeling in female rats. Am. J. Physiol. Heart Circ. Physiol. 2017;312:H98–H105. doi: 10.1152/ajpheart.00348.2016. PubMed DOI PMC
Cervenka L, et al. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin. Exp. Pharm. Physiol. 2015;42:795–807. doi: 10.1111/1440-1681.12419. PubMed DOI
Lange PE, et al. Value of image enhancement and injection of contrast medium for right ventricular volume determination by two-dimensional echocardiography in congenital heart disease. Am. J. Cardiol. 1985;55:152–157. doi: 10.1016/0002-9149(85)90318-2. PubMed DOI
Sviglerova J, et al. Cardiac remodeling in rats with renal failure shows interventricular differences. Exp. Biol. Med. (Maywood) 2012;237:1056–1067. doi: 10.1258/ebm.2012.012045. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Huber W, et al. Orchestrating high-throughput genomic analysis with bioconductor. Nat. Methods. 2015;12:115–121. doi: 10.1038/nmeth.3252. PubMed DOI PMC
McCall MN, McMurray HR, Land H, Almudevar A. On non-detects in qPCR data. Bioinformatics. 2014;30:2310–2316. doi: 10.1093/bioinformatics/btu239. PubMed DOI PMC
Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI
FGF-23 is a biomarker of RV dysfunction and congestion in patients with HFrEF
Impact of aging on mitochondrial respiration in various organs