Expansion microscopy facilitates quantitative super-resolution studies of cytoskeletal structures in kinetoplastid parasites
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34465213
PubMed Central
PMC8437234
DOI
10.1098/rsob.210131
Knihovny.cz E-resources
- Keywords
- Leishmania major, Trypanosoma brucei, expansion microscopy, microtubule-based cytoskeleton,
- MeSH
- Microscopy, Electron methods MeSH
- Kinetochores metabolism ultrastructure MeSH
- Kinetoplastida metabolism ultrastructure MeSH
- Leishmania major metabolism ultrastructure MeSH
- Microtubules metabolism ultrastructure MeSH
- Protozoan Proteins metabolism MeSH
- Trypanosoma brucei brucei metabolism ultrastructure MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Protozoan Proteins MeSH
Expansion microscopy (ExM) has become a powerful super-resolution method in cell biology. It is a simple, yet robust approach, which does not require any instrumentation or reagents beyond those present in a standard microscopy facility. In this study, we used kinetoplastid parasites Trypanosoma brucei and Leishmania major, which possess a complex, yet well-defined microtubule-based cytoskeleton, to demonstrate that this method recapitulates faithfully morphology of structures as previously revealed by a combination of sophisticated electron microscopy (EM) approaches. Importantly, we also show that due to the rapidness of image acquisition and three-dimensional reconstruction of cellular volumes ExM is capable of complementing EM approaches by providing more quantitative data. This is demonstrated on examples of less well-appreciated microtubule structures, such as the neck microtubule of T. brucei or the pocket, cytosolic and multivesicular tubule-associated microtubules of L. major. We further demonstrate that ExM enables identifying cell types rare in a population, such as cells in mitosis and cytokinesis. Three-dimensional reconstruction of an entire volume of these cells provided details on the morphology of the mitotic spindle and the cleavage furrow. Finally, we show that established antibody markers of major cytoskeletal structures function well in ExM, which together with the ability to visualize proteins tagged with small epitope tags will facilitate studies of the kinetoplastid cytoskeleton.
Charles University Faculty of Science Albertov 6 Prague 128 00 Czech Republic
IMCF at BIOCEV Faculty of Science Charles University Průmyslová 595 252 50 Vestec Czech Republic
See more in PubMed
Matthews KR. 2005. The developmental cell biology of Trypanosoma brucei. J. Cell Sci. 118, 283-290. (10.1242/jcs.01649) PubMed DOI PMC
Gull K. 1999. The cytoskeleton of trypanosomatid parasites. Annu. Rev. Microbiol. 53, 629-655. (10.1146/annurev.micro.53.1.629) PubMed DOI
Hayes P, Varga V, Olego-Fernandez S, Sunter J, Ginger ML, Gull K. 2014. Modulation of a cytoskeletal calpain-like protein induces major transitions in trypanosome morphology. J. Cell Biol. 206, 377-384. (10.1083/jcb.201312067) PubMed DOI PMC
Kohl L, Robinson D, Bastin P. 2003. Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. EMBO J. 22, 5336-5346. (10.1093/emboj/cdg518) PubMed DOI PMC
Sherwin T, Gull K. 1989. The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Phil. Trans. R. Soc. Lond. B 323, 573-588. (10.1098/rstb.1989.0037) PubMed DOI
Tam J, Merino D. 2015. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods. J. Neurochem. 135, 643-658. (10.1111/jnc.13257) PubMed DOI
Lacomble S, Vaughan S, Gadelha C, Morphew MK, Shaw MK, Mcintosh JR, Gull K. 2009. Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography. J. Cell Sci. 122, 1081-1090. (10.1242/jcs.045740) PubMed DOI PMC
Wheeler RJ, Sunter JD, Gull K. 2016. Flagellar pocket restructuring through the Leishmania life cycle involves a discrete flagellum attachment zone. J. Cell Sci. 129, 854-867. PubMed PMC
Chen F, Tillberg PW, Boyden ES. 2015. Expansion microscopy. Science 347, 543-548. (10.1126/science.1260088) PubMed DOI PMC
Gambarotto D, et al. 2019. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat. Methods 16, 71-74. (10.1038/s41592-018-0238-1) PubMed DOI PMC
Ku T, et al. 2016. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat. Biotechnol. 34, 973-981. (10.1038/nbt.3641) PubMed DOI PMC
Tillberg PW, et al. 2016. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34, 987-992. (10.1038/nbt.3625) PubMed DOI PMC
Zhao Y, et al. 2017. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nat. Biotechnol. 35, 757-764. (10.1038/nbt.3892) PubMed DOI PMC
Halpern AR, Alas GCM, Chozinski TJ, Paredez AR, Vaughan JC. 2017. Hybrid structured illumination expansion microscopy reveals microbial cytoskeleton organization. ACS Nano 11, 12 677-12 686. (10.1021/acsnano.7b07200) PubMed DOI PMC
Bertiaux E, Balestra AC, Bournonville L, Louvel V, Maco B, Soldati-Favre D, Brochet M, Guichard P, Hamel V. 2021. Expansion microscopy provides new insights into the cytoskeleton of malaria parasites including the conservation of a conoid. PLoS Biol. 19, e3001020. (10.1371/journal.pbio.3001020) PubMed DOI PMC
Amodeo S, Kalichava A, Fradera-Sola A, Bertiaux-Lequoy E, Guichard P, Butter F, Ochsenreiter T. 2021. Characterization of the novel mitochondrial genome segregation factor TAP110 in Trypanosoma brucei. J. Cell Sci. 134, jcs254300. (10.1242/jcs.254300) PubMed DOI PMC
Büttner M, Lagerholm CB, Waithe D, Galiani S, Schliebs W, Erdmann R, Eggeling C, Reglinski K. 2020. Challenges of using expansion microscopy for super-resolved imaging of cellular organelles. ChemBioChem cbic 22, 686-693. (doi:0.1002/cbic.202000571) PubMed PMC
Pernal SP, et al. 2020. Nanoscale imaging using differential expansion microscopy. Histochem. Cell Biol. 153, 469-480. (10.1007/s00418-020-01869-7) PubMed DOI
Woods A, Sherwin T, Sasse R, Macrae TH, Baines AJ, Gull K. 1989. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J. Cell Sci. 93, 491-500. (10.1242/jcs.93.3.491) PubMed DOI
Birkett CR, Foster KE, Johnson L, Gull K. 1985. Use of monoclonal antibodies to analyse the expression of a multi-tubulin family. FEBS Lett. 187, 211-218. (10.1016/0014-5793(85)81244-8) PubMed DOI
Kohl L, Sherwin T, Gull K. 1999. Assembly of the paraflagellar rod and the flagellum attachment zone complex during the Trypanosoma brucei cell cycle. J. Eukaryot. Microbiol. 46, 105-109. (10.1111/j.1550-7408.1999.tb04592.x) PubMed DOI
Pradel LC, Bonhivers M, Landrein N, Robinson DR. 2006. NIMA-related kinase TbNRKC is involved in basal body separation in Trypanosoma brucei. J. Cell Sci. 119, 1852-1863. (10.1242/jcs.02900) PubMed DOI
Bringaud F, Robinson DR, Barradeau S, Biteau N, Baltz D, Baltz T. 2000. Characterization and disruption of a new Trypanosoma brucei repetitive flagellum protein, using double-stranded RNA inhibition. Mol. Biochem. Parasitol. 111, 283-297. (10.1016/S0166-6851(00)00319-4) PubMed DOI
Abeywickrema M, et al. 2019. Non-equivalence in old- and new-flagellum daughter cells of a proliferative division in Trypanosoma brucei. Mol. Microbiol. 112, 1024-1040. (10.1111/mmi.14345) PubMed DOI PMC
Alizadehrad D, Krüger T, Engstler M, Stark H. 2015. Simulating the complex cell design of Trypanosoma brucei and its motility. PLoS Comput. Biol. 11, e1003967. (10.1371/journal.pcbi.1003967) PubMed DOI PMC
Hell S, Reiner G, Cremer C, Stelzer EHK. 1993. Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J. Microsc. 169, 391-405. (10.1111/j.1365-2818.1993.tb03315.x) DOI
Gao M, Maraspini R, Beutel O, Zehtabian A, Eickholt B, Honigmann A, Ewers H. 2018. Expansion stimulated emission depletion microscopy (ExSTED). ACS Nano 12, 4178-4185. (10.1021/acsnano.8b00776) PubMed DOI
Sunter JD, Gull K. 2016. The flagellum attachment zone: ‘the cellular ruler’ of trypanosome morphology. Trends Parasitol. 32, 309-324. (10.1016/j.pt.2015.12.010) PubMed DOI PMC
Moreira-Leite FF, Sherwin T, Kohl L, Gull K. 2001. A trypanosome structure involved in transmitting cytoplasmic information during cell division. Science 294, 610-612. (10.1126/science.1063775) PubMed DOI
Hughes L, Towers K, Starborg T, Gull K, Vaughan S. 2013. A cell-body groove housing the new flagellum tip suggests an adaptation of cellular morphogenesis for parasitism in the bloodstream form of Trypanosoma brucei. J. Cell Sci. 126, 5748-5757. PubMed PMC
Ambit A, Woods KL, Cull B, Coombs GH, Mottram JC. 2011. Morphological events during the cell cycle of Leishmania major. Eukaryot. Cell 10, 1429-1438. (10.1128/EC.05118-11) PubMed DOI PMC
Wheeler RJ, Gluenz E, Gull K. 2011. The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology: the cell cycle of Leishmania. Mol. Microbiol. 79, 647-662. (10.1111/j.1365-2958.2010.07479.x) PubMed DOI PMC
Gadelha C, Wickstead B, Mckean PG, Gull K. 2006. Basal body and flagellum mutants reveal a rotational constraint of the central pair microtubules in the axonemes of trypanosomes. J. Cell Sci. 119, 2405-2413. (10.1242/jcs.02969) PubMed DOI
Pigino G, Bui KH, Maheshwari A, Lupetti P, Diener D, Ishikawa T. 2011. Cryoelectron tomography of radial spokes in cilia and flagella. J. Cell Biol. 195, 673-687. (10.1083/jcb.201106125) PubMed DOI PMC
Höög JL, Bouchet-Marquis C, Mcintosh JR, Hoenger A, Gull K. 2012. Cryo-electron tomography and 3-D analysis of the intact flagellum in Trypanosoma brucei. J. Struct. Biol. 178, 189-198. (10.1016/j.jsb.2012.01.009) PubMed DOI PMC
Weise F, Stierhof YD, Kühn C, Wiese M, Overath P. 2000. Distribution of GPI-anchored proteins in the protozoan parasite Leishmania, based on an improved ultrastructural description using high-pressure frozen cells. J. Cell Sci. 113(Pt 24), 4587-4603. (10.1242/jcs.113.24.4587) PubMed DOI
Ureña F. 1986. Three-dimensional reconstructions of the mitotic spindle and dense plaques in three species of Leishmania. Z. Parasitenkd. Parasitol. Res. 72, 299-306. (10.1007/BF00928739) PubMed DOI
Le Guennec M, et al. 2020. A helical inner scaffold provides a structural basis for centriole cohesion. Sci. Adv. 6, eaaz4137. (10.1126/sciadv.aaz4137) PubMed DOI PMC
Vaughan S, Kohl L, Ngai I, Wheeler RJ, Gull K. 2008. A repetitive protein essential for the flagellum attachment zone filament structure and function in Trypanosoma brucei. Protist 159, 127-136. (10.1016/j.protis.2007.08.005) PubMed DOI
Müller N, Hemphill A, Imboden M, Duvallet G, Dwinger RH, Seebeck T. 1992. Identification and characterization of two repetitive non-variable antigens from African trypanosomes which are recognized early during infection. Parasitology 104, 111-120. (10.1017/S0031182000060856) PubMed DOI
Dacheux D, Landrein N, Thonnus M, Gilbert G, Sahin A, Wodrich H, Robinson DR, Bonhivers M. 2012. A MAP6-related protein is present in protozoa and is involved in flagellum motility. PLoS ONE 7, e31344. (10.1371/journal.pone.0031344) PubMed DOI PMC
An T, Li Z. 2018. An orphan kinesin controls trypanosome morphology transitions by targeting FLAM3 to the flagellum. PLOS Pathog. 14, e1007101. (10.1371/journal.ppat.1007101) PubMed DOI PMC
Chen F, et al. 2016. Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 13, 679-684. (10.1038/nmeth.3899) PubMed DOI PMC
Shah FA, Johansson BR, Thomsen P, Palmquist A. 2015. Ultrastructural evaluation of shrinkage artefacts induced by fixatives and embedding resins on osteocyte processes and pericellular space dimensions: ultrastructural evaluation of shrinkage artefacts. J. Biomed. Mater. Res. A 103, 1565-1576. (10.1002/jbm.a.35287) PubMed DOI
Kubalová I, Schmidt Černohorská M, Huranová M, Weisshart K, Houben A, Schubert V. 2020. Prospects and limitations of expansion microscopy in chromatin ultrastructure determination. Chromosome Res. 28, 355-368. (10.1007/s10577-020-09637-y) PubMed DOI PMC
Pesce L, Cozzolino M, Lanzanò L, Diaspro A, Bianchini P. 2019. Measuring expansion from macro- to nanoscale using NPC as intrinsic reporter. J. Biophotonics 12, e201900018. (10.1002/jbio.201900018) PubMed DOI PMC
Sarkar D, et al. 2020. Expansion revealing: decrowding proteins to unmask invisible brain nanostructures. bioRxiv 2020, 08.29.273540.
Chozinski TJ, Halpern AR, Okawa H, Kim HJ, Tremel GJ, Wong ROL, Vaughan JC. 2016. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods 13, 485-488. (10.1038/nmeth.3833) PubMed DOI PMC
Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K. 2015. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 5, 140197. (10.1098/rsob.140197) PubMed DOI PMC
Poon SK, Peacock L, Gibson W, Gull K, Kelly S. 2012. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor. Open Biol. 2, 110037. (10.1098/rsob.110037) PubMed DOI PMC
Brun R, Schönenberger M. 1979. Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop. 36, 289-292. PubMed
Aslett M, et al. 2010. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 38, D457-D462. (10.1093/nar/gkp851) PubMed DOI PMC
Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N. 2010. Computer control of microscopes using µManager. Curr. Protoc. Mol. Biol. 92, 14.20.1-14.20.17. (10.1002/0471142727.mb1420s92) PubMed DOI PMC
Schindelin J, et al. 2012. Fiji—an open source platform for biological image analysis. Nat. Methods 9, 676-682. (10.1038/nmeth.2019) PubMed DOI PMC
Thevenaz P, Ruttimann UE, Unser M. 1998. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27-41. (10.1109/83.650848) PubMed DOI
Visualisation of Euglena gracilis organelles and cytoskeleton using expansion microscopy
A hybrid TIM complex mediates protein import into hydrogenosomes of Trichomonas vaginalis