Degenerated, Undifferentiated, Rearranged, Lost: High Variability of Sex Chromosomes in Geometridae (Lepidoptera) Identified by Sex Chromatin
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
17-13713S
Grantová Agentura České Republiky
20-13784S
Grantová Agentura České Republiky
013/2020/P
Grantová agentura JU
20-20650Y
Grantová Agentura České Republiky
RO 0520
Ministerstvo Školství, Mládeže a Tělovýchovy
PRG741
Estonian Research Competency Council
PubMed
34571879
PubMed Central
PMC8468057
DOI
10.3390/cells10092230
PII: cells10092230
Knihovny.cz E-zdroje
- Klíčová slova
- Geometridae, Lepidoptera, W chromosome, comparative genomic hybridization, intraspecific chromosomal variability, neo-sex chromosomes, sex chromatin, sex chromosome evolution,
- MeSH
- druhová specificita MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp MeSH
- můry genetika MeSH
- pohlavní chromozomy genetika MeSH
- sexchromatin metabolismus MeSH
- srovnávací genomová hybridizace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Sex chromatin is a conspicuous body that occurs in polyploid nuclei of most lepidopteran females and consists of numerous copies of the W sex chromosome. It is also a cytogenetic tool used to rapidly assess the W chromosome presence in Lepidoptera. However, certain chromosomal features could disrupt the formation of sex chromatin and lead to the false conclusion that the W chromosome is absent in the respective species. Here we tested the sex chromatin presence in 50 species of Geometridae. In eight selected species with either missing, atypical, or normal sex chromatin patterns, we performed a detailed karyotype analysis by means of comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH). The results showed a high diversity of W chromosomes and clarified the reasons for atypical sex chromatin, including the absence or poor differentiation of W, rearrangements leading to the neo-W emergence, possible association with the nucleolus, and the existence of multiple W chromosomes. In two species, we detected intraspecific variability in the sex chromatin status and sex chromosome constitution. We show that the sex chromatin is not a sufficient marker of the W chromosome presence, but it may be an excellent tool to pinpoint species with atypical sex chromosomes.
Institute of Ecology and Earth Sciences University of Tartu Vanemuise 46 51014 Tartu Estonia
Veterinary Research Institute Hudcova 70 621 00 Brno Czech Republic
Zobrazit více v PubMed
Charlesworth D., Charlesworth B., Marais G. Steps in the evolution of heteromorphic sex chromosomes. J. Hered. 2005;95:118–128. doi: 10.1038/sj.hdy.6800697. PubMed DOI
Abbott J.K., Nordén A.K., Hansson B. Sex chromosome evolution: Historical insights and future perspectives. Proc. Biol. Sci. 2017;284:20162806. doi: 10.1098/rspb.2016.2806. PubMed DOI PMC
Charlesworth B. The evolution of chromosomal sex determination and dosage compensation. Curr. Biol. 1996;6:149–162. doi: 10.1016/S0960-9822(02)00448-7. PubMed DOI
Furman B.L.S., Metzger D.C.H., Darolti I., Wright A.E., Sandkam B.A., Almeida P., Shu J.J., Mank J.E. Sex chromosome evolution: So many exceptions to the rules. Genome Biol. Evol. 2020;12:750–763. doi: 10.1093/gbe/evaa081. PubMed DOI PMC
Nokkala S., Grozeva S., Kuznetsova V., Maryanska-Nadachowska A. The origin of the achiasmatic XY sex chromosome system in Cacopsylla peregrina (Frst.) (Psylloidea, Homoptera) Genetica. 2003;119:327–332. doi: 10.1023/B:GENE.0000003757.27521.4d. PubMed DOI
Clark F.E., Kocher T.D. Changing sex for selfish gain: B chromosomes of Lake Malawi cichlid fish. Sci. Rep. 2019;9:20213. doi: 10.1038/s41598-019-55774-8. PubMed DOI PMC
Traut W., Marec F. Sex chromosome differentiation in some species of Lepidoptera (Insecta) Chromosome Res. 1997;5:283–291. doi: 10.1023/B:CHRO.0000038758.08263.c3. PubMed DOI
Yoshido A., Marec F., Sahara K. Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG)n telomeric probe in some species of Lepidoptera. Chromosoma. 2005;114:193–202. doi: 10.1007/s00412-005-0013-9. PubMed DOI
Vlašánek P., Bartoňová A., Marec F., Konvička M. Elusive Parnassius mnemosyne (Linnaeus, 1758) larvae: Habitat selection, sex determination and sex ratio (Lepidoptera: Papilionidae) SHILAP Rev. Lepidopt. 2017;45:561–569.
Grützner F., Deakin J., Rens W., El-Mogharbel N., Marshall Graves J. The monotreme genome: A patchwork of reptile, mammal and unique features? Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2003;136:867–881. doi: 10.1016/j.cbpb.2003.09.014. PubMed DOI
Yoshido A., Šíchová J., Pospíšilová K., Nguyen P., Šafář J., Provazník J., Voleníková A., Vila R., Marec F. Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies. Heredity. 2020;125:138–154. doi: 10.1038/s41437-020-0325-9. PubMed DOI PMC
Šíchová J., Ohno M., Dincă V., Watanabe M., Sahara K., Marec F. Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptidea amurensis. Biol. J. Linn. Soc. 2016;118:457–471. doi: 10.1111/bij.12756. DOI
Zrzavá M., Hladová I., Dalíková M., Šíchová J., Õunap E., Kubíčková S., Marec F. Sex chromosomes of the iconic moth Abraxas grossulariata (Lepidoptera, Geometridae) and its congener A. sylvata. Genes. 2018;9:279. doi: 10.3390/genes9060279. PubMed DOI PMC
Chirino M.G., Fourastie M.F., Cemteno N.D., Bressa M.J. Unusual chromosome polymorphism and heterochromatin variation in the Argentinean population of the necrophagous fly Lucilia sericata (Diptera: Calliphoridae), comparison with other populations and evolutionary aspects. Eur. J. Entomol. 2020;117:295–301. doi: 10.14411/eje.2020.034. DOI
Sahara K., Yoshido A., Traut W. Sex chromosome evolution in moths and butterflies. Chromosome Res. 2012;20:83–94. doi: 10.1007/s10577-011-9262-z. PubMed DOI
Wright A.E., Dean R., Zimmer F., Mank J.E. How to make a sex chromosome. Nat. Commun. 2016;7:12087. doi: 10.1038/ncomms12087. PubMed DOI PMC
Dalíková M., Zrzavá M., Hladová I., Nguyen P., Šonský I., Flegrová M., Kubíčková S., Voleníková A., Kawahara A.Y., Peters R.S., et al. New insights into the evolution of the W chromosome in Lepidoptera. J. Hered. 2017;108:709–719. doi: 10.1093/jhered/esx063. PubMed DOI
Marec F., Traut W. Sex chromosome pairing and sex chromatin bodies in W-Z translocation strains of Ephestia kuehniella (Lepidoptera) Genome. 1994;37:426–435. doi: 10.1139/g94-060. PubMed DOI
Beldade P., Saenko S.V., Pul N., Long A.D. A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome. PLoS Genet. 2009;5:e1000366. doi: 10.1371/journal.pgen.1000366. PubMed DOI PMC
Van’t Hof A.E., Nguyen P., Dalíková M., Edmonds N., Marec F., Saccheri I.J. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): A model of industrial melanism. Heredity. 2013;110:283–295. doi: 10.1038/hdy.2012.84. PubMed DOI PMC
Fraïsse C., Picard M.A.L., Vicoso B. The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nat. Commun. 2017;8:1486. doi: 10.1038/s41467-017-01663-5. PubMed DOI PMC
Traut W., Sahara K., Marec F. Sex chromosomes and sex determination in Lepidoptera. Sex Dev. 2007;1:332–346. doi: 10.1159/000111765. PubMed DOI
Traut W., Vogel H., Glöckner G., Hartmann E., Heckel D.G. High-throughput sequencing of a single chromosome: A moth W chromosome. Chromosome Res. 2013;21:491–505. doi: 10.1007/s10577-013-9376-6. PubMed DOI
Traut W., Marec F. Sex chromatin in Lepidoptera. Q. Rev. Biol. 1996;71:239–256. doi: 10.1086/419371. PubMed DOI
Lukhtanov V.A. Sex chromatin and sex chromosome systems in nonditrysian Lepidoptera (Insecta) J. Zool. Syst. Evol. Res. 2000;38:73–79. doi: 10.1046/j.1439-0469.2000.382130.x. DOI
Šíchová J., Nguyen P., Dalíková M., Marec F. Chromosomal evolution in tortricid moths: Conserved karyotypes with diverged features. PLoS ONE. 2013;8:e64520. doi: 10.1371/journal.pone.0064520. PubMed DOI PMC
Hejníčková M., Koutecký P., Potocký P., Provazníková I., Voleníková A., Dalíková M., Visser S., Marec F., Zrzavá M. Absence of W chromosome in Psychidae moths and implications for the theory of sex chromosome evolution in Lepidoptera. Genes. 2019;10:1016. doi: 10.3390/genes10121016. PubMed DOI PMC
Rathjens B. Zur Funktion des W-Chromatins bei Ephestia kuehniella (Lepidoptera). Isolierung und Charakterisierung von W-Chromatin-Mutanten. Chromosoma. 1974;47:21–44. doi: 10.1007/BF00326269. PubMed DOI
Traut W., Weith A., Traut G. Structural mutants of the W chromosome in Ephestia (Insecta, Lepidoptera) Genetica. 1986;70:69–79. doi: 10.1007/BF00123216. DOI
Makee H., Tafesh N. Area-Wide Control of Insect Pests. Springer; Dordrecht, The Netherlands: 2007. Sex chromatin body as a cytogenetic marker of W chromosome aberrations in Cydia pomonella females; pp. 113–118. DOI
Traut W., Clarke C.A. Karyotype evolution by chromosome fusion in the moth genus Orgyia. Hereditas. 1997;126:77–84. doi: 10.1111/j.1601-5223.1997.00077.x. DOI
Fuková I., Traut W., Vítková M., Nguyen P., Kubíčková S., Marec F. Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma. 2007;116:135–145. doi: 10.1007/s00412-006-0086-0. PubMed DOI
Vítková M., Fuková I., Kubíčková S., Marec F. Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera) Chromosome Res. 2007;15:917–930. doi: 10.1007/s10577-007-1173-7. PubMed DOI
Traut W., Sahara K., Otto T.D., Marec F. Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma. 1999;108:173–180. doi: 10.1007/s004120050366. PubMed DOI
Sahara K., Marec F., Eickhoff U., Traut W. Moth sex chromatin probed by comparative genomic hybridization (CGH) Genome. 2003;46:339–342. doi: 10.1139/g03-003. PubMed DOI
Green J.E., Dalíková M., Sahara K., Akam M., Marec F. XX/XY system of sex determination in the geophilomorph centipede Strigamia maritima. PLoS ONE. 2016;11:e0150292. doi: 10.1371/journal.pone.0150292. PubMed DOI PMC
Sihvonen P., Mutanen M., Kaila L., Brehm G., Hausmann A., Staude H.S. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae) PLoS ONE. 2011;6:e20356. doi: 10.1371/journal.pone.0020356. PubMed DOI PMC
Traut W., Mosbacher G.C. Geschlechtschromatin bei Lepidopteren. Chromosoma. 1968;25:343–356. doi: 10.1007/BF01183125. PubMed DOI
Ennis T.J. Sex chromatin and chromosome numbers in Lepidoptera. Can. J. Genet. Cytol. 1976;18:119–130. doi: 10.1139/g76-017. PubMed DOI
Makino S. An Atlas of the Chromosome Numbers in Animals. 2nd ed. Iowa State College Press; Ames, IA, USA: 1951. DOI
Robinson R. Lepidoptera Genetics. Pergamon Press; Oxford, UK: 1970.
Murillo-Ramos L., Brehm G., Sihvonen P., Hausmann A., Holm S., Reza Ghanavi H., Õunap E., Truuverk A., Staude H., Friedrich E., et al. A comprehensive molecular phylogeny of Geometridae (Lepidoptera) with a focus on enigmatic small subfamilies. Peer J. 2019;27:e7386. doi: 10.7717/peerj.7386. PubMed DOI PMC
Mediouni J., Fuková I., Frydrychová R., Dhouibi M.H., Marec F. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae) Caryologia. 2004;57:184–194. doi: 10.1080/00087114.2004.10589391. DOI
Winnepenninckx B., Backeljau T., de Wachter R. Extraction of high molecular weight DNA from molluscs. Trends Genet. 1993;12:407. doi: 10.1016/0168-9525(93)90102-n. PubMed DOI
Kato A., Albert P.S., Vega J.M., Birchler J.A. Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech. Histochem. 2006;81:71–78. doi: 10.1080/10520290600643677. PubMed DOI
Fuková I., Nguyen P., Marec F. Codling moth cytogenetics: Karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;48:1083–1092. doi: 10.1139/g05-063. PubMed DOI
Okazaki S., Tsuchida K., Maekawa H., Ishikawa H., Fujiwara H. Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkworm Bombyx mori and in other insects. Mol. Cell. Biol. 1993;13:1424–1432. doi: 10.1128/MCB.13.3.1424. PubMed DOI PMC
Ijdo J.W., Wells R.A., Baldini A., Reeders S.T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19:4780. doi: 10.1093/nar/19.17.4780. PubMed DOI PMC
Sahara K., Marec F., Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 1999;7:449–460. doi: 10.1023/A:1009297729547. PubMed DOI
Shibata F., Sahara K., Naito Y., Yasukochi Y. Reprobing multicolor FISH preparations in lepidopteran chromosome. Zool. Sci. 2009;26:187–193. doi: 10.2108/zsj.26.187. PubMed DOI
Murillo-Ramos L., Chazot N., Sihvonen P., Õunap E., Jiang N., Han H., Clarke J.T., Davis R.B., Tammaru T., Wahlberg N. Molecular phylogeny, classification, biogeography and diversification patterns of a diverse group of moths (Geometridae: Boarmiini) Mol. Phylogenet. Evol. 2021;162:107198. doi: 10.1016/j.ympev.2021.107198. PubMed DOI
Van’t Hof A.E., Marec F., Saccheri I.J., Brakefield P.M., Zwaan B.J. Cytogenetic characterization and AFLP-based genetic linkage mapping for the butterfly Bicyclus anynana, covering all 28 karyotyped chromosomes. PLoS ONE. 2008;3:e3882. doi: 10.1371/journal.pone.0003882. PubMed DOI PMC
Smith D.A.S., Gordon I.J., Traut W., Herren J., Collins S., Martins D.J., Saitoti K., Ireri P., Ffrench-Constant R. A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation. Proc. R. Soc. B. 2016;283:20160821. doi: 10.1098/rspb.2016.0821. PubMed DOI PMC
Loda A., Brandsma J.H., Vassilev I., Servant N., Loos F., Amirnasr A., Splinter E., Barillot E., Poot R.A., Heard E., et al. Genetic and epigenetic features direct differential efficiency of Xist-mediated silencing at X-chromosomal and autosomal locations. Nat. Commun. 2017;8:690. doi: 10.1038/s41467-017-00528-1. PubMed DOI PMC
Kataoka K., Noto T., Mochizuki K. Phosphorylation of an HP1-like protein regulates heterochromatin body assembly for DNA elimination. Dev. Cell. 2015;35:775–788. doi: 10.1016/j.devcel.2015.11.017. PubMed DOI PMC
Mongue A.J., Nguyen P., Voleníková A., Walters J.R. Neo-sex chromosomes in the Monarch butterfly, Danaus plexippus. G3 Genes Genomes Genet. 2017;7:3281–3294. doi: 10.1534/g3.117.300187. PubMed DOI PMC
Yoshido A., Marec F., Sahara K. The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: No role in sex determination and reproduction. Heredity. 2016;116:424–433. doi: 10.1038/hdy.2015.110. PubMed DOI PMC
Kiuchi T., Koga H., Kawamoto M., Shoji K., Sakai H., Arai Y., Ishihara G., Kawaoka S., Sugano S., Shimada T., et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature. 2014;509:633–636. doi: 10.1038/nature13315. PubMed DOI
Yoshido A., Sahara K., Marec F., Matsuda Y. Step-by-step evolution of neo-sex chromosomes in geographical populations of wild silkmoths, Samia cynthia ssp. Heredity. 2011;106:614–624. doi: 10.1038/hdy.2010.94. PubMed DOI PMC
Carabajal Paladino L.Z., Provazníková I., Berger M., Bass C., Aratchige N.S., López S.N., Marec F., Nguyen P. Sex chromosome turnover in moths of the diverse superfamily Gelechioidea. Genome Biol. Evol. 2019;11:1307–1319. doi: 10.1093/gbe/evz075. PubMed DOI PMC
Šíchová J., Voleníková A., Dincă V., Nguyen P., Vila R., Sahara K., Marec F. Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evol. Biol. 2015;15:89. doi: 10.1186/s12862-015-0375-4. PubMed DOI PMC