Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids

. 2021 Sep 02 ; 13 (9) : . [epub] 20210902

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34578972

Grantová podpora
APVV-18-0312 Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
DS-FR-19-0049 Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
VEGA 1/0266/20 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
KEGA 033SPU-4/2021 Kultúrna a Edukacná Grantová Agentúra MŠVVaŠ SR
Drive4SIFood 313011V336 the Operational Programme Integrated Infrastructure within the project: Demand-driven research for the sustainable and innovative food
KA2 2020-1-SK01-KA203-078363 ERASMUS+ Programme of the European Union

Stilbenoids are interesting natural compounds with pleiotropic in vitro and in vivo activity. Their well-documented biological properties include anti-inflammatory effects, anticancer effects, effects on longevity, and many others. Therefore, they are nowadays commonly found in foods and dietary supplements, and used as a part of treatment strategy in various types of diseases. Bioactivity of stilbenoids strongly depends on different types of factors such as dosage, food composition, and synergistic effects with other plant secondary metabolites such as polyphenols or vitamins. In this review, we summarize the existing in vitro, in vivo, and clinical data from published studies addressing the optimization of bioavailability of stilbenoids. Stilbenoids face low bioavailability due to their chemical structure. This can be improved by the use of novel drug delivery systems or enhancers, which are discussed in this review. Current in vitro and in vivo evidence suggests that both approaches are very promising and increase the absorption of the original substance by several times. However, data from more clinical trials are required.

Zobrazit více v PubMed

Renaud S., De Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339:1523–1526. doi: 10.1016/0140-6736(92)91277-F. PubMed DOI

Abou-Zeid L.A., El-Mowafy A.M. Differential recognition of resveratrol isomers by the human estrogen receptor-α: Molecular dynamics evidence for stereoselective ligand binding. Chirality. 2004;16:190–195. doi: 10.1002/chir.20007. PubMed DOI

Jarosova V., Vesely O., Doskocil I., Tomisova K., Marsik P., Jaimes J.D., Smejkal K., Kloucek P., Havlik J. Metabolism of cis- and trans-Resveratrol and Dihydroresveratrol in an Intestinal Epithelial Model. Nutrients. 2020;12:595. doi: 10.3390/nu12030595. PubMed DOI PMC

Jhanji M., Rao C.N., Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: Cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience. 2020;43:1171–1200. doi: 10.1007/s11357-020-00295-w. PubMed DOI PMC

Rius C., Abu-Taha M., Hermenegildo C., Piqueras L., Cerda-Nicolas J.-M., Issekutz A.C., Estañ L., Cortijo J., Morcillo E.J., Orallo F., et al. Trans- but Not Cis-Resveratrol Impairs Angiotensin-II–Mediated Vascular Inflammation through Inhibition of NF-κB Activation and Peroxisome Proliferator-Activated Receptor-γ Upregulation. J. Immunol. 2010;185:3718–3727. doi: 10.4049/jimmunol.1001043. PubMed DOI

Freudenheim J.L. A Review of Study Designs and Methods of Dietary Assessment in Nutritional Epidemiology of Chronic Disease. J. Nutr. 1993;123:401–405. doi: 10.1093/jn/123.suppl_2.401. PubMed DOI

World Health Organization . Healthy Diet. No. WHO-EM/NUT/282/E. World Health Organization Regional Office for the Eastern Mediterranean; Albany, NY, USA: 2019.

Chang A.Y., Skirbekk V.F., Tyrovolas S., Kassebaum N.J., Dieleman J.L. Measuring population ageing: An analysis of the Global Burden of Disease Study 2017. Lancet Public Heal. 2019;4:e159–e167. doi: 10.1016/S2468-2667(19)30019-2. PubMed DOI PMC

Romagnolo D.F., Selmin O.I. Mediterranean Diet and Prevention of Chronic Diseases. Nutr. Today. 2017;52:208–222. doi: 10.1097/NT.0000000000000228. PubMed DOI PMC

US Department of Agriculture. US Department of Health and Human Services . Dietary Guidelines for Americans. US Department of Agriculture; US Department of Health and Human Services; Washington, DC, USA: 2020. 2020-2025.

Herforth A., Arimond M., Álvarez-Sánchez C., Coates J., Christianson K., Muehlhoff E. A Global Review of Food-Based Dietary Guidelines. Adv. Nutr. 2019;10:590–605. doi: 10.1093/advances/nmy130. PubMed DOI PMC

Dvorakova M., Landa P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol. Res. 2017;124:126–145. doi: 10.1016/j.phrs.2017.08.002. PubMed DOI

Zordoky B.N., Robertson I.M., Dyck J.R. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2015;1852:1155–1177. doi: 10.1016/j.bbadis.2014.10.016. PubMed DOI

Oyenihi O.R., Oyenihi A.B., Adeyanju A.A., Oguntibeju O.O. Antidiabetic Effects of Resveratrol: The Way Forward in Its Clinical Utility. J. Diabetes Res. 2016;2016:9737483. doi: 10.1155/2016/9737483. PubMed DOI PMC

Akinwumi B.C., Bordun K.-A.M., Anderson H.D. Biological Activities of Stilbenoids. Int. J. Mol. Sci. 2018;19:792. doi: 10.3390/ijms19030792. PubMed DOI PMC

Tian B., Liu J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric. 2019;100:1392–1404. doi: 10.1002/jsfa.10152. PubMed DOI

Takaoka M.J. Of the Phenolic Substrate of White Hellebore (Veratrum Grandiflorum Loes. Fil.) J. Fac. Sci. Hokkaido Imper. Univ. 1940;3:1–16.

Anisimova N.Y., Kiselevsky M.V., Sosnov A.V., Sadovnikov S.V., Stankov I.N., Gakh A.A. Trans-, cis-, and dihydro-resveratrol: A comparative study. Chem. Central J. 2011;5:88. doi: 10.1186/1752-153X-5-88. PubMed DOI PMC

Cardile V., Chillemi R., Lombardo L., Sciuto S., Spatafora C., Tringali C. Antiproliferative Activity of Methylated Analogues of E- and Z-Resveratrol. Zeitschrift für Naturforschun. 2007;62:189–195. doi: 10.1515/znc-2007-3-406. PubMed DOI

Boocock D., Faust G.E., Patel K.R., Schinas A.M., Brown V.A., Ducharme M.P., Booth T.D., Crowell J.A., Perloff M., Gescher A.J., et al. Phase I Dose Escalation Pharmacokinetic Study in Healthy Volunteers of Resveratrol, a Potential Cancer Chemopreventive Agent. Cancer Epidemiol. Biomark. Prev. 2007;16:1246–1252. doi: 10.1158/1055-9965.EPI-07-0022. PubMed DOI

Smoliga J.M., Blanchard O. Enhancing the Delivery of Resveratrol in Humans: If Low Bioavailability is the Problem, What is the Solution? Molecules. 2014;19:17154–17172. doi: 10.3390/molecules191117154. PubMed DOI PMC

Walle T., Hsieh F., DeLegge M.H., Oatis J.E., Walle U.K. HIGH ABSORPTION BUT VERY LOW BIOAVAILABILITY OF ORAL RESVERATROL IN HUMANS. Drug Metab. Dispos. 2004;32:1377–1382. doi: 10.1124/dmd.104.000885. PubMed DOI

Goldberg D.M., Yan J., Soleas G.J. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin. Biochem. 2003;36:79–87. doi: 10.1016/S0009-9120(02)00397-1. PubMed DOI

Willenberg I., Michael M., Wonik J., Bartel L.C., Empl M.T., Schebb N.H. Investigation of the absorption of resveratrol oligomers in the Caco-2 cellular model of intestinal absorption. Food Chem. 2015;167:245–250. doi: 10.1016/j.foodchem.2014.06.103. PubMed DOI

Kuhnle G., Spencer J.P., Chowrimootooc G., Schroeter H., Debnam E.S., Srai S.S., Rice-Evans C., Hahn U. Resveratrol Is Absorbed in the Small Intestine as Resveratrol Glucuronide. Biochem. Biophys. Res. Commun. 2000;272:212–217. doi: 10.1006/bbrc.2000.2750. PubMed DOI

Andlauer W., Kolb J., Siebert K., Fürst P. Assessment of Resveratrol Bioavailability in the Perfused Small Intes-tine of the Rat. Drugs Exp. Clin. Res. 2000;26:47–55. PubMed

Almeida L., Silva M.V., Falcão A., Soares E., Costa R., Loureiro A.I., Fernandes-Lopes C., Rocha J.-F., Nunes T., Wright L., et al. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol. Nutr. Food Res. 2009;53:S7–S15. doi: 10.1002/mnfr.200800177. PubMed DOI

La Porte C., Voduc N., Zhang G., Seguin I., Tardiff D., Singhal N., Cameron B. Steady-State Pharmacokinetics and Tolerability of Trans-Resveratrol 2000 mg Twice Daily with Food, Quercetin and Alcohol (Ethanol) in Healthy Human Subjects. Clin. Pharmacokinet. 2010;49:449–454. doi: 10.2165/11531820-000000000-00000. PubMed DOI

Bruguerolle B. Chronopharmacokinetics. Clin. Pharmacokinet. 1998;35:83–94. doi: 10.2165/00003088-199835020-00001. PubMed DOI

Silva M.V., Loureiro A., Falcao A., Nunes T., Rocha J.-F., Fernandes-Lopes C., Soares E., Wright L., Almeida L., Soares-Da-Silva P. Effect of food on the pharmacokinetic profile of trans-resveratrol. Int. J. Clin. Pharmacol. Ther. 2008;46:564–570. doi: 10.5414/CPP46564. PubMed DOI

Zhu X., Wu C., Qiu S., Yuan X., Li L., Zhu X., Wu C., Qiu S., Yuan X., Li L. Effects of resveratrol on glucose control and insulin sensitivity in subjects with type 2 diabetes: Systematic review and meta-analysis. Nutr. Metab. 2017;14:60. doi: 10.1186/s12986-017-0217-z. PubMed DOI PMC

Calabrese E.J., Mattson M.P., Calabrese V. Resveratrol commonly displays hormesis: Occurrence and biomedical significance. Hum. Exp. Toxicol. 2010;29:980–1015. doi: 10.1177/0960327110383625. PubMed DOI

Shaito A., Posadino A.M., Younes N., Hasan H., Halabi S., Alhababi D., Al-Mohannadi A., Abdel-Rahman W.M., Eid A.H., Nasrallah G.K., et al. Potential Adverse Effects of Resveratrol: A Literature Review. Int. J. Mol. Sci. 2020;21:2084. doi: 10.3390/ijms21062084. PubMed DOI PMC

Pannu N., Bhatnagar A. Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed. Pharmacother. 2018;109:2237–2251. doi: 10.1016/j.biopha.2018.11.075. PubMed DOI

Catalogna G., Moraca F., D’Antona L., Dattilo V., Perrotti G., Lupia A., Costa G., Ortuso F., Iuliano R., Trapasso F., et al. Review about the multi-target profile of resveratrol and its implication in the SGK1 inhibition. Eur. J. Med. Chem. 2019;183:111675. doi: 10.1016/j.ejmech.2019.111675. PubMed DOI

Varoni E.M., Faro A.F.L., Sharifi-Rad J., Iriti M. Anticancer Molecular Mechanisms of Resveratrol. Front. Nutr. 2016;3:8. doi: 10.3389/fnut.2016.00008. PubMed DOI PMC

Vestergaard M., Ingmer H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents. 2019;53:716–723. doi: 10.1016/j.ijantimicag.2019.02.015. PubMed DOI

Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9:7204–7218. doi: 10.18632/oncotarget.23208. PubMed DOI PMC

Dyck G.J.B., Raj P., Zieroth S., Dyck J.R.B., Ezekowitz J.A. The Effects of Resveratrol in Patients with Cardiovascular Disease and Heart Failure: A Narrative Review. Int. J. Mol. Sci. 2019;20:904. doi: 10.3390/ijms20040904. PubMed DOI PMC

Asgary S., Karimi R., Momtaz S., Naseri R., Farzaei M.H. Effect of resveratrol on metabolic syndrome components: A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2019;20:173–186. doi: 10.1007/s11154-019-09494-z. PubMed DOI

Springer M., Moco S. Resveratrol and Its Human Metabolites—Effects on Metabolic Health and Obesity. Nutrients. 2019;11:143. doi: 10.3390/nu11010143. PubMed DOI PMC

Tabrizi R., Tamtaji O.R., Lankarani K.B., Akbari M., Dadgostar E., Dabbaghmanesh M.H., Kolahdooz F., Shamshirian A., Momen-Heravi M., Asemi Z. The effects of resveratrol intake on weight loss: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2018;60:375–390. doi: 10.1080/10408398.2018.1529654. PubMed DOI

Ortega I., Duleba A.J. Ovarian actions of resveratrol. Ann. N. Y. Acad. Sci. 2015;1348:86–96. doi: 10.1111/nyas.12875. PubMed DOI

Kolesarova A., Capcarová M., Maruniakova N., Lukac N., Ciereszko R.E., Sirotkin A.V. Resveratrol inhibits reproductive toxicity induced by deoxynivalenol. J. Environ. Sci. Heal. Part A. 2012;47:1329–1334. doi: 10.1080/10934529.2012.672144. PubMed DOI

Brasnyó P., Molnar G.A., Mohás M., Markó L., Laczy B., Cseh J., Mikolás E., Szijártó I.A., Mérei Á., Halmai R., et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 2011;106:383–389. doi: 10.1017/S0007114511000316. PubMed DOI

Johnson A.A., Riehle M.A. Resveratrol Fails to Extend Life Span in the MosquitoAnopheles stephensi. Rejuvenation Res. 2015;18:473–478. doi: 10.1089/rej.2015.1670. PubMed DOI

Baur J., Pearson K.J., Price N., Jamieson H.A., Lerin C., Kalra A., Prabhu V.V., Allard J.S., López-Lluch G., Lewis K., et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–342. doi: 10.1038/nature05354. PubMed DOI PMC

Christenson J., Whitby S.J., Mellor D., Thomas J., Mc Kune A., Roach P.D., Naumovski N. The Effects of Resveratrol Supplementation in Overweight and Obese Humans: A Systematic Review of Randomized Trials. Metab. Syndr. Relat. Disord. 2016;14:323–333. doi: 10.1089/met.2016.0035. PubMed DOI

Fernández-Quintela A., Carpéné C., Fernández M., Aguirre L., Milton-Laskibar I., Contreras J., Portillo M.P. Anti-obesity effects of resveratrol: Comparison between animal models and humans. J. Physiol. Biochem. 2016;73:417–429. doi: 10.1007/s13105-016-0544-y. PubMed DOI

Li S., Chen M., Li Y., Tollefsbol T.O. Prenatal epigenetics diets play protective roles against environmental pollution. Clin. Epigenetics. 2019;11:82. doi: 10.1186/s13148-019-0659-4. PubMed DOI PMC

Bishayee A., Barnes K.F., Bhatia D., Darvesh A.S., Carroll R.T. Resveratrol Suppresses Oxidative Stress and Inflammatory Response in Diethylnitrosamine-Initiated Rat Hepatocarcinogenesis. Cancer Prev. Res. 2010;3:753–763. doi: 10.1158/1940-6207.CAPR-09-0171. PubMed DOI

Riba A., Deres L., Sumegi B., Toth K., Szabados E., Halmosi R. Cardioprotective Effect of Resveratrol in a Postinfarction Heart Failure Model. Oxidative Med. Cell. Longev. 2017;2017:6819281. doi: 10.1155/2017/6819281. PubMed DOI PMC

Gambini J., Ingles M., Olaso G., Lopez-Grueso R., Bonet-Costa V., Gimeno-Mallench L., Bargues C.M., Abdelaziz K.M., Gomez-Cabrera M.C., Vina J., et al. Properties of Resveratrol:In VitroandIn VivoStudies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxidative Med. Cell. Longev. 2015;2015:837042. doi: 10.1155/2015/837042. PubMed DOI PMC

Kataria R., Khatkar A. Molecular docking, synthesis, kinetics study, structure–activity relationship and ADMET analysis of morin analogous as Helicobacter pylori urease inhibitors. BMC Chem. 2019;13:1–17. doi: 10.1186/s13065-019-0562-2. PubMed DOI PMC

Mirza S., Sharma G., Parshad R., Gupta S.D., Pandya P., Ralhan R. Expression of DNA Methyltransferases in Breast Cancer Patients and to Analyze the Effect of Natural Compounds on DNA Methyltransferases and Associated Proteins. J. Breast Cancer. 2013;16:23–31. doi: 10.4048/jbc.2013.16.1.23. PubMed DOI PMC

Liu K., Zhou R., Wang B., Mi M.-T. Effect of resveratrol on glucose control and insulin sensitivity: A meta-analysis of 11 randomized controlled trials. Am. J. Clin. Nutr. 2014;99:1510–1519. doi: 10.3945/ajcn.113.082024. PubMed DOI

Borra M.T., Smith B., Denu J.M. Mechanism of Human SIRT1 Activation by Resveratrol. J. Biol. Chem. 2005;280:17187–17195. doi: 10.1074/jbc.M501250200. PubMed DOI

Lagouge M., Argmann C., Gerhart-Hines Z., Meziane H., Lerin C., Daussin F., Messadeq N., Milne J., Lambert P., Elliott P., et al. Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α. Cell. 2006;127:1109–1122. doi: 10.1016/j.cell.2006.11.013. PubMed DOI

Vlavcheski F., Hartogh D.J.D., Giacca A., Tsiani E. Amelioration of High-Insulin-Induced Skeletal Muscle Cell Insulin Resistance by Resveratrol Is Linked to Activation of AMPK and Restoration of GLUT4 Translocation. Nutrients. 2020;12:914. doi: 10.3390/nu12040914. PubMed DOI PMC

Penumathsa S.V., Thirunavukkarasu M., Zhan L., Maulik G., Menon V.P., Bagchi D., Maulik N. Resveratrol enhances GLUT-4 translocation to the caveolar lipid raft fractions through AMPK/Akt/eNOS signalling pathway in diabetic myocardium. J. Cell. Mol. Med. 2008;12:2350–2361. doi: 10.1111/j.1582-4934.2008.00251.x. PubMed DOI PMC

Su H.-C., Hung L.-M., Chen J.-K. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am. J. Physiol. Metab. 2006;290:E1339–E1346. doi: 10.1152/ajpendo.00487.2005. PubMed DOI

Szkudelski T. The insulin-suppressive effect of resveratrol—An in vitro and in vivo phenomenon. Life Sci. 2008;82:430–435. doi: 10.1016/j.lfs.2007.12.008. PubMed DOI

Bertelli A.A., Giovannini L., Stradi R., Tillement J.P. Plasma, urine and tissue levels of trans- and cis-resveratrol (3,4’,5-trihydroxystilbene) after short-term or prolonged administration of red wine to rats. Int. J. Tissue React. 1996;18:67–71. PubMed

Bertelli A.A., Giovannini L., Stradi R., Urien S., Tillement J.P., Bertelli A. Kinetics of Trans- and Cis-Resveratrol (3,4’,5-Trihydroxystilbene) after Red Wine Oral Administration in Rats. Int. J. Clin. Pharmacol. Res. 1996;16:77–81. doi: 10.1002/mnfr.200500002. PubMed DOI

Soleas G.J., Angelini M., Grass L., Diamandis E.P., Goldberg D.M. Absorption of trans-resveratrol in rats. Methods Enzymol. 2001;335:145–154. doi: 10.1016/s0076-6879(01)35239-4. PubMed DOI

Vitrac X., Desmoulière A., Brouillaud B., Krisa S., Deffieux G., Barthe N., Rosenbaum J., Mérillon J.-M. Distribution of [14C]-trans-resveratrol, a cancer chemopreventive polyphenol, in mouse tissues after oral administration. Life Sci. 2003;72:2219–2233. doi: 10.1016/S0024-3205(03)00096-1. PubMed DOI

Yu C., Shin Y.G., Chow A., Li Y., Kosmeder J.W., Lee Y.S., Hirschelman W.H., Pezzuto J.M., Mehta R.G., van Breemen R.B. Human, Rat, and Mouse Metabolism of Resveratrol. Pharm. Res. 2002;19:1907–1914. doi: 10.1023/A:1021414129280. PubMed DOI

Wenzel E., Soldo T., Erbersdobler H., Somoza V. Bioactivity and metabolism oftrans-resveratrol orally administered to Wistar rats. Mol. Nutr. Food Res. 2005;49:482–494. doi: 10.1002/mnfr.200500003. PubMed DOI

Azorín-Ortuño M., Yáñez-Gascón M.J., Vallejo F., Pallarés F.J., Larrosa M., Lucas R., Morales J.C., Tomas-Barberan F., Conesa M.T.G., Espín J.C. Metabolites and tissue distribution of resveratrol in the pig. Mol. Nutr. Food Res. 2011;55:1154–1168. doi: 10.1002/mnfr.201100140. PubMed DOI

Brill S.S., Furimsky A.M., Ho M.N., Furniss M.J., Li Y., Green A.G., Green C.E., Iyer L.V., Bradford W.W., Kapetanovic I.M. Glucuronidation of trans-resveratrol by human liver and intestinal microsomes and UGT isoforms. J. Pharm. Pharmacol. 2006;58:469–479. doi: 10.1211/jpp.58.4.0006. PubMed DOI

Planas J.M., Alfaras I., Colom H., Juan M.E. The bioavailability and distribution of trans-resveratrol are constrained by ABC transporters. Arch. Biochem. Biophys. 2012;527:67–73. doi: 10.1016/j.abb.2012.06.004. PubMed DOI

Van De Wetering K., Burkon A., Feddema W., Bot A., De Jonge H., Somoza V., Borst P. Intestinal Breast Cancer Resistance Protein (BCRP)/Bcrp1 and Multidrug Resistance Protein 3 (MRP3)/Mrp3 Are Involved in the Pharmacokinetics of Resveratrol. Mol. Pharmacol. 2008;75:876–885. doi: 10.1124/mol.108.052019. PubMed DOI

Kaldas M.I., Walle U.K., Walle T. Resveratrol transport and metabolism by human intestinal Caco-2 cells. J. Pharm. Pharmacol. 2003;55:307–312. doi: 10.1211/002235702612. PubMed DOI

Bode L.M., Bunzel D., Huch M., Cho G.-S., Ruhland D., Bunzel M., Bub A., Franz C.M.A.P., Kulling E.S. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am. J. Clin. Nutr. 2013;97:295–309. doi: 10.3945/ajcn.112.049379. PubMed DOI

Jarosova V., Vesely O., Marsik P., Jaimes J.D., Smejkal K., Kloucek P., Havlik J. Metabolism of Stilbenoids by Human Faecal Microbiota. Molecules. 2019;24:1155. doi: 10.3390/molecules24061155. PubMed DOI PMC

Jaimes J.D., Jarosova V., Vesely O., Mekadim C., Mrazek J., Marsik P., Killer J., Smejkal K., Kloucek P., Havlik J. Effect of Selected Stilbenoids on Human Fecal Microbiota. Molecules. 2019;24:744. doi: 10.3390/molecules24040744. PubMed DOI PMC

Urpi-Sarda M., Zamora-Ros R., Lamuela-Raventos R.M., Cherubini A., Jauregui O., de la Torre R., Covas M.I., Estruch R., Jaeger W., Andres-Lacueva C. HPLC–Tandem Mass Spectrometric Method to Characterize Resveratrol Metabolism in Humans. Clin. Chem. 2007;53:292–299. doi: 10.1373/clinchem.2006.071936. PubMed DOI

Delmas D., Aires V., Limagne E., Dutartre P., Mazué F., Ghiringhelli F., Latruffe N. Transport, stability, and biological activity of resveratrol. Ann. N. Y. Acad. Sci. 2011;1215:48–59. doi: 10.1111/j.1749-6632.2010.05871.x. PubMed DOI

Fernández-Castillejo S., Macià A., Motilva M.J., Catalán Ú., Solà R. Endothelial Cells Deconjugate Resveratrol Metabolites to Free Resveratrol: A Possible Role in Tissue Factor Modulation. Mol. Nutr. Food Res. 2018;63:e1800715. doi: 10.1002/mnfr.201800715. PubMed DOI

Vinson J.A. Intracellular Polyphenols: How Little We Know. J. Agric. Food Chem. 2019;67:3865–3870. doi: 10.1021/acs.jafc.8b07273. PubMed DOI

Patel K.R., Scott E., Brown V.A., Gescher A.J., Steward W.P., Brown K. Clinical trials of resveratrol. Ann. N. Y. Acad. Sci. 2011;1215:161–169. doi: 10.1111/j.1749-6632.2010.05853.x. PubMed DOI

Koziolek M., Alcaro S., Augustijns P., Basit A.W., Grimm M., Hens B., Hoad C.L., Jedamzik P., Madla C.M., Maliepaard M., et al. The mechanisms of pharmacokinetic food-drug interactions—A perspective from the UNGAP group. Eur. J. Pharm. Sci. 2019;134:31–59. doi: 10.1016/j.ejps.2019.04.003. PubMed DOI

Kamiloglu S., Tomas M., Ozdal T., Capanoglu E. Effect of food matrix on the content and bioavailability of flavonoids. Trends Food Sci. Technol. 2020 doi: 10.1016/j.tifs.2020.10.030. in press. DOI

Mhaske D.B., Sreedharan S., Mahadik K.R. Role of Piperine as an Effective Bioenhancer in Drug Absorption. Phar-Maceutika Anal. Acta. 2018;9:591.

Wightman E.L., Reay J., Haskell C.F., Williamson G., Dew T., Kennedy D. Effects of resveratrol alone or in combination with piperine on cerebral blood flow parameters and cognitive performance in human subjects: A randomised, double-blind, placebo-controlled, cross-over investigation. Br. J. Nutr. 2014;112:203–213. doi: 10.1017/S0007114514000737. PubMed DOI

Bailey H.H., Johnson J.J., Lozar T., Scarlett C.O., Wollmer B.W., Kim K., Havinghurst T., Ahmad N. A randomized, double-blind, dose-ranging, pilot trial of piperine with resveratrol on the effects on serum levels of resveratrol. Eur. J. Cancer Prev. 2020;30:285–290. doi: 10.1097/CEJ.0000000000000621. PubMed DOI PMC

Johnson J.J., Nihal M., Siddiqui I.A., Scarlett C.O., Bailey H.H., Mukhtar H., Ahmad N. Enhancing the bioavailability of resveratrol by combining it with piperine. Mol. Nutr. Food Res. 2011;55:1169–1176. doi: 10.1002/mnfr.201100117. PubMed DOI PMC

Jadhav P., Bothiraja C., Pawar A. Resveratrol-piperine loaded mixed micelles: Formulation, characterization, bioavailability, safety and in vitro anticancer activity. RSC Adv. 2016;6:112795–112805. doi: 10.1039/C6RA24595A. DOI

Junsaeng D., Anukunwithaya T., Songvut P., Sritularak B., Likhitwitayawuid K., Khemawoot P. Comparative pharmacokinetics of oxyresveratrol alone and in combination with piperine as a bioenhancer in rats. BMC Complement. Altern. Med. 2019;19:235. doi: 10.1186/s12906-019-2653-y. PubMed DOI PMC

Lund K.C., Pantuso T. Combination Effects of Quercetin, Resveratrol and Curcumin on In Vitro Intestinal Absorption. J. Restor. Med. 2014;3:112–120. doi: 10.14200/jrm.2014.3.0108. DOI

Lee J.-A., Ha S.K., Cho E., Choi I. Resveratrol as a Bioenhancer to Improve Anti-Inflammatory Activities of Apigenin. Nutrients. 2015;7:9650–9661. doi: 10.3390/nu7115485. PubMed DOI PMC

Detampel P., Beck M., Krähenbühl S., Huwyler J. Drug interaction potential of resveratrol. Drug Metab. Rev. 2012;44:253–265. doi: 10.3109/03602532.2012.700715. PubMed DOI

Paine M.F., Hart H.L., Ludington S.S., Haining R.L., Rettie A.E., Zeldin D. The human intestinal cytochrome P450 “pie”. Drug Metab. Dispos. 2006;34:880–886. doi: 10.1124/dmd.105.008672. PubMed DOI PMC

Syed S.B., Arya H., Fu I.-H., Yeh T.-K., Periyasamy L., Hsieh H.-P., Coumar M.S., Syed S.B., Arya H., Fu I.-H., et al. Targeting P-glycoprotein: Investigation of piperine analogs for overcoming drug resistance in cancer. Sci. Rep. 2017;7:7972. doi: 10.1038/s41598-017-08062-2. PubMed DOI PMC

Thiebaut F., Tsuruo T., Hamada H., Gottesman M.M., Pastan I., Willingham M.C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA. 1987;84:7735–7738. doi: 10.1073/pnas.84.21.7735. PubMed DOI PMC

Quan F., Pan C., Ma Q., Zhang S., Yan L. Reversal effect of resveratrol on multidrug resistance in KBv200 cell line. Biomed. Pharmacother. 2008;62:622–629. doi: 10.1016/j.biopha.2008.07.089. PubMed DOI

El-Readi M.Z., Eid S., Abdelghany A.A., Al-Amoudi H.S., Efferth T., Wink M. Resveratrol mediated cancer cell apoptosis, and modulation of multidrug resistance proteins and metabolic enzymes. Phytomedicine. 2018;55:269–281. doi: 10.1016/j.phymed.2018.06.046. PubMed DOI

Huang F., Wu X.-N., Chen J., Wang W.-X., Lu Z. Resveratrol reverses multidrug resistance in human breast cancer doxorubicin-resistant cells. Exp. Ther. Med. 2014;7:1611–1616. doi: 10.3892/etm.2014.1662. PubMed DOI PMC

Mieszala K., Rudewicz M., Gomułkiewicz A., Ratajczak-Wielgomas K., Grzegrzółka J., Dziegiel P., Borska S. Expression of genes and proteins of multidrug resistance in gastric cancer cells treated with resveratrol. Oncol. Lett. 2018;15:5825–5832. doi: 10.3892/ol.2018.8022. PubMed DOI PMC

Devi P., Sharma P., Rathore C., Negi P. Novel Drug Delivery Systems of Resveratrol to Bioavailability and Therapeutic Effects. IntechOpen. 2019 doi: 10.5772/intechopen.79739. DOI

Balata G.F., Eassa E., Shamrool H., Zidan S., Abourehab M. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Des. Dev. Ther. 2016;10:117–128. doi: 10.2147/DDDT.S95905. PubMed DOI PMC

Nam J.-B., Ryu J.-H., Kim J.-W., Chang I.-S., Suh K.-D. Stabilization of resveratrol immobilized in monodisperse cyano-functionalized porous polymeric microspheres. Polymer. 2005;46:8956–8963. doi: 10.1016/j.polymer.2005.07.016. DOI

Shi G., Rao L., Yu H., Xiang H., Yang H., Ji R. Stabilization and encapsulation of photosensitive resveratrol within yeast cell. Int. J. Pharm. 2008;349:83–93. doi: 10.1016/j.ijpharm.2007.07.044. PubMed DOI

Aloisio C., Bueno M.S., Ponte M.P., Paredes A., Palma S.D., Longhi M. Development of solid self-emulsifying drug delivery systems (SEDDS) to improve the solubility of resveratrol. Ther. Deliv. 2019;10:626–641. doi: 10.4155/tde-2019-0054. PubMed DOI

Seljak K.B., Berginc K., Trontelj J., Zvonar A., Kristl A., Gašperlin M. A Self-Microemulsifying Drug Delivery System to Overcome Intestinal Resveratrol Toxicity and Presystemic Metabolism. J. Pharm. Sci. 2014;103:3491–3500. doi: 10.1002/jps.24114. PubMed DOI

Jaisamut P., Wanna S., Limsuwan S., Chusri S., Wiwattanawongsa K., Wiwattanapatapee R. Enhanced Oral Bioavailability and Improved Biological Activities of a Quercetin/Resveratrol Combination Using a Liquid Self-Microemulsifying Drug Delivery System. Planta Medica. 2020;87:336–346. doi: 10.1055/a-1270-7606. PubMed DOI

Luo X., Wang D., Wang M., Deng S., Huang Y., Xia Z. Development of phospholipid complex loaded self-microemulsifying drug delivery system to improve the oral bioavailability of resveratrol. Nanomedicine. 2021;16:721–739. doi: 10.2217/nnm-2020-0422. PubMed DOI

Ansari K.A., Vavia P.R., Trotta F., Cavalli R. Cyclodextrin-Based Nanosponges for Delivery of Resveratrol: In Vitro Characterisation, Stability, Cytotoxicity and Permeation Study. AAPS PharmSciTech. 2011;12:279–286. doi: 10.1208/s12249-011-9584-3. PubMed DOI PMC

Sessa M., Balestrieri M.L., Ferrari G., Servillo L., Castaldo D., D’Onofrio N., Donsì F., Tsao R. Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem. 2014;147:42–50. doi: 10.1016/j.foodchem.2013.09.088. PubMed DOI

Donsì F., Sessa M., Mediouni H., Mgaidi A., Ferrari G. Encapsulation of bioactive compounds in nanoemulsion- based delivery systems. Procedia Food Sci. 2011;1:1666–1671. doi: 10.1016/j.profoo.2011.09.246. DOI

Singh G., Pai R.S. Trans-resveratrol self-nano-emulsifying drug delivery system (SNEDDS) with enhanced bioavailability potential: Optimization, pharmacokinetics andin situsingle pass intestinal perfusion (SPIP) studies. Drug Deliv. 2013;22:522–530. doi: 10.3109/10717544.2014.885616. PubMed DOI

Yen C.-C., Chang C.-W., Hsu M.-C., Wu Y.-T. Self-Nanoemulsifying Drug Delivery System for Resveratrol: Enhanced Oral Bioavailability and Reduced Physical Fatigue in Rats. Int. J. Mol. Sci. 2017;18:1853. doi: 10.3390/ijms18091853. PubMed DOI PMC

Dai L., Zhu W., Liu R., Si C. Lignin-Containing Self-Nanoemulsifying Drug Delivery System for Enhance Stability and Oral Absorption oftrans-Resveratrol. Part. Part. Syst. Charact. 2018;35:1700447. doi: 10.1002/ppsc.201700447. DOI

Md S., Alhakamy N.A., Aldawsari H.M., Ahmad J., Alharbi W.S., Asfour H.Z. Resveratrol loaded self-nanoemulsifying drug delivery system (SNEDDS) for pancreatic cancer: Formulation design, optimization and in vitro evaluation. J. Drug Deliv. Sci. Technol. 2021;64:102555. doi: 10.1016/j.jddst.2021.102555. DOI

Hu C., Wang Q., Ma C., Xia Q. Non-aqueous self-double-emulsifying drug delivery system: A new approach to enhance resveratrol solubility for effective transdermal delivery. Colloids Surf. A Physicochem. Eng. Asp. 2016;489:360–369. doi: 10.1016/j.colsurfa.2015.11.017. DOI

Ethemoglu M., Seker F., Akkaya H., Kilic E., Aslan I., Erdogan C.S., Yilmaz B. Anticonvulsant activity of resveratrol-loaded liposomes in vivo. Neuroscience. 2017;357:12–19. doi: 10.1016/j.neuroscience.2017.05.026. PubMed DOI

Basavaraj S., Betageri G.V. Improved oral delivery of resveratrol using proliposomal formulation: Investigation of various factors contributing to prolonged absorption of unmetabolized resveratrol. Expert Opin. Drug Deliv. 2014;11:493–503. doi: 10.1517/17425247.2014.878701. PubMed DOI

Teskač K., Kristl J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int. J. Pharm. 2010;390:61–69. doi: 10.1016/j.ijpharm.2009.10.011. PubMed DOI

Zhang Q.H., Xiong Q.P., Shi Y.Y., Zhang D.Y. Study on Preparation and Characterization of Resveratrol Solid Li-pid Nanoparticles and Its Anticancer Effects in Vitro. Zhong Yao Cai Zhongyaocai J. Chin. Med. Mater. 2010;33:1929–1932. PubMed

Oganesyan E.A., Miroschichenko I.I., Vikhrieva N.S., Lyashenko A.A., Leshkov S.Y. Use of Nanoparticles to In-crease the Systemic Bioavailability of trans-Resveratrol. Pharm. Chem. J. 2010;44:25–27. doi: 10.1007/s11094-010-0401-1. DOI

Singh G., Pai R.S. In-vitro/in-vivo characterization of trans-resveratrol-loaded nanoparticulate drug delivery system for oral administration. J. Pharm. Pharmacol. 2014;66:1062–1076. doi: 10.1111/jphp.12232. PubMed DOI

Frozza R.L., Bernardi A., Paese K., Hoppe J.B., Da Silva T., Battastini A.M.O., Pohlmann A., Guterres S., Salbego C. Characterization of trans-Resveratrol-Loaded Lipid-Core Nanocapsules and Tissue Distribution Studies in Rats. J. Biomed. Nanotechnol. 2010;6:694–703. doi: 10.1166/jbn.2010.1161. PubMed DOI

Lin Y.F., Lee Y.H., Hsu Y.H., Chen Y.J., Lin Y.F., Cheng F.-Y., Chiu H.W. Resveratrol-Loaded Nanoparticles Conjugated with Kidney Injury Molecule-1 as a Drug Delivery System for Potential Use in Chronic Kidney Disease. Nanomedicine. 2017;12:2741–2756. doi: 10.2217/nnm-2017-0256. PubMed DOI

Singh A., Ahmad I., Ahmad S., Iqbal Z., Ahmad F. A novel monolithic controlled delivery system of resveratrol for enhanced hepatoprotection: Nanoformulation development, pharmacokinetics and pharmacodynamics. Drug Dev. Ind. Pharm. 2016;42:1524–1536. doi: 10.3109/03639045.2016.1151032. PubMed DOI

Li C., Wang X., Li R., Yang X., Zhong Z., Dai Y., Fan Q., Lin Y., Zhang R., Liang T., et al. Resveratrol-loaded PLGA nanoparticles functionalized with red blood cell membranes as a biomimetic delivery system for prolonged circulation time. J. Drug Deliv. Sci. Technol. 2019;54:101369. doi: 10.1016/j.jddst.2019.101369. DOI

Suktham K., Koobkokkruad T., Wutikhun T., Surassmo S. Efficiency of resveratrol-loaded sericin nanoparticles: Promising bionanocarriers for drug delivery. Int. J. Pharm. 2018;537:48–56. doi: 10.1016/j.ijpharm.2017.12.015. PubMed DOI

Reis S., Neves A.R., Lúcio M., Martins S., Lima J. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int. J. Nanomed. 2013;8:177–187. doi: 10.2147/IJN.S37840. PubMed DOI PMC

Hao J., Gao Y., Zhao J., Zhang J., Li Q., Zhao Z., Liu J. Preparation and Optimization of Resveratrol Nanosuspensions by Antisolvent Precipitation Using Box-Behnken Design. AAPS PharmSciTech. 2014;16:118–128. doi: 10.1208/s12249-014-0211-y. PubMed DOI PMC

Rostami M., Ghorbani M., Mohammadi M.A., Delavar M., Tabibiazar M., Ramezani S. Development of resveratrol loaded chitosan-gellan nanofiber as a novel gastrointestinal delivery system. Int. J. Biol. Macromol. 2019;135:698–705. doi: 10.1016/j.ijbiomac.2019.05.187. PubMed DOI

Liu C., Tong P., Yang R., You Y., Liu H., Zhang T. Solidified phospholipid-TPGS as an effective oral delivery system for improving the bioavailability of resveratrol. J. Drug Deliv. Sci. Technol. 2019;52:769–777. doi: 10.1016/j.jddst.2019.02.025. DOI

Wang P.-P., Luo Z.-G., Tamer T.M. Spiral–Dextrin Complex Crystals: Efficient Approach for Colon-Targeted Resveratrol Delivery. J. Agric. Food Chem. 2020;69:474–482. doi: 10.1021/acs.jafc.0c05668. PubMed DOI

Paczkowska-Walendowska M., Dvořák J., Rosiak N., Tykarska E., Szymańska E., Winnicka K., Ruchała M., Cielecka-Piontek J. Buccal Resveratrol Delivery System as a Potential New Concept for the Periodontitis Treatment. Pharmaceutics. 2021;13:417. doi: 10.3390/pharmaceutics13030417. PubMed DOI PMC

Chen Z., Farag M.A., Zhong Z., Zhang C., Yang Y., Wang S., Wang Y. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv. Drug Deliv. Rev. 2021:113870. doi: 10.1016/j.addr.2021.113870. PubMed DOI

Calvo-Castro L.A., Schiborr C., David F., Ehrt H., Voggel J., Sus N., Behnam D., Bosy-Westphal A., Frank J. The Oral Bioavailability of Trans -Resveratrol from a Grapevine-Shoot Extract in Healthy Humans is Significantly Increased by Micellar Solubilization. Mol. Nutr. Food Res. 2018;62:e1701057. doi: 10.1002/mnfr.201701057. PubMed DOI

Briskey D., Rao A. Trans-Resveratrol Oral Bioavailability in Humans Using LipiSperse™ Dispersion Technology. Pharmaceutics. 2020;12:1190. doi: 10.3390/pharmaceutics12121190. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...