Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
APVV-18-0312
Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
DS-FR-19-0049
Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
VEGA 1/0266/20
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
KEGA 033SPU-4/2021
Kultúrna a Edukacná Grantová Agentúra MŠVVaŠ SR
Drive4SIFood 313011V336
the Operational Programme Integrated Infrastructure within the project: Demand-driven research for the sustainable and innovative food
KA2 2020-1-SK01-KA203-078363
ERASMUS+ Programme of the European Union
PubMed
34578972
PubMed Central
PMC8470508
DOI
10.3390/nu13093095
PII: nu13093095
Knihovny.cz E-zdroje
- Klíčová slova
- bioavailability, bioenhancers, metabolism, resveratrol,
- MeSH
- biologická dostupnost MeSH
- lékové transportní systémy MeSH
- lidé MeSH
- potravní doplňky MeSH
- resveratrol chemie farmakokinetika terapeutické užití MeSH
- stilbeny chemie farmakokinetika terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- resveratrol MeSH
- stilbeny MeSH
Stilbenoids are interesting natural compounds with pleiotropic in vitro and in vivo activity. Their well-documented biological properties include anti-inflammatory effects, anticancer effects, effects on longevity, and many others. Therefore, they are nowadays commonly found in foods and dietary supplements, and used as a part of treatment strategy in various types of diseases. Bioactivity of stilbenoids strongly depends on different types of factors such as dosage, food composition, and synergistic effects with other plant secondary metabolites such as polyphenols or vitamins. In this review, we summarize the existing in vitro, in vivo, and clinical data from published studies addressing the optimization of bioavailability of stilbenoids. Stilbenoids face low bioavailability due to their chemical structure. This can be improved by the use of novel drug delivery systems or enhancers, which are discussed in this review. Current in vitro and in vivo evidence suggests that both approaches are very promising and increase the absorption of the original substance by several times. However, data from more clinical trials are required.
Zobrazit více v PubMed
Renaud S., De Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339:1523–1526. doi: 10.1016/0140-6736(92)91277-F. PubMed DOI
Abou-Zeid L.A., El-Mowafy A.M. Differential recognition of resveratrol isomers by the human estrogen receptor-α: Molecular dynamics evidence for stereoselective ligand binding. Chirality. 2004;16:190–195. doi: 10.1002/chir.20007. PubMed DOI
Jarosova V., Vesely O., Doskocil I., Tomisova K., Marsik P., Jaimes J.D., Smejkal K., Kloucek P., Havlik J. Metabolism of cis- and trans-Resveratrol and Dihydroresveratrol in an Intestinal Epithelial Model. Nutrients. 2020;12:595. doi: 10.3390/nu12030595. PubMed DOI PMC
Jhanji M., Rao C.N., Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: Cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience. 2020;43:1171–1200. doi: 10.1007/s11357-020-00295-w. PubMed DOI PMC
Rius C., Abu-Taha M., Hermenegildo C., Piqueras L., Cerda-Nicolas J.-M., Issekutz A.C., Estañ L., Cortijo J., Morcillo E.J., Orallo F., et al. Trans- but Not Cis-Resveratrol Impairs Angiotensin-II–Mediated Vascular Inflammation through Inhibition of NF-κB Activation and Peroxisome Proliferator-Activated Receptor-γ Upregulation. J. Immunol. 2010;185:3718–3727. doi: 10.4049/jimmunol.1001043. PubMed DOI
Freudenheim J.L. A Review of Study Designs and Methods of Dietary Assessment in Nutritional Epidemiology of Chronic Disease. J. Nutr. 1993;123:401–405. doi: 10.1093/jn/123.suppl_2.401. PubMed DOI
World Health Organization . Healthy Diet. No. WHO-EM/NUT/282/E. World Health Organization Regional Office for the Eastern Mediterranean; Albany, NY, USA: 2019.
Chang A.Y., Skirbekk V.F., Tyrovolas S., Kassebaum N.J., Dieleman J.L. Measuring population ageing: An analysis of the Global Burden of Disease Study 2017. Lancet Public Heal. 2019;4:e159–e167. doi: 10.1016/S2468-2667(19)30019-2. PubMed DOI PMC
Romagnolo D.F., Selmin O.I. Mediterranean Diet and Prevention of Chronic Diseases. Nutr. Today. 2017;52:208–222. doi: 10.1097/NT.0000000000000228. PubMed DOI PMC
US Department of Agriculture. US Department of Health and Human Services . Dietary Guidelines for Americans. US Department of Agriculture; US Department of Health and Human Services; Washington, DC, USA: 2020. 2020-2025.
Herforth A., Arimond M., Álvarez-Sánchez C., Coates J., Christianson K., Muehlhoff E. A Global Review of Food-Based Dietary Guidelines. Adv. Nutr. 2019;10:590–605. doi: 10.1093/advances/nmy130. PubMed DOI PMC
Dvorakova M., Landa P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol. Res. 2017;124:126–145. doi: 10.1016/j.phrs.2017.08.002. PubMed DOI
Zordoky B.N., Robertson I.M., Dyck J.R. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2015;1852:1155–1177. doi: 10.1016/j.bbadis.2014.10.016. PubMed DOI
Oyenihi O.R., Oyenihi A.B., Adeyanju A.A., Oguntibeju O.O. Antidiabetic Effects of Resveratrol: The Way Forward in Its Clinical Utility. J. Diabetes Res. 2016;2016:9737483. doi: 10.1155/2016/9737483. PubMed DOI PMC
Akinwumi B.C., Bordun K.-A.M., Anderson H.D. Biological Activities of Stilbenoids. Int. J. Mol. Sci. 2018;19:792. doi: 10.3390/ijms19030792. PubMed DOI PMC
Tian B., Liu J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric. 2019;100:1392–1404. doi: 10.1002/jsfa.10152. PubMed DOI
Takaoka M.J. Of the Phenolic Substrate of White Hellebore (Veratrum Grandiflorum Loes. Fil.) J. Fac. Sci. Hokkaido Imper. Univ. 1940;3:1–16.
Anisimova N.Y., Kiselevsky M.V., Sosnov A.V., Sadovnikov S.V., Stankov I.N., Gakh A.A. Trans-, cis-, and dihydro-resveratrol: A comparative study. Chem. Central J. 2011;5:88. doi: 10.1186/1752-153X-5-88. PubMed DOI PMC
Cardile V., Chillemi R., Lombardo L., Sciuto S., Spatafora C., Tringali C. Antiproliferative Activity of Methylated Analogues of E- and Z-Resveratrol. Zeitschrift für Naturforschun. 2007;62:189–195. doi: 10.1515/znc-2007-3-406. PubMed DOI
Boocock D., Faust G.E., Patel K.R., Schinas A.M., Brown V.A., Ducharme M.P., Booth T.D., Crowell J.A., Perloff M., Gescher A.J., et al. Phase I Dose Escalation Pharmacokinetic Study in Healthy Volunteers of Resveratrol, a Potential Cancer Chemopreventive Agent. Cancer Epidemiol. Biomark. Prev. 2007;16:1246–1252. doi: 10.1158/1055-9965.EPI-07-0022. PubMed DOI
Smoliga J.M., Blanchard O. Enhancing the Delivery of Resveratrol in Humans: If Low Bioavailability is the Problem, What is the Solution? Molecules. 2014;19:17154–17172. doi: 10.3390/molecules191117154. PubMed DOI PMC
Walle T., Hsieh F., DeLegge M.H., Oatis J.E., Walle U.K. HIGH ABSORPTION BUT VERY LOW BIOAVAILABILITY OF ORAL RESVERATROL IN HUMANS. Drug Metab. Dispos. 2004;32:1377–1382. doi: 10.1124/dmd.104.000885. PubMed DOI
Goldberg D.M., Yan J., Soleas G.J. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin. Biochem. 2003;36:79–87. doi: 10.1016/S0009-9120(02)00397-1. PubMed DOI
Willenberg I., Michael M., Wonik J., Bartel L.C., Empl M.T., Schebb N.H. Investigation of the absorption of resveratrol oligomers in the Caco-2 cellular model of intestinal absorption. Food Chem. 2015;167:245–250. doi: 10.1016/j.foodchem.2014.06.103. PubMed DOI
Kuhnle G., Spencer J.P., Chowrimootooc G., Schroeter H., Debnam E.S., Srai S.S., Rice-Evans C., Hahn U. Resveratrol Is Absorbed in the Small Intestine as Resveratrol Glucuronide. Biochem. Biophys. Res. Commun. 2000;272:212–217. doi: 10.1006/bbrc.2000.2750. PubMed DOI
Andlauer W., Kolb J., Siebert K., Fürst P. Assessment of Resveratrol Bioavailability in the Perfused Small Intes-tine of the Rat. Drugs Exp. Clin. Res. 2000;26:47–55. PubMed
Almeida L., Silva M.V., Falcão A., Soares E., Costa R., Loureiro A.I., Fernandes-Lopes C., Rocha J.-F., Nunes T., Wright L., et al. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol. Nutr. Food Res. 2009;53:S7–S15. doi: 10.1002/mnfr.200800177. PubMed DOI
La Porte C., Voduc N., Zhang G., Seguin I., Tardiff D., Singhal N., Cameron B. Steady-State Pharmacokinetics and Tolerability of Trans-Resveratrol 2000 mg Twice Daily with Food, Quercetin and Alcohol (Ethanol) in Healthy Human Subjects. Clin. Pharmacokinet. 2010;49:449–454. doi: 10.2165/11531820-000000000-00000. PubMed DOI
Bruguerolle B. Chronopharmacokinetics. Clin. Pharmacokinet. 1998;35:83–94. doi: 10.2165/00003088-199835020-00001. PubMed DOI
Silva M.V., Loureiro A., Falcao A., Nunes T., Rocha J.-F., Fernandes-Lopes C., Soares E., Wright L., Almeida L., Soares-Da-Silva P. Effect of food on the pharmacokinetic profile of trans-resveratrol. Int. J. Clin. Pharmacol. Ther. 2008;46:564–570. doi: 10.5414/CPP46564. PubMed DOI
Zhu X., Wu C., Qiu S., Yuan X., Li L., Zhu X., Wu C., Qiu S., Yuan X., Li L. Effects of resveratrol on glucose control and insulin sensitivity in subjects with type 2 diabetes: Systematic review and meta-analysis. Nutr. Metab. 2017;14:60. doi: 10.1186/s12986-017-0217-z. PubMed DOI PMC
Calabrese E.J., Mattson M.P., Calabrese V. Resveratrol commonly displays hormesis: Occurrence and biomedical significance. Hum. Exp. Toxicol. 2010;29:980–1015. doi: 10.1177/0960327110383625. PubMed DOI
Shaito A., Posadino A.M., Younes N., Hasan H., Halabi S., Alhababi D., Al-Mohannadi A., Abdel-Rahman W.M., Eid A.H., Nasrallah G.K., et al. Potential Adverse Effects of Resveratrol: A Literature Review. Int. J. Mol. Sci. 2020;21:2084. doi: 10.3390/ijms21062084. PubMed DOI PMC
Pannu N., Bhatnagar A. Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed. Pharmacother. 2018;109:2237–2251. doi: 10.1016/j.biopha.2018.11.075. PubMed DOI
Catalogna G., Moraca F., D’Antona L., Dattilo V., Perrotti G., Lupia A., Costa G., Ortuso F., Iuliano R., Trapasso F., et al. Review about the multi-target profile of resveratrol and its implication in the SGK1 inhibition. Eur. J. Med. Chem. 2019;183:111675. doi: 10.1016/j.ejmech.2019.111675. PubMed DOI
Varoni E.M., Faro A.F.L., Sharifi-Rad J., Iriti M. Anticancer Molecular Mechanisms of Resveratrol. Front. Nutr. 2016;3:8. doi: 10.3389/fnut.2016.00008. PubMed DOI PMC
Vestergaard M., Ingmer H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents. 2019;53:716–723. doi: 10.1016/j.ijantimicag.2019.02.015. PubMed DOI
Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9:7204–7218. doi: 10.18632/oncotarget.23208. PubMed DOI PMC
Dyck G.J.B., Raj P., Zieroth S., Dyck J.R.B., Ezekowitz J.A. The Effects of Resveratrol in Patients with Cardiovascular Disease and Heart Failure: A Narrative Review. Int. J. Mol. Sci. 2019;20:904. doi: 10.3390/ijms20040904. PubMed DOI PMC
Asgary S., Karimi R., Momtaz S., Naseri R., Farzaei M.H. Effect of resveratrol on metabolic syndrome components: A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2019;20:173–186. doi: 10.1007/s11154-019-09494-z. PubMed DOI
Springer M., Moco S. Resveratrol and Its Human Metabolites—Effects on Metabolic Health and Obesity. Nutrients. 2019;11:143. doi: 10.3390/nu11010143. PubMed DOI PMC
Tabrizi R., Tamtaji O.R., Lankarani K.B., Akbari M., Dadgostar E., Dabbaghmanesh M.H., Kolahdooz F., Shamshirian A., Momen-Heravi M., Asemi Z. The effects of resveratrol intake on weight loss: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2018;60:375–390. doi: 10.1080/10408398.2018.1529654. PubMed DOI
Ortega I., Duleba A.J. Ovarian actions of resveratrol. Ann. N. Y. Acad. Sci. 2015;1348:86–96. doi: 10.1111/nyas.12875. PubMed DOI
Kolesarova A., Capcarová M., Maruniakova N., Lukac N., Ciereszko R.E., Sirotkin A.V. Resveratrol inhibits reproductive toxicity induced by deoxynivalenol. J. Environ. Sci. Heal. Part A. 2012;47:1329–1334. doi: 10.1080/10934529.2012.672144. PubMed DOI
Brasnyó P., Molnar G.A., Mohás M., Markó L., Laczy B., Cseh J., Mikolás E., Szijártó I.A., Mérei Á., Halmai R., et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 2011;106:383–389. doi: 10.1017/S0007114511000316. PubMed DOI
Johnson A.A., Riehle M.A. Resveratrol Fails to Extend Life Span in the MosquitoAnopheles stephensi. Rejuvenation Res. 2015;18:473–478. doi: 10.1089/rej.2015.1670. PubMed DOI
Baur J., Pearson K.J., Price N., Jamieson H.A., Lerin C., Kalra A., Prabhu V.V., Allard J.S., López-Lluch G., Lewis K., et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–342. doi: 10.1038/nature05354. PubMed DOI PMC
Christenson J., Whitby S.J., Mellor D., Thomas J., Mc Kune A., Roach P.D., Naumovski N. The Effects of Resveratrol Supplementation in Overweight and Obese Humans: A Systematic Review of Randomized Trials. Metab. Syndr. Relat. Disord. 2016;14:323–333. doi: 10.1089/met.2016.0035. PubMed DOI
Fernández-Quintela A., Carpéné C., Fernández M., Aguirre L., Milton-Laskibar I., Contreras J., Portillo M.P. Anti-obesity effects of resveratrol: Comparison between animal models and humans. J. Physiol. Biochem. 2016;73:417–429. doi: 10.1007/s13105-016-0544-y. PubMed DOI
Li S., Chen M., Li Y., Tollefsbol T.O. Prenatal epigenetics diets play protective roles against environmental pollution. Clin. Epigenetics. 2019;11:82. doi: 10.1186/s13148-019-0659-4. PubMed DOI PMC
Bishayee A., Barnes K.F., Bhatia D., Darvesh A.S., Carroll R.T. Resveratrol Suppresses Oxidative Stress and Inflammatory Response in Diethylnitrosamine-Initiated Rat Hepatocarcinogenesis. Cancer Prev. Res. 2010;3:753–763. doi: 10.1158/1940-6207.CAPR-09-0171. PubMed DOI
Riba A., Deres L., Sumegi B., Toth K., Szabados E., Halmosi R. Cardioprotective Effect of Resveratrol in a Postinfarction Heart Failure Model. Oxidative Med. Cell. Longev. 2017;2017:6819281. doi: 10.1155/2017/6819281. PubMed DOI PMC
Gambini J., Ingles M., Olaso G., Lopez-Grueso R., Bonet-Costa V., Gimeno-Mallench L., Bargues C.M., Abdelaziz K.M., Gomez-Cabrera M.C., Vina J., et al. Properties of Resveratrol:In VitroandIn VivoStudies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxidative Med. Cell. Longev. 2015;2015:837042. doi: 10.1155/2015/837042. PubMed DOI PMC
Kataria R., Khatkar A. Molecular docking, synthesis, kinetics study, structure–activity relationship and ADMET analysis of morin analogous as Helicobacter pylori urease inhibitors. BMC Chem. 2019;13:1–17. doi: 10.1186/s13065-019-0562-2. PubMed DOI PMC
Mirza S., Sharma G., Parshad R., Gupta S.D., Pandya P., Ralhan R. Expression of DNA Methyltransferases in Breast Cancer Patients and to Analyze the Effect of Natural Compounds on DNA Methyltransferases and Associated Proteins. J. Breast Cancer. 2013;16:23–31. doi: 10.4048/jbc.2013.16.1.23. PubMed DOI PMC
Liu K., Zhou R., Wang B., Mi M.-T. Effect of resveratrol on glucose control and insulin sensitivity: A meta-analysis of 11 randomized controlled trials. Am. J. Clin. Nutr. 2014;99:1510–1519. doi: 10.3945/ajcn.113.082024. PubMed DOI
Borra M.T., Smith B., Denu J.M. Mechanism of Human SIRT1 Activation by Resveratrol. J. Biol. Chem. 2005;280:17187–17195. doi: 10.1074/jbc.M501250200. PubMed DOI
Lagouge M., Argmann C., Gerhart-Hines Z., Meziane H., Lerin C., Daussin F., Messadeq N., Milne J., Lambert P., Elliott P., et al. Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α. Cell. 2006;127:1109–1122. doi: 10.1016/j.cell.2006.11.013. PubMed DOI
Vlavcheski F., Hartogh D.J.D., Giacca A., Tsiani E. Amelioration of High-Insulin-Induced Skeletal Muscle Cell Insulin Resistance by Resveratrol Is Linked to Activation of AMPK and Restoration of GLUT4 Translocation. Nutrients. 2020;12:914. doi: 10.3390/nu12040914. PubMed DOI PMC
Penumathsa S.V., Thirunavukkarasu M., Zhan L., Maulik G., Menon V.P., Bagchi D., Maulik N. Resveratrol enhances GLUT-4 translocation to the caveolar lipid raft fractions through AMPK/Akt/eNOS signalling pathway in diabetic myocardium. J. Cell. Mol. Med. 2008;12:2350–2361. doi: 10.1111/j.1582-4934.2008.00251.x. PubMed DOI PMC
Su H.-C., Hung L.-M., Chen J.-K. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am. J. Physiol. Metab. 2006;290:E1339–E1346. doi: 10.1152/ajpendo.00487.2005. PubMed DOI
Szkudelski T. The insulin-suppressive effect of resveratrol—An in vitro and in vivo phenomenon. Life Sci. 2008;82:430–435. doi: 10.1016/j.lfs.2007.12.008. PubMed DOI
Bertelli A.A., Giovannini L., Stradi R., Tillement J.P. Plasma, urine and tissue levels of trans- and cis-resveratrol (3,4’,5-trihydroxystilbene) after short-term or prolonged administration of red wine to rats. Int. J. Tissue React. 1996;18:67–71. PubMed
Bertelli A.A., Giovannini L., Stradi R., Urien S., Tillement J.P., Bertelli A. Kinetics of Trans- and Cis-Resveratrol (3,4’,5-Trihydroxystilbene) after Red Wine Oral Administration in Rats. Int. J. Clin. Pharmacol. Res. 1996;16:77–81. doi: 10.1002/mnfr.200500002. PubMed DOI
Soleas G.J., Angelini M., Grass L., Diamandis E.P., Goldberg D.M. Absorption of trans-resveratrol in rats. Methods Enzymol. 2001;335:145–154. doi: 10.1016/s0076-6879(01)35239-4. PubMed DOI
Vitrac X., Desmoulière A., Brouillaud B., Krisa S., Deffieux G., Barthe N., Rosenbaum J., Mérillon J.-M. Distribution of [14C]-trans-resveratrol, a cancer chemopreventive polyphenol, in mouse tissues after oral administration. Life Sci. 2003;72:2219–2233. doi: 10.1016/S0024-3205(03)00096-1. PubMed DOI
Yu C., Shin Y.G., Chow A., Li Y., Kosmeder J.W., Lee Y.S., Hirschelman W.H., Pezzuto J.M., Mehta R.G., van Breemen R.B. Human, Rat, and Mouse Metabolism of Resveratrol. Pharm. Res. 2002;19:1907–1914. doi: 10.1023/A:1021414129280. PubMed DOI
Wenzel E., Soldo T., Erbersdobler H., Somoza V. Bioactivity and metabolism oftrans-resveratrol orally administered to Wistar rats. Mol. Nutr. Food Res. 2005;49:482–494. doi: 10.1002/mnfr.200500003. PubMed DOI
Azorín-Ortuño M., Yáñez-Gascón M.J., Vallejo F., Pallarés F.J., Larrosa M., Lucas R., Morales J.C., Tomas-Barberan F., Conesa M.T.G., Espín J.C. Metabolites and tissue distribution of resveratrol in the pig. Mol. Nutr. Food Res. 2011;55:1154–1168. doi: 10.1002/mnfr.201100140. PubMed DOI
Brill S.S., Furimsky A.M., Ho M.N., Furniss M.J., Li Y., Green A.G., Green C.E., Iyer L.V., Bradford W.W., Kapetanovic I.M. Glucuronidation of trans-resveratrol by human liver and intestinal microsomes and UGT isoforms. J. Pharm. Pharmacol. 2006;58:469–479. doi: 10.1211/jpp.58.4.0006. PubMed DOI
Planas J.M., Alfaras I., Colom H., Juan M.E. The bioavailability and distribution of trans-resveratrol are constrained by ABC transporters. Arch. Biochem. Biophys. 2012;527:67–73. doi: 10.1016/j.abb.2012.06.004. PubMed DOI
Van De Wetering K., Burkon A., Feddema W., Bot A., De Jonge H., Somoza V., Borst P. Intestinal Breast Cancer Resistance Protein (BCRP)/Bcrp1 and Multidrug Resistance Protein 3 (MRP3)/Mrp3 Are Involved in the Pharmacokinetics of Resveratrol. Mol. Pharmacol. 2008;75:876–885. doi: 10.1124/mol.108.052019. PubMed DOI
Kaldas M.I., Walle U.K., Walle T. Resveratrol transport and metabolism by human intestinal Caco-2 cells. J. Pharm. Pharmacol. 2003;55:307–312. doi: 10.1211/002235702612. PubMed DOI
Bode L.M., Bunzel D., Huch M., Cho G.-S., Ruhland D., Bunzel M., Bub A., Franz C.M.A.P., Kulling E.S. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am. J. Clin. Nutr. 2013;97:295–309. doi: 10.3945/ajcn.112.049379. PubMed DOI
Jarosova V., Vesely O., Marsik P., Jaimes J.D., Smejkal K., Kloucek P., Havlik J. Metabolism of Stilbenoids by Human Faecal Microbiota. Molecules. 2019;24:1155. doi: 10.3390/molecules24061155. PubMed DOI PMC
Jaimes J.D., Jarosova V., Vesely O., Mekadim C., Mrazek J., Marsik P., Killer J., Smejkal K., Kloucek P., Havlik J. Effect of Selected Stilbenoids on Human Fecal Microbiota. Molecules. 2019;24:744. doi: 10.3390/molecules24040744. PubMed DOI PMC
Urpi-Sarda M., Zamora-Ros R., Lamuela-Raventos R.M., Cherubini A., Jauregui O., de la Torre R., Covas M.I., Estruch R., Jaeger W., Andres-Lacueva C. HPLC–Tandem Mass Spectrometric Method to Characterize Resveratrol Metabolism in Humans. Clin. Chem. 2007;53:292–299. doi: 10.1373/clinchem.2006.071936. PubMed DOI
Delmas D., Aires V., Limagne E., Dutartre P., Mazué F., Ghiringhelli F., Latruffe N. Transport, stability, and biological activity of resveratrol. Ann. N. Y. Acad. Sci. 2011;1215:48–59. doi: 10.1111/j.1749-6632.2010.05871.x. PubMed DOI
Fernández-Castillejo S., Macià A., Motilva M.J., Catalán Ú., Solà R. Endothelial Cells Deconjugate Resveratrol Metabolites to Free Resveratrol: A Possible Role in Tissue Factor Modulation. Mol. Nutr. Food Res. 2018;63:e1800715. doi: 10.1002/mnfr.201800715. PubMed DOI
Vinson J.A. Intracellular Polyphenols: How Little We Know. J. Agric. Food Chem. 2019;67:3865–3870. doi: 10.1021/acs.jafc.8b07273. PubMed DOI
Patel K.R., Scott E., Brown V.A., Gescher A.J., Steward W.P., Brown K. Clinical trials of resveratrol. Ann. N. Y. Acad. Sci. 2011;1215:161–169. doi: 10.1111/j.1749-6632.2010.05853.x. PubMed DOI
Koziolek M., Alcaro S., Augustijns P., Basit A.W., Grimm M., Hens B., Hoad C.L., Jedamzik P., Madla C.M., Maliepaard M., et al. The mechanisms of pharmacokinetic food-drug interactions—A perspective from the UNGAP group. Eur. J. Pharm. Sci. 2019;134:31–59. doi: 10.1016/j.ejps.2019.04.003. PubMed DOI
Kamiloglu S., Tomas M., Ozdal T., Capanoglu E. Effect of food matrix on the content and bioavailability of flavonoids. Trends Food Sci. Technol. 2020 doi: 10.1016/j.tifs.2020.10.030. in press. DOI
Mhaske D.B., Sreedharan S., Mahadik K.R. Role of Piperine as an Effective Bioenhancer in Drug Absorption. Phar-Maceutika Anal. Acta. 2018;9:591.
Wightman E.L., Reay J., Haskell C.F., Williamson G., Dew T., Kennedy D. Effects of resveratrol alone or in combination with piperine on cerebral blood flow parameters and cognitive performance in human subjects: A randomised, double-blind, placebo-controlled, cross-over investigation. Br. J. Nutr. 2014;112:203–213. doi: 10.1017/S0007114514000737. PubMed DOI
Bailey H.H., Johnson J.J., Lozar T., Scarlett C.O., Wollmer B.W., Kim K., Havinghurst T., Ahmad N. A randomized, double-blind, dose-ranging, pilot trial of piperine with resveratrol on the effects on serum levels of resveratrol. Eur. J. Cancer Prev. 2020;30:285–290. doi: 10.1097/CEJ.0000000000000621. PubMed DOI PMC
Johnson J.J., Nihal M., Siddiqui I.A., Scarlett C.O., Bailey H.H., Mukhtar H., Ahmad N. Enhancing the bioavailability of resveratrol by combining it with piperine. Mol. Nutr. Food Res. 2011;55:1169–1176. doi: 10.1002/mnfr.201100117. PubMed DOI PMC
Jadhav P., Bothiraja C., Pawar A. Resveratrol-piperine loaded mixed micelles: Formulation, characterization, bioavailability, safety and in vitro anticancer activity. RSC Adv. 2016;6:112795–112805. doi: 10.1039/C6RA24595A. DOI
Junsaeng D., Anukunwithaya T., Songvut P., Sritularak B., Likhitwitayawuid K., Khemawoot P. Comparative pharmacokinetics of oxyresveratrol alone and in combination with piperine as a bioenhancer in rats. BMC Complement. Altern. Med. 2019;19:235. doi: 10.1186/s12906-019-2653-y. PubMed DOI PMC
Lund K.C., Pantuso T. Combination Effects of Quercetin, Resveratrol and Curcumin on In Vitro Intestinal Absorption. J. Restor. Med. 2014;3:112–120. doi: 10.14200/jrm.2014.3.0108. DOI
Lee J.-A., Ha S.K., Cho E., Choi I. Resveratrol as a Bioenhancer to Improve Anti-Inflammatory Activities of Apigenin. Nutrients. 2015;7:9650–9661. doi: 10.3390/nu7115485. PubMed DOI PMC
Detampel P., Beck M., Krähenbühl S., Huwyler J. Drug interaction potential of resveratrol. Drug Metab. Rev. 2012;44:253–265. doi: 10.3109/03602532.2012.700715. PubMed DOI
Paine M.F., Hart H.L., Ludington S.S., Haining R.L., Rettie A.E., Zeldin D. The human intestinal cytochrome P450 “pie”. Drug Metab. Dispos. 2006;34:880–886. doi: 10.1124/dmd.105.008672. PubMed DOI PMC
Syed S.B., Arya H., Fu I.-H., Yeh T.-K., Periyasamy L., Hsieh H.-P., Coumar M.S., Syed S.B., Arya H., Fu I.-H., et al. Targeting P-glycoprotein: Investigation of piperine analogs for overcoming drug resistance in cancer. Sci. Rep. 2017;7:7972. doi: 10.1038/s41598-017-08062-2. PubMed DOI PMC
Thiebaut F., Tsuruo T., Hamada H., Gottesman M.M., Pastan I., Willingham M.C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA. 1987;84:7735–7738. doi: 10.1073/pnas.84.21.7735. PubMed DOI PMC
Quan F., Pan C., Ma Q., Zhang S., Yan L. Reversal effect of resveratrol on multidrug resistance in KBv200 cell line. Biomed. Pharmacother. 2008;62:622–629. doi: 10.1016/j.biopha.2008.07.089. PubMed DOI
El-Readi M.Z., Eid S., Abdelghany A.A., Al-Amoudi H.S., Efferth T., Wink M. Resveratrol mediated cancer cell apoptosis, and modulation of multidrug resistance proteins and metabolic enzymes. Phytomedicine. 2018;55:269–281. doi: 10.1016/j.phymed.2018.06.046. PubMed DOI
Huang F., Wu X.-N., Chen J., Wang W.-X., Lu Z. Resveratrol reverses multidrug resistance in human breast cancer doxorubicin-resistant cells. Exp. Ther. Med. 2014;7:1611–1616. doi: 10.3892/etm.2014.1662. PubMed DOI PMC
Mieszala K., Rudewicz M., Gomułkiewicz A., Ratajczak-Wielgomas K., Grzegrzółka J., Dziegiel P., Borska S. Expression of genes and proteins of multidrug resistance in gastric cancer cells treated with resveratrol. Oncol. Lett. 2018;15:5825–5832. doi: 10.3892/ol.2018.8022. PubMed DOI PMC
Devi P., Sharma P., Rathore C., Negi P. Novel Drug Delivery Systems of Resveratrol to Bioavailability and Therapeutic Effects. IntechOpen. 2019 doi: 10.5772/intechopen.79739. DOI
Balata G.F., Eassa E., Shamrool H., Zidan S., Abourehab M. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Des. Dev. Ther. 2016;10:117–128. doi: 10.2147/DDDT.S95905. PubMed DOI PMC
Nam J.-B., Ryu J.-H., Kim J.-W., Chang I.-S., Suh K.-D. Stabilization of resveratrol immobilized in monodisperse cyano-functionalized porous polymeric microspheres. Polymer. 2005;46:8956–8963. doi: 10.1016/j.polymer.2005.07.016. DOI
Shi G., Rao L., Yu H., Xiang H., Yang H., Ji R. Stabilization and encapsulation of photosensitive resveratrol within yeast cell. Int. J. Pharm. 2008;349:83–93. doi: 10.1016/j.ijpharm.2007.07.044. PubMed DOI
Aloisio C., Bueno M.S., Ponte M.P., Paredes A., Palma S.D., Longhi M. Development of solid self-emulsifying drug delivery systems (SEDDS) to improve the solubility of resveratrol. Ther. Deliv. 2019;10:626–641. doi: 10.4155/tde-2019-0054. PubMed DOI
Seljak K.B., Berginc K., Trontelj J., Zvonar A., Kristl A., Gašperlin M. A Self-Microemulsifying Drug Delivery System to Overcome Intestinal Resveratrol Toxicity and Presystemic Metabolism. J. Pharm. Sci. 2014;103:3491–3500. doi: 10.1002/jps.24114. PubMed DOI
Jaisamut P., Wanna S., Limsuwan S., Chusri S., Wiwattanawongsa K., Wiwattanapatapee R. Enhanced Oral Bioavailability and Improved Biological Activities of a Quercetin/Resveratrol Combination Using a Liquid Self-Microemulsifying Drug Delivery System. Planta Medica. 2020;87:336–346. doi: 10.1055/a-1270-7606. PubMed DOI
Luo X., Wang D., Wang M., Deng S., Huang Y., Xia Z. Development of phospholipid complex loaded self-microemulsifying drug delivery system to improve the oral bioavailability of resveratrol. Nanomedicine. 2021;16:721–739. doi: 10.2217/nnm-2020-0422. PubMed DOI
Ansari K.A., Vavia P.R., Trotta F., Cavalli R. Cyclodextrin-Based Nanosponges for Delivery of Resveratrol: In Vitro Characterisation, Stability, Cytotoxicity and Permeation Study. AAPS PharmSciTech. 2011;12:279–286. doi: 10.1208/s12249-011-9584-3. PubMed DOI PMC
Sessa M., Balestrieri M.L., Ferrari G., Servillo L., Castaldo D., D’Onofrio N., Donsì F., Tsao R. Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem. 2014;147:42–50. doi: 10.1016/j.foodchem.2013.09.088. PubMed DOI
Donsì F., Sessa M., Mediouni H., Mgaidi A., Ferrari G. Encapsulation of bioactive compounds in nanoemulsion- based delivery systems. Procedia Food Sci. 2011;1:1666–1671. doi: 10.1016/j.profoo.2011.09.246. DOI
Singh G., Pai R.S. Trans-resveratrol self-nano-emulsifying drug delivery system (SNEDDS) with enhanced bioavailability potential: Optimization, pharmacokinetics andin situsingle pass intestinal perfusion (SPIP) studies. Drug Deliv. 2013;22:522–530. doi: 10.3109/10717544.2014.885616. PubMed DOI
Yen C.-C., Chang C.-W., Hsu M.-C., Wu Y.-T. Self-Nanoemulsifying Drug Delivery System for Resveratrol: Enhanced Oral Bioavailability and Reduced Physical Fatigue in Rats. Int. J. Mol. Sci. 2017;18:1853. doi: 10.3390/ijms18091853. PubMed DOI PMC
Dai L., Zhu W., Liu R., Si C. Lignin-Containing Self-Nanoemulsifying Drug Delivery System for Enhance Stability and Oral Absorption oftrans-Resveratrol. Part. Part. Syst. Charact. 2018;35:1700447. doi: 10.1002/ppsc.201700447. DOI
Md S., Alhakamy N.A., Aldawsari H.M., Ahmad J., Alharbi W.S., Asfour H.Z. Resveratrol loaded self-nanoemulsifying drug delivery system (SNEDDS) for pancreatic cancer: Formulation design, optimization and in vitro evaluation. J. Drug Deliv. Sci. Technol. 2021;64:102555. doi: 10.1016/j.jddst.2021.102555. DOI
Hu C., Wang Q., Ma C., Xia Q. Non-aqueous self-double-emulsifying drug delivery system: A new approach to enhance resveratrol solubility for effective transdermal delivery. Colloids Surf. A Physicochem. Eng. Asp. 2016;489:360–369. doi: 10.1016/j.colsurfa.2015.11.017. DOI
Ethemoglu M., Seker F., Akkaya H., Kilic E., Aslan I., Erdogan C.S., Yilmaz B. Anticonvulsant activity of resveratrol-loaded liposomes in vivo. Neuroscience. 2017;357:12–19. doi: 10.1016/j.neuroscience.2017.05.026. PubMed DOI
Basavaraj S., Betageri G.V. Improved oral delivery of resveratrol using proliposomal formulation: Investigation of various factors contributing to prolonged absorption of unmetabolized resveratrol. Expert Opin. Drug Deliv. 2014;11:493–503. doi: 10.1517/17425247.2014.878701. PubMed DOI
Teskač K., Kristl J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int. J. Pharm. 2010;390:61–69. doi: 10.1016/j.ijpharm.2009.10.011. PubMed DOI
Zhang Q.H., Xiong Q.P., Shi Y.Y., Zhang D.Y. Study on Preparation and Characterization of Resveratrol Solid Li-pid Nanoparticles and Its Anticancer Effects in Vitro. Zhong Yao Cai Zhongyaocai J. Chin. Med. Mater. 2010;33:1929–1932. PubMed
Oganesyan E.A., Miroschichenko I.I., Vikhrieva N.S., Lyashenko A.A., Leshkov S.Y. Use of Nanoparticles to In-crease the Systemic Bioavailability of trans-Resveratrol. Pharm. Chem. J. 2010;44:25–27. doi: 10.1007/s11094-010-0401-1. DOI
Singh G., Pai R.S. In-vitro/in-vivo characterization of trans-resveratrol-loaded nanoparticulate drug delivery system for oral administration. J. Pharm. Pharmacol. 2014;66:1062–1076. doi: 10.1111/jphp.12232. PubMed DOI
Frozza R.L., Bernardi A., Paese K., Hoppe J.B., Da Silva T., Battastini A.M.O., Pohlmann A., Guterres S., Salbego C. Characterization of trans-Resveratrol-Loaded Lipid-Core Nanocapsules and Tissue Distribution Studies in Rats. J. Biomed. Nanotechnol. 2010;6:694–703. doi: 10.1166/jbn.2010.1161. PubMed DOI
Lin Y.F., Lee Y.H., Hsu Y.H., Chen Y.J., Lin Y.F., Cheng F.-Y., Chiu H.W. Resveratrol-Loaded Nanoparticles Conjugated with Kidney Injury Molecule-1 as a Drug Delivery System for Potential Use in Chronic Kidney Disease. Nanomedicine. 2017;12:2741–2756. doi: 10.2217/nnm-2017-0256. PubMed DOI
Singh A., Ahmad I., Ahmad S., Iqbal Z., Ahmad F. A novel monolithic controlled delivery system of resveratrol for enhanced hepatoprotection: Nanoformulation development, pharmacokinetics and pharmacodynamics. Drug Dev. Ind. Pharm. 2016;42:1524–1536. doi: 10.3109/03639045.2016.1151032. PubMed DOI
Li C., Wang X., Li R., Yang X., Zhong Z., Dai Y., Fan Q., Lin Y., Zhang R., Liang T., et al. Resveratrol-loaded PLGA nanoparticles functionalized with red blood cell membranes as a biomimetic delivery system for prolonged circulation time. J. Drug Deliv. Sci. Technol. 2019;54:101369. doi: 10.1016/j.jddst.2019.101369. DOI
Suktham K., Koobkokkruad T., Wutikhun T., Surassmo S. Efficiency of resveratrol-loaded sericin nanoparticles: Promising bionanocarriers for drug delivery. Int. J. Pharm. 2018;537:48–56. doi: 10.1016/j.ijpharm.2017.12.015. PubMed DOI
Reis S., Neves A.R., Lúcio M., Martins S., Lima J. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int. J. Nanomed. 2013;8:177–187. doi: 10.2147/IJN.S37840. PubMed DOI PMC
Hao J., Gao Y., Zhao J., Zhang J., Li Q., Zhao Z., Liu J. Preparation and Optimization of Resveratrol Nanosuspensions by Antisolvent Precipitation Using Box-Behnken Design. AAPS PharmSciTech. 2014;16:118–128. doi: 10.1208/s12249-014-0211-y. PubMed DOI PMC
Rostami M., Ghorbani M., Mohammadi M.A., Delavar M., Tabibiazar M., Ramezani S. Development of resveratrol loaded chitosan-gellan nanofiber as a novel gastrointestinal delivery system. Int. J. Biol. Macromol. 2019;135:698–705. doi: 10.1016/j.ijbiomac.2019.05.187. PubMed DOI
Liu C., Tong P., Yang R., You Y., Liu H., Zhang T. Solidified phospholipid-TPGS as an effective oral delivery system for improving the bioavailability of resveratrol. J. Drug Deliv. Sci. Technol. 2019;52:769–777. doi: 10.1016/j.jddst.2019.02.025. DOI
Wang P.-P., Luo Z.-G., Tamer T.M. Spiral–Dextrin Complex Crystals: Efficient Approach for Colon-Targeted Resveratrol Delivery. J. Agric. Food Chem. 2020;69:474–482. doi: 10.1021/acs.jafc.0c05668. PubMed DOI
Paczkowska-Walendowska M., Dvořák J., Rosiak N., Tykarska E., Szymańska E., Winnicka K., Ruchała M., Cielecka-Piontek J. Buccal Resveratrol Delivery System as a Potential New Concept for the Periodontitis Treatment. Pharmaceutics. 2021;13:417. doi: 10.3390/pharmaceutics13030417. PubMed DOI PMC
Chen Z., Farag M.A., Zhong Z., Zhang C., Yang Y., Wang S., Wang Y. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv. Drug Deliv. Rev. 2021:113870. doi: 10.1016/j.addr.2021.113870. PubMed DOI
Calvo-Castro L.A., Schiborr C., David F., Ehrt H., Voggel J., Sus N., Behnam D., Bosy-Westphal A., Frank J. The Oral Bioavailability of Trans -Resveratrol from a Grapevine-Shoot Extract in Healthy Humans is Significantly Increased by Micellar Solubilization. Mol. Nutr. Food Res. 2018;62:e1701057. doi: 10.1002/mnfr.201701057. PubMed DOI
Briskey D., Rao A. Trans-Resveratrol Oral Bioavailability in Humans Using LipiSperse™ Dispersion Technology. Pharmaceutics. 2020;12:1190. doi: 10.3390/pharmaceutics12121190. PubMed DOI PMC
Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions