Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
796217
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
20-16549Y
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
19-19297S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
17-06264S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
35672454
PubMed Central
PMC9381591
DOI
10.1038/s41396-022-01264-1
PII: 10.1038/s41396-022-01264-1
Knihovny.cz E-resources
- MeSH
- Biomineralization * MeSH
- Eukaryota * genetics metabolism MeSH
- Guanine metabolism MeSH
- Humans MeSH
- Purines metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Guanine MeSH
- purine MeSH Browser
- Purines MeSH
Despite the widespread occurrence of intracellular crystalline inclusions in unicellular eukaryotes, scant attention has been paid to their composition, functions, and evolutionary origins. Using Raman microscopy, we examined >200 species from all major eukaryotic supergroups. We detected cellular crystalline inclusions in 77% species out of which 80% is composed of purines, such as anhydrous guanine (62%), guanine monohydrate (2%), uric acid (12%) and xanthine (4%). Our findings shifts the paradigm assuming predominance of calcite and oxalates. Purine crystals emerge in microorganisms in all habitats, e.g., in freshwater algae, endosymbionts of reef-building corals, deadly parasites, anaerobes in termite guts, or slime molds. Hence, purine biocrystallization is a general and ancestral eukaryotic process likely present in the last eukaryotic common ancestor (LECA) and here we propose two proteins omnipresent in eukaryotes that are likely in charge of their metabolism: hypoxanthine-guanine phosphoribosyl transferase and equilibrative nucleoside transporter. Purine crystalline inclusions are multifunctional structures representing high-capacity and rapid-turnover reserves of nitrogen and optically active elements, e.g., used in light sensing. Thus, we anticipate our work to be a starting point for further studies spanning from cell biology to global ecology, with potential applications in biotechnologies, bio-optics, or in human medicine.
Department of Zoology Faculty of Science Charles University Prague 2 Czech Republic
Institute of Parasitology Czech Academy of Sciences České Budějovice Czech Republic
Institute of Physics Faculty of Mathematics and Physics Charles University Prague 2 Czech Republic
See more in PubMed
Darwin C. Journal of Researches Into the Geology and Natural History of the Varoius Countries Visited by HMS Beagle, Under the Command of Captain Fitzroy from 1832 to 1836 by Charles Darwin. Colburn, London; 1840.
Haeckel E. Kristallseelen: Studien über das anorganische Leben. Leipzig: Alfred Kröner Verlag; 1917.
Raven JA, Knoll AH. Non-skeletal biomineralization by eukaryotes: matters of moment and gravity. Geomicrobiol J. 2010;27:572–84. doi: 10.1080/01490451003702990. DOI
Creutz CE, Mohanty S, Defalco T, Kretsinger RH. Purine composition of crystalline cytoplasmic inclusions of Paramecium tetraurelia. Protist. 2002;153:39–45. doi: 10.1078/1434-4610-00081. PubMed DOI
Jantschke A, Pinkas I, Hirsch A, Elad N, Schertel A, Addadi L, et al. Anhydrous β-guanine crystals in a marine dinoflagellate: Structure and suggested function. J Struct Biol. 2019;207:12–20. doi: 10.1016/j.jsb.2019.04.009. PubMed DOI
Moudříková Š, Nedbal L, Solovchenko A, Mojzeš P. Raman microscopy shows that nitrogen-rich cellular inclusions in microalgae are microcrystalline guanine. Algal Res. 2017;23:216–22. doi: 10.1016/j.algal.2017.02.009. DOI
Roush AH. Crystallization of purines in the vacuole of Candida utilis. Nature. 1961;190:449. doi: 10.1038/190449a0. PubMed DOI
Mojzeš P, Gao L, Ismagulova T, Pilátová J, Moudříková Š, Gorelová O, et al. Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells. Proc Natl Acad Sci. 2020;117:32722–30. doi: 10.1073/pnas.2005460117. PubMed DOI PMC
Sterner RW, Elser JJ. Encyclopedia of Ecology, Five-Volume Set. Princeton, New Jersey, USA: Princeton University Press; 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere.
Tadepalli S, Slocik JM, Gupta MK, Naik RR, Singamaneni S. Bio-optics and bio-inspired optical materials. Chem Rev. 2017;117:12705–63. doi: 10.1021/acs.chemrev.7b00153. PubMed DOI
Palmer BA, Taylor GJ, Brumfeld V, Gur D, Shemesh M, Elad N, et al. The image-forming mirror in the eye of the scallop. Science. 2017;358:1172–5. doi: 10.1126/science.aam9506. PubMed DOI
Wagner A, Wen Q, Pinsk N, Palmer BA. Functional molecular crystals in biology. Isr J Chem. 2021;61:668–78. doi: 10.1002/ijch.202100069. DOI
Kuhlmann HW, Bräucker R, Schepers AG. Phototaxis in Porpostoma notatum, a marine scuticociliate with a composed crystalline organelle. Eur J Protistol. 1997;33:295–304. doi: 10.1016/S0932-4739(97)80007-7. DOI
Yamashita H, Kobiyama A, Koike K. Do uric acid deposits in zooxanthellae function as eye-spots? PLoS ONE. 2009;4:1–9. doi: 10.1371/journal.pone.0006303. PubMed DOI PMC
Kourkoulou A, Pittis AA, Diallinas G. Evolution of substrate specificity in the nucleobase-ascorbate transporter (NAT) protein family. Micro Cell. 2018;5:280–92. doi: 10.15698/mic2018.06.636. PubMed DOI PMC
Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, et al. Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci USA. 2008;105:5683–6. doi: 10.1073/pnas.0800141105. PubMed DOI PMC
Boswell-Casteel RC, Hays FA. Equilibrative nucleoside transporters—a review. Nucleosides Nucleotides Nucleic Acids. 2017;36:7–30. doi: 10.1080/15257770.2016.1210805. PubMed DOI PMC
Bove M, Cicero AFG, Veronesi M, Borghi C. An evidence-based review on urate-lowering treatments: implications for optimal treatment of chronic hyperuricemia. Vasc Health Risk Manag. 2017;13:23–8. doi: 10.2147/VHRM.S115080. PubMed DOI PMC
Massive Accumulation of Strontium and Barium in Diplonemid Protists