Assessment of the Nutritional Quality of Plant Lipids Using Atherogenicity and Thrombogenicity Indices
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LM2018100
METROFOOD-CZ Research Infrastructure Project [Ministry of Education, Youth and Sports (MEYS)]
CZ.02.1.01/0.0/0.0/16_019/0000845
European Regional Development Fund
PubMed
36145171
PubMed Central
PMC9502718
DOI
10.3390/nu14183795
PII: nu14183795
Knihovny.cz E-resources
- Keywords
- atherogenicity index, cholesterol, fatty acids, plant lipids, thrombogenicity index,
- MeSH
- Dietary Fats MeSH
- Humans MeSH
- Butter MeSH
- Fatty Acids * analysis MeSH
- Nutritive Value MeSH
- Rapeseed Oil MeSH
- Plant Oils * chemistry MeSH
- Plants MeSH
- Fats MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Dietary Fats MeSH
- Butter MeSH
- Fatty Acids * MeSH
- Rapeseed Oil MeSH
- Plant Oils * MeSH
- Fats MeSH
Dietary lipids derived from plants have different compositions of individual fatty acids (FA), providing different physical and chemical properties with positive or adverse health effects on humans. To evaluate the nutritional value and assess the FA composition of various plants, the atherogenicity (AI) and thrombogenicity (TI) indices were calculated and reviewed for nine different categories of fats and oils. This included common oils, unconventional oils, nut oils originating from temperate regions, Amazonian and tropical fats and oils, chia seed oil, traditional nuts originating from temperate regions, unconventional nuts, seeds, and fruits, and their products. The main factors influencing fatty acid composition in plants are growth location, genotype, and environmental variation, particularly temperature after flowering, humidity, and frequency of rainfall (exceeding cultivar variation). The lowest AI was calculated for rapeseed oil (0.05), whereas the highest value was obtained for tucuman seeds (16.29). Chia seed oil had the lowest TI (0.04), and murumuru butter had the highest (6.69). The differences in FA composition and subsequent changes in the lipid health indices of the investigated fats and oils indicate their importance in the human diet.
See more in PubMed
Foster R., Williamson C.S., Lunn J. Culinary oils and their health effects. British Nutrition Foundation. Nutr. Bull. 2009;34:4–47. doi: 10.1111/j.1467-3010.2008.01738.x. DOI
Khalili Tilami S., Sampels S. Nutritional value of fish: Lipids, proteins, vitamins, and minerals. Rev. Fish. Sci. Aquac. 2018;26:243–253. doi: 10.1080/23308249.2017.1399104. DOI
Athanassiou P. The Effect of Omega-3 Fatty Acids on Rheumatoid Arthritis. Mediterr. J. Rheumatol. 2020;31:190–194. doi: 10.31138/mjr.31.2.190. PubMed DOI PMC
Paszczyk B., Luczynska J. The Comparison of Fatty Acid Composition and Lipid Quality Indices in Hard Cow, Sheep, and Goat Cheeses. Foods. 2020;9:1667. doi: 10.3390/foods9111667. PubMed DOI PMC
Simopoulos A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002;56:365–379. doi: 10.1016/S0753-3322(02)00253-6. PubMed DOI
Wijendran V., Hayes K.C. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu. Rev. Nutr. 2004;24:597–615. doi: 10.1146/annurev.nutr.24.012003.132106. PubMed DOI
Chen J., Liu H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020;21:5695. doi: 10.3390/ijms21165695. PubMed DOI PMC
Lanzmann-Petithory D. Alpha-linolenic acid and cardiovascular diseases. J. Nutr. Health Aging. 2001;5:179–183. PubMed
FAO . Report of an Expert Consultation. Fats and Fatty Acids in Human Nutrition Report of an Expert Consultation FAO Food and Nutrition Paper. Volume 91. FAO; Rome, Italy: Geneva, Switzerland,: 2008. p. 180.
Siri-Tarino P.W., Sun Q., Hu F.B., Krauss R.M. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am. J. Clin. Nutr. 2010;91:535–546. doi: 10.3945/ajcn.2009.27725. PubMed DOI PMC
EFSA Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) EFSA J. 2010;8:1461.
Ulbricht T.L.V., Southgate D.A.T. Coronary heart disease: Seven dietary factors. Lancet. 1991;338:985–992. doi: 10.1016/0140-6736(91)91846-M. PubMed DOI
Garaffo M.A., Vassallo-Agius R., Nengas Y., Lembo E., Rando R., Maisano R., Dugo G., Giuffrida D. Fatty acids profile, atherogenic (IA) and thrombogenic (IT) health lipid indices, of raw roe of blue fin tuna (Thunnus thynnus L.) and their salted product “Bottarga”. Food Sci. Nutr. 2011;2:736.
Acay A., Ulu M.S., Ahsen A., Ozkececi G., Demir K., Ozuguz U., Yuksel S., Acarturk G. Atherogenic index as a predictor of atherosclerosis in subjects with familial Mediterranean fever. Medicina. 2014;50:329–333. doi: 10.1016/j.medici.2014.11.009. PubMed DOI
Kourimska L., Pokhrel K., Bozik M., Khalili Tilami S., Horcicka P. Fat content and fatty acid profiles of recently registered varieties of naked and hulled oats with and without husks. J. Cereal Sci. 2020;99:103216. doi: 10.1016/j.jcs.2021.103216. DOI
Langelaan H.C., Pereira da Silva F., Thoden van Velzen U., Broeze J., Matser A.M., Vollebregt M. Options for Sustainable Food Processing. IC STOA; Brussels, Belgium: 2013. Technology options for feeding 10 billion people; p. 16.
Rueda A., Seiquer I., Olalla M., Gimenez R., Lara L., Cabrera-Vique C. Characterization of fatty acid profile of argan oil and other edible vegetable oils by gas chromatography and discriminant analysis. Hindawi. J. Chem. 2014;2014:843908. doi: 10.1155/2014/843908. DOI
Velisek J., Hajslova J. Chemie Potravin 2. OSSIS; Tábor, Czech Republic: 2009. p. 644.
Beare-Rogers J.L., Dieffenbacher A., Holm J.V. Lexicon of lipid nutrition (IUPAC Technical Report) Pure Appl. Chem. 2001;73:685–744. doi: 10.1351/pac200173040685. DOI
Pritchard F.M., Eagles H.A., Norton R.M., Salisbury P.A., Nicolas M. Environmental effects on seed composition of Victorian canola. Aust. J. Exp. Agric. 2000;40:679–685. doi: 10.1071/EA99146. DOI
Kiralan M., Gul V., Metin Kara S. Fatty acid composition of hempseed oils from different locations in Turkey. Span. J. Agric. Res. 2013;8:385. doi: 10.5424/sjar/2010082-1220. DOI
Cherbi R., Hamia C., Gourine N., Bombarda I., Saidi M., Yousfi M. Tocopherols Compositions and Antioxidant Activity of Lawsonia alba Seed Oils Growing in Algeria. Curr. Nutr. Food Sci. 2017;13:121–130. doi: 10.2174/1573401313666161125144545. DOI
Bardaa S., Halima B.N., Aloui F., Mansour R.B., Jabeur H., Bouaziz M., Sahnoun Z. Oil from pumpkin (Cucurbita pepo L.) seeds: Evaluation of its functional properties on wound healing in rats. Lipids Health Dis. 2016;15:73. doi: 10.1186/s12944-016-0237-0. PubMed DOI PMC
da Rodrigues A.M.C., Darnet S., Silva L.H.M. Fatty acid profiles and tocopherol contents of Buriti (Mauritia flexuosa, Patawa (Oenocarpus bataus), Tucuma (Astrocaryum vulgare), Mari (Poraqueiba paraensis) and Inaja (Maximiliana maripa) Fruits. J. Braz. Chem. Soc. 2010;21:2000–2004. doi: 10.1590/S0103-50532010001000028. DOI
Pereira E., Ferreira M.C., Sampaio K.A., Grimaldi R., de Almeida Meirelles A.J., Jose Maximo G. Physical properties of Amazonian fats and oils and their blends. Food Chem. 2018;278:208–215. doi: 10.1016/j.foodchem.2018.11.016. PubMed DOI
Ozcan M.M., Al-Juhaimi F.Y., Ahmed I.A.M., Osman M.A., Gassem M.A. Effect of soxhlet and cold press extractions on the physico-chemical characteristics of roasted and non-roasted chia seed oils. J. Food Meas. Charact. 2018;13:648–655. doi: 10.1007/s11694-018-9977-z. DOI
Kris-Etherton P.M., Yu-Poth S., Sabate J., Ratcliffe H.E., Zhao G., Etherton T.D. Nuts and their bioactive constituents: Effects on serum lipids and other factors that affect disease risk. Am. J. Clin. Nutr. 1999;70:504s–511s. doi: 10.1093/ajcn/70.3.504s. PubMed DOI
Onemli F. Impact of climate change on oil fatty acid composition of peanut (Arachis hypogaea L.) in three market classes. Chilean J. Agric. Res. 2012;72:483–488. doi: 10.4067/S0718-58392012000400004. DOI
Mah E., Schulz J.A., Kaden V.N., Lawless A.L., Rotor J., Mantilla L.B., Liska D.J. Cashew consumption reduces total and LDL cholesterol: A randomized, crossover, controlled-feeding trial. Am. J. Clin. Nutr. 2017;105:1070–1078. doi: 10.3945/ajcn.116.150037. PubMed DOI
Takenaga F., Matsuyama K., Abe S., Torii Y., Itoh S. Lipid and Fatty Acid Composition of Mesocarp and Seed of Avocado Fruits Harvested at Northern Range in Japan. J. Oleo Sci. 2008;57:591–597. doi: 10.5650/jos.57.591. PubMed DOI
Silva L., Pinheiro R., Paula L., Fernandes K., Rodrigues A. Chemical and Nutrition Potential of Amazonian Seeds: Cupuassu and Tucuman. Food Public Health. 2018;8:57–64.
Alves A.M., Fernandes D.C., Borges J.F., Da Sousa A.G.O., Naves M.M.V. Oilseeds native to the Cerrado have fatty acid profile beneficial for cardiovascular health. Rev. Nutr. 2016;29:859–866. doi: 10.1590/1678-98652016000600010. DOI
Ribeiro A.P.B., Claro da Silva R., Gioielli L., De Almeida Gonçalves M.I., Grimaldi R., Gonçalves L.A.G., Guenter Kieckbusch T. Physico-chemical properties of Brazilian cocoa butter and industrial blends. Part I-Chemical composition, solid fat content and consistency. Grasas Y Aceites. 2012;63:79–88. doi: 10.3989/gya.069011. DOI
Sonwai S., Ponprachanuvut P. Studies of Fatty Acid Composition, Physicochemical and Thermal Properties, and Crystallization Behavior of Mango Kernel Fats from Various Thai Varieties. J. Oleo Sci. 2014;669:661–669. doi: 10.5650/jos.ess14036. PubMed DOI
Flores M., Saravia C., Vergara C.E., Avila F., Valdes H., Ortiz-Viedma J. Avocado Oil: Characteristics, Properties, and Applications. Molecules. 2018;24:2172. doi: 10.3390/molecules24112172. PubMed DOI PMC
Krist S. In: Vegetable Fats and Oils. Biladt S., Bulis C., Buchbauer G., Ellinger B., Konig J., Strugger S., Vala M., Wal M., editors. Springer Nature; Cham, Switzerland: 2020.
Zhou Y., Zhao W., Lai Y., Zhang B., Zhang D. Edible Plant Oil: Global Status, Health Issues, and Perspectives. Front. Plant. Sci. 2020;11:1315. doi: 10.3389/fpls.2020.01315. PubMed DOI PMC
Weinstock B.A., Janni J., Hagen L., Wright S. Prediction of oil and oleic acid concentrations in individual corn (Zea mays L.) kernels using near-infrared reflectance hyperspectral imaging and multivariate analysis. Appl. Spectrosc. 2006;60:9–16. doi: 10.1366/000370206775382631. PubMed DOI
Li Y., Yu Z., Jin J., Zhang Q., Wang G., Liu C., Wu J., Wang C., Liu X. Impact of Elevated CO2 on Seed Quality of Soybean at the Fresh Edible and Mature Stages. Front. Plant Sci. 2018;9:1413. doi: 10.3389/fpls.2018.01413. PubMed DOI PMC
Eskin N.A.M. Borage and evening primrose oil. Eur. J. Lipid. Sci. Technol. 2008;110:651–654. doi: 10.1002/ejlt.200700259. DOI
Akhtar S., Khalid N., Ahmed I., Shahzad A., Suleria H.A.R. Physicochemical Characteristics, Functional Properties, and Nutritional Benefits of Peanut Oil: A Review. Crit. Rev. Food Sci. Nutr. 2014;54:1562–1575. doi: 10.1080/10408398.2011.644353. PubMed DOI
Nagao A., Yamazaki M. Effect of temperature during maturation on fatty acid composition of sunflower seed. Agric. Biol. Chem. 1984;48:553–555.
Sobrino E., Tarquis A.M., Cruz Diaz M. Modeling the oleic acid content in sunflower oil. Agron. J. 2003;95:329–334. doi: 10.2134/agronj2003.3290. DOI
Galtier O., Dupuy n., Le Dreau Y., Ollivier D., Pinatel C., Kister J., Artaud J. Geographic origins and compositions of virgin olive oils determinated by chemometric analysis of NIR spectra. Anal. Chim. Acta. 2007;595:136–144. doi: 10.1016/j.aca.2007.02.033. PubMed DOI
Ali A., Devarajan S. Nutritional and Health Benefits of Rice Bran Oil. In: Manickavasagan A., Santhakumar C., Venkatachalapathy N., editors. Brown Rice. Springer International Publishing; Berlin/Heidelberg, Germany: 2017. pp. 136–158.
Khazaeli P., Mehrabani M., Mosadegh A., Bios S., Zareshahi R., Moshafi M.H. Formulation, physiochemical, and microbial assay of henna oil vaginal suppository formulated with polyethylene glycol bases. Iran. J. Med. Sci. 2020;45:207–213. PubMed PMC
Jin J., Jin Q., Akoh C.C., Wang X. Mango kernel fat fractions as potential healthy food ingredients: A review. Food. Sci. Nutr. 2019;59:1794–1801. doi: 10.1080/10408398.2018.1428527. PubMed DOI
Aquino-Bolanos E.N., Mapel-Velazco L., Martin-del-Campo S.T., Chavez-Servia J.L., Martinez A.J., Verdalet-Guzman I. Fatty acids profile of oil from nine varieties of Macadamia nut. Int. J. Food Prop. 2017;6:1262–1269. doi: 10.1080/10942912.2016.1206125. DOI
Matilsky D.K., Ndekha M., Manary M.J. Supplementary feeding with fortified spreads results in higher recovery rates than with a corn/soy blend in moderately wasted children. J. Nutr. 2009;139:773–778. doi: 10.3945/jn.108.104018. PubMed DOI PMC
Arya S.S., Salve A.R., Chauhan S. Peanuts as functional food: A review. J. Food Sci. Technol. 2015;53:31–41. doi: 10.1007/s13197-015-2007-9. PubMed DOI PMC
Yang Z.H., Miyahara H., Hatanaka A. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-701 Ay Mice with genetic type 2 diabetes. Lipids Health Dis. 2011;10:120. doi: 10.1186/1476-511X-10-120. PubMed DOI PMC
Damude H.G., Kinny A.J. Enhancing Plant Seed Oils for Human Nutrition. Plant Physiol. 2008;147:962–968. doi: 10.1104/pp.108.121681. PubMed DOI PMC
Ong A.S.H., Goh S.H. Palm oil: A healthful and cost-effective dietary component. Food Nutr. Bull. 2002;23:11–22. doi: 10.1177/156482650202300102. PubMed DOI