Deletion of NRF2 disturbs composition, morphology, and differentiation of the murine tail epidermis in chronological aging

. 2023 May-Jun ; 49 (3) : 684-698. [epub] 20230211

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36772996

Grantová podpora
I5627-B Austrian Science Fund
22-20839K Grantová Agentura České Republiky

NRF2 is a master regulator of the cellular protection against oxidative damage in mammals and of multiple pathways relevant in the mammalian aging process. In the epidermis of the skin NRF2 contributes additionally to the formation of an antioxidant barrier to protect from environmental insults and is involved in the differentiation process of keratinocytes. In chronological aging of skin, the capacity for antioxidant responses and the ability to restore homeostasis after damage are impaired. Surprisingly, in absence of extrinsic stressors, NRF2 deficient mice do not show any obvious skin phenotype, not even at old age. We investigated the differences in chronological epidermal aging of wild type and NRF2-deficient mice to identify the changes in aged epidermis that may compensate for absence of this important transcriptional regulator. While both genotypes showed elevated epidermal senescence markers (increased Lysophospholipids, decreased LaminB1 expression), the aged NRF2 deficient mice displayed disturbed epidermal differentiation manifested in irregular keratin 10 and loricrin expression. The tail skin displayed less age-related epidermal thinning and a less pronounced decline in proliferating basal epidermal cells compared to the wildtype controls. The stratum corneum lipid composition also differed, as we observed elevated production of barrier protective linoleic acid (C18:2) and reduced abundance of longer chain saturated lignoceric acid (C24:0) among the stratum corneum fatty acids in the aged NRF2-deficient mice. Thus, despite epidermal differentiation being disturbed in aged NRF2-deficient animals in homeostasis, adaptations in keratinocyte proliferation and barrier lipid synthesis could explain the lack of a more severe phenotype.

Zobrazit více v PubMed

Lopez‐Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217. PubMed PMC

Hohn A, Weber D, Jung T, Ott C, Hugo M, Kochlik B, et al. Happily (n)ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 2017;11:482–501. PubMed PMC

Gosselin K, Martien S, Pourtier A, Vercamer C, Ostoich P, Morat L, et al. Senescence‐associated oxidative DNA damage promotes the generation of neoplastic cells. Cancer Res. 2009;69:7917–25. PubMed

Hewitt G, Jurk D, Marques FD, Correia‐Melo C, Hardy T, Gackowska A, et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress‐induced senescence. Nat Commun. 2012;3:708. PubMed PMC

Filomeni G, De ZD, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22:377–88. PubMed PMC

Salzer MC, Lafzi A, Berenguer‐Llergo A, Youssif C, Castellanos A, Solanas G, et al. Identity noise and Adipogenic traits characterize dermal fibroblast aging. Cell. 2018;175:1575–90. PubMed

Gruber F, Kremslehner C, Eckhart L, Tschachler E. Cell aging and cellular senescence in skin aging — recent advances in fibroblast and keratinocyte biology. Exp Gerontol. 2020;130:110780. PubMed

Nowotny K, Jung T, Grune T, Hohn A. Accumulation of modified proteins and aggregate formation in aging. Exp Gerontol. 2014;57:122–31. PubMed

Ni C, Narzt MS, Nagelreiter IM, Zhang CF, Larue L, Rossiter H, et al. Autophagy deficient melanocytes display a senescence associated secretory phenotype that includes oxidized lipid mediators. Int J Biochem Cell Biol. 2016;81:375–82. PubMed

Narzt MS, Pils V, Kremslehner C, Nagelreiter IM, Schosserer M, Bessonova E, et al. Epilipidomics of senescent dermal fibroblasts identify Lysophosphatidylcholines as pleiotropic senescence‐associated secretory phenotype (SASP) factors. J Invest Dermatol. 2021;141:993–1006. PubMed

Schmidlin CJ, Dodson MB, Madhavan L, Zhang DD. Redox regulation by NRF2 in aging and disease. Free Radic Biol Med. 2019;134:702–7. PubMed PMC

Kim SB, Pandita RK, Eskiocak U, Ly P, Kaisani A, Kumar R, et al. Targeting of Nrf2 induces DNA damage signaling and protects colonic epithelial cells from ionizing radiation. Proc Natl Acad Sci U S A. 2012;109:E2949–55. PubMed PMC

Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 2012;22:66–79. PubMed

Kremslehner C, Miller A, Nica R, Nagelreiter IM, Narzt MS, Golabi B, et al. Redox. Biol. 2020;101583:1–13. PubMed PMC

Frantz MC, Rozot R, Marrot L. NRF2 in dermo‐cosmetic: From scientific knowledge to skin care products. Biofactors. 2023;49(1):32–61. PubMed

Schafer M, Werner S. Nrf2—A regulator of keratinocyte redox signaling. Free Radic Biol Med. 2015;88:243–52. PubMed

Schafer M, Dutsch S, Auf Dem KU, Navid F, Schwarz A, Johnson DA, et al. Nrf2 establishes a glutathione‐mediated gradient of UVB cytoprotection in the epidermis. Genes Dev. 2010;24:1045–58. PubMed PMC

Gruber F, Mayer H, Lengauer B, Mlitz V, Sanders JM, Kadl A, et al. NF‐E2‐related factor 2 regulates the stress response to UVA‐1‐oxidized phospholipids in skin cells. FASEB J. 2010;24:39–48. PubMed PMC

Schafer M, Willrodt AH, Kurinna S, Link AS, Farwanah H, Geusau A, et al. EMBO Mol Med. 2014;6(4):442–57. PubMed PMC

Huebner AJ, Dai D, Morasso M, Schmidt EE, Schafer M, Werner S, et al. Amniotic fluid activates the Nrf2/Keap1 pathway to repair an epidermal barrier defect In utero. Dev Cell. 2012;23:1238–46. PubMed PMC

Kumar V, Bouameur JE, Bar J, Rice RH, Hornig‐Do HT, Roop DR, et al. A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity. J Cell Biol. 2015;211:1057–75. PubMed PMC

Hiebert P, Martyts A, Schwestermann J, Janke K, Hafner J, Boukamp P, et al. Activation of Nrf2 in fibroblasts promotes a skin aging phenotype via an Nrf2‐miRNA‐collagen axis. Matrix Biol. 2022;113:39–60. PubMed

Hiebert P, Wietecha MS, Cangkrama M, Haertel E, Mavrogonatou E, Stumpe M, et al. Nrf2‐mediated fibroblast reprogramming drives cellular senescence by targeting the Matrisome. Dev Cell. 2018;46:145–61. PubMed

Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236:313–22. PubMed

Zhao Y, Zhang CF, Rossiter H, Eckhart L, Konig U, Karner S, et al. Autophagy is induced by UVA and promotes removal of oxidized phospholipids and protein aggregates in epidermal keratinocytes. J Invest Dermatol. 2013;133:1629–37. PubMed

Pfaffl MW. A new mathematical model for relative quantification in real‐time RT‐PCR. Nucleic Acids Res. 2001;29:2003–7. PubMed PMC

BLIGH EG, DYER WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7. PubMed

Opalka L, Kovacik A, Sochorova M, Roh J, Kunes J, Lenco J, et al. Scalable synthesis of human Ultralong chain ceramides. Org Lett. 2015;17:5456–9. PubMed

Jourdain R, Moga A, Vingler P, El RC, Pouradier F, Souverain L, et al. Exploration of scalp surface lipids reveals squalene peroxide as a potential actor in dandruff condition. Arch Dermatol Res. 2016;308:153–63. PubMed PMC

Gruber F, Bicker W, Oskolkova OV, Tschachler E, Bochkov VN. A simplified procedure for semi‐targeted lipidomic analysis of oxidized phosphatidylcholines induced by UVA irradiation. J Lipid Res. 2012;53:1232–42. PubMed PMC

Fisher AB. Antioxid. Redox. Signals. 2011;15:831–44. PubMed PMC

Wang AS, Dreesen O. Biomarkers of cellular senescence and skin aging. Front Genet. 2018;9:247. PubMed PMC

Ishitsuka Y, Ogawa T, Nakamura Y, Kubota N, Fujisawa Y, Watanabe R, et al. Loricrin and NRF2 coordinate cornification. JID Innov. 2022;2:100065. PubMed PMC

Seltmann J, Roesner LM, von Hesler FW, Wittmann M, Werfel T. IL‐33 impacts on the skin barrier by downregulating the expression of filaggrin. J Allergy Clin Immunol. 2015;135:1659–61. PubMed

Elias PM, Brown BE, Ziboh VA. The permeability barrier in essential fatty acid deficiency: evidence for a direct role for linoleic acid in barrier function. J Invest Dermatol. 1980;74:230–3. PubMed

Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta. 2014;1841:280–94. PubMed

Cadenas C, Vosbeck S, Edlund K, Grgas K, Madjar K, Hellwig B, et al. LIPG‐promoted lipid storage mediates adaptation to oxidative stress in breast cancer. Int J Cancer. 2019;145:901–15. PubMed PMC

Ghadially R, Brown BE, Sequeira‐Martin SM, Feingold KR, Elias PM. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest. 1995;95:2281–90. PubMed PMC

Murase Y, Takeichi T, Kawamoto A, Tanahashi K, Okuno Y, Takama H, et al. Reduced stratum corneum acylceramides in autosomal recessive congenital ichthyosis with a NIPAL4 mutation. J Dermatol Sci. 2020;97:50–6. PubMed

Hirabayashi T, Murakami M, Kihara A. Biochim. Biophys Acta Mol Cell Biol Lipids. 2019;1864:869–79. PubMed

Lu B, Jiang YJ, Man MQ, Brown B, Elias PM, Feingold KR. Expression and regulation of 1‐acyl‐sn‐glycerol‐3‐phosphate acyltransferases in the epidermis. J Lipid Res. 2005;46:2448–57. PubMed

Takechi T, Hirota T, Sakai T, Maeda N, Kobayashi D, Ieiri I. Interindividual differences in the expression of ATP‐binding cassette and solute carrier family transporters in human skin: DNA methylation regulates transcriptional activity of the human ABCC3 gene. Drug Metab Dispos. 2018;46:628–35. PubMed

Fuior EV, Gafencu AV. Apolipoprotein C1: its pleiotropic effects in lipid metabolism and beyond. Int. Sci: J. Mol; 2019. p. 20. PubMed PMC

Rolfs F, Huber M, Gruber F, Bohm F, Pfister HJ, Bochkov VN, et al. Dual role of the antioxidant enzyme Peroxiredoxin 6 in skin carcinogenesis. Cancer Res. 2013;73:3460–9. PubMed

Singh A, Rangasamy T, Thimmulappa RK, Lee H, Osburn WO, Brigelius‐Flohe R, et al. Glutathione peroxidase 2, the major cigarette smoke‐inducible isoform of GPX in lungs, is regulated by Nrf2. Am J Respir Cell Mol Biol. 2006;35:639–50. PubMed PMC

Anandhan A, Dodson M, Schmidlin CJ, Liu P, Zhang DD. Cell. Chem Biol. 2020;27:436–47. PubMed PMC

Kumin A, Huber C, Rulicke T, Wolf E, Werner S. Peroxiredoxin 6 is a potent Cytoprotective enzyme in the epidermis. Am J Pathol. 2006;169:1194–205. PubMed PMC

Wiernicki B, Dubois H, Tyurina YY, Hassannia B, Bayir H, Kagan VE, et al. Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis. Cell Death Dis. 2020;11:922. PubMed PMC

Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A. 2016;113:E4966–75. PubMed PMC

Matsumura H, Mohri Y, Binh NT, Morinaga H, Fukuda M, Ito M, et al. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science. 2016;351:aad4395. PubMed

Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016;23:303–14. PubMed PMC

Dreesen O, Chojnowski A, Ong PF, Zhao TY, Common JE, Lunny D, et al. Lamin B1 fluctuations have differential effects on cellular proliferation and senescence. J Cell Biol. 2013;200:605–17. PubMed PMC

Wang AS, Ong PF, Chojnowski A, Clavel C, Dreesen O. Loss of Lamin B1 is a biomarker to quantify cellular senescence in photoaged skin. Sci Rep. 2017;7:15678. PubMed PMC

Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular senescence: defining a path forward. Cell. 2019;179:813–27. PubMed

Nouspikel T, Hanawalt PC. DNA repair in terminally differentiated cells. DNA Repair (Amst). 2002;1:59–75. PubMed

Joseph LB, Gerecke DR, Heck DE, Black AT, Sinko PJ, Cervelli JA, et al. Structural changes in the skin of hairless mice following exposure to sulfur mustard correlate with inflammation and DNA damage. Exp Mol Pathol. 2011;91:515–27. PubMed PMC

Hydbring P, Malumbres M, Sicinski P. Non‐canonical functions of cell cycle cyclins and cyclin‐dependent kinases. Nat Rev Mol Cell Biol. 2016;17:280–92. PubMed PMC

Fernandez‐Hernandez R, Rafel M, Fuste NP, Aguayo RS, Casanova JM, Egea J, et al. Cyclin D1 localizes in the cytoplasm of keratinocytes during skin differentiation and regulates cell–matrix adhesion. Cell Cycle. 2013;12:2510–7. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...