• This record comes from PubMed

Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World

. 2023 Apr ; 17 (4) : e0010862. [epub] 20230412

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, N.I.H., Extramural

Grant support
U54 HG003079 NHGRI NIH HHS - United States
U54 HG003273 NHGRI NIH HHS - United States

Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.

CNRS UPR9022 Institut de Biologie Moléculaire et Cellulaire and Faculté des Sciences de la Vie Université de Strasbourg Strasbourg France

Department of Animal Sciences Department of Surgery Institute for Data Science and Informatics University of Missouri Columbia Missouri United States of America

Department of Biochemistry and Immunology Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo Horizonte Brazil

Department of Biological Sciences California State Polytechnic University Pomona California United States of America

Department of Biological Sciences University of Cincinnati Cincinnati Ohio United States of America

Department of Biology and Center for Biological Clocks Research Texas A and M University College Station Texas United States of America

Department of Biology University of Crete Voutes University Campus Heraklion Greece

Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana United States of America

Department of Ecology and Evolution and Swiss Institute of Bioinformatics University of Lausanne Lausanne Switzerland

Department of Electrical Engineering and Computer Science Milwaukee School of Engineering Milwaukee Wisconsin United States of America

Department of Electrical Engineering and Computer Science University of Tennessee Knoxville Tennessee United States of America

Department of Entomology University of Kentucky Lexington Kentucky United States of America

Department of Life Sciences Faculty of Science and Technology Al Quds University Jerusalem Palestine

Department of Microbiology Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo Horizonte Brazil

Department of Neuroscience Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania United States of America

Department of Parasitology Faculty of Science Charles University Prague Czech Republic

Dept Ciencias Biológicas and Dept Ciencias Básicas Médicas Universidad Icesi Cali Colombia

Discovery Partners Institute University of Illinois Chicago Chicago Illinois United States of America

Division of Biological Sciences Section of Cell and Developmental Biology University of California San Diego California United States of America

Division of Biomedical and Life Sciences Faculty of Health and Medicine Lancaster University Lancaster United Kingdom

Donald Danforth Plant Science Center Olivette Missouri United States of America

Eck Institute for Global Health Department of Biological Sciences University of Notre dame Notre Dame Indiana United States of America

F Edward Hebert School of Medicine Department of Preventive Medicine and Biostatistics Uniformed Services University of the Health Sciences Bethesda Maryland United States of America

Fralin Life Science Institute and Department of Biochemistry Virginia Tech Blacksburg Virginia United States of America

Genomic Sciences and Precision Medicine Center Medical College of Wisconsin Milwaukee Wisconsin United States of America

Genomics Group Bioinformatics and Evolutionary Biology Lab Department of Genetics and Microbiology Autonomous University of Barcelona Barcelona Spain

Human Genome Sequencing Center Baylor College of Medicine Houston Texas United States of America

Institute of Integrative Biology The University of Liverpool Liverpool United Kingdom

Instituto Oswaldo Cruz Fiocruz Rio de Janeiro Brazil

Laboratório de Biologia Molecular de Parasitas e Vetores Instituto Oswaldo Cruz FIOCRUZ Rio de Janeiro Brazil

Laboratório de Bioquímica e Fisiologia de Insetos IOC FIOCRUZ Rio de Janeiro Brazil

Laboratório de Doenças Parasitárias Instituto Oswaldo Cruz Rio de Janeiro Brazil

Laboratório de Fisiologia de Insetos Hematófagos Universidade Federal de Minas Gerais Instituto de Ciencias Biológicas Departamento de Parasitologia Pampulha Belo Horizonte Brazil

Laboratório de Imunoparasitologia CPqGM Fundação Oswaldo Cruz Bahia Brazil

Laboratorio de Insectos Sociales Instituto de Fisiología Biología Molecular y Neurociencias Universidad de Buenos Aires CONICET Buenos Aires Argentina

Laboratório de Transmissores de Hematozoários IOC FIOCRUZ Rio de Janeiro Brazil

Laboratory Interdisciplinar em Vigilancia Entomologia em Diptera e Hemiptera Fiocruz Rio de Janeiro Brazil

Laboratory of Cell Biology Development and Genetics Department of Biochemistry University of Oxford Oxford United Kingdom

Laboratory of Medical Entomology René Rachou Institute FIOCRUZ Belo Horizonte Brazil

McDonnell Genome Institute Washington University School of Medicine St Louis Missouri United States of America

Medical Entomology Branch Dept Microbiology Bundeswehr Hospital Hamburg Germany

Medical Zoology Branch Dept Microbiology Central Bundeswehr Hospital Koblenz Germany

Molecular Entomology Lab Institute of Molecular Biology and Biotechnology Foundation for Research and Technology Hellas Heraklion Greece

Pesticide Science Lab Department of Crop Science Agricultural University of Athens Athens Greece

School of Applied Mathematics Getulio Vargas Foundation Rio de Janeiro Brazil

School of Biological and Environmental Sciences Liverpool John Moores University Liverpool United Kingdom

Universidade Federal do Rio de Janeiro Instituto de Biologia Rio de Janeiro Brazil

USDA ARS Knipling Bushland U S Livestock Insects Research Laboratory and Veterinary Pest Genomics Center Kerrville Texas United States of America

Vector Biology Department Liverpool School of Tropical Medicine Liverpool United Kingdom

Vector Ecology Unit Institut Pasteur de Tunis Tunis Tunisia

Vector Molecular Biology Section Laboratory of Malaria and Vector Research National Institute of Allergy and Infectious Diseases National Institutes of Health Rockville Maryland United States of America

See more in PubMed

Desjeux P. Leishmaniasis: current situation and new perspectives. Comparative immunology, microbiology and infectious diseases. 2004;27(5):305–18. doi: 10.1016/j.cimid.2004.03.004 . PubMed DOI

Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, et al.. Leishmaniasis worldwide and global estimates of its incidence. PloS one. 2012;7(5):e35671. doi: 10.1371/journal.pone.0035671 . PubMed DOI PMC

Jones CM, Welburn SC. Leishmaniasis Beyond East Africa. Front Vet Sci. 2021;8:618766. Epub 20210226. doi: 10.3389/fvets.2021.618766 . PubMed DOI PMC

Organization WH. WHO report on global surveillance of epidemic-prone infectious diseases. 2000.

Ramalho-Ortigao M, Saraiva EM, Traub-Cseko YM. Sand fly- interactions: long relationships are not necessarily easy. The open parasitology journal. 2010;4:195–204. doi: 10.2174/1874421401004010195 . PubMed DOI PMC

Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27(2):123–47. Epub 20120827. doi: 10.1111/j.1365-2915.2012.01034.x . PubMed DOI

Sacks D, Kamhawi S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol. 2001;55:453–83. doi: 10.1146/annurev.micro.55.1.453 . PubMed DOI

Esseghir S, Ready PD. Speciation of Phlebotomus sandflies of the subgenus Larroussius coincided with the late Miocene-Pliocene aridification of the Mediterranean subregion. Biological Journal of the Linnean Society. 2000;70:189–219.

Esseghir S, Ready PD, Killick-Kendrick R, Ben-Ismail R. Mitochondrial haplotypes and phylogeography of Phlebotomus vectors of Leishmania major. Insect Mol Biol. 1997;6(3):211–25. doi: 10.1046/j.1365-2583.1997.00175.x . PubMed DOI

Lainson R, Ward RD, Shaw JJ. Experimental transmission of Leishmania chagasi, causative agent of neotropical visceral leishmaniasis, by the sandfly Lutzomyia longipalpis. Nature. 1977;266(5603):628–30. doi: 10.1038/266628a0 . PubMed DOI

Myskova J, Svobodova M, Beverley SM, Volf P. A lipophosphoglycan-independent development of Leishmania in permissive sand flies. Microbes Infect. 2007;9(3):317–24. doi: 10.1016/j.micinf.2006.12.010 . PubMed DOI PMC

Killick-Kendrick R. The biology and control of phlebotomine sand flies. Clin Dermatol. 1999;17(3):279–89. doi: 10.1016/s0738-081x(99)00046-2 . PubMed DOI

Yeates DK, Wiegmann BM. Congruence and controversy: toward a higher-level phylogeny of Diptera. Annu Rev Entomol. 1999;44:397–428. doi: 10.1146/annurev.ento.44.1.397 . PubMed DOI

Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim JW, Lambkin C, et al.. Episodic radiations in the fly tree of life. Proc Natl Acad Sci U S A. 2011;108(14):5690–5. doi: 10.1073/pnas.1012675108 . PubMed DOI PMC

Simon S, Narechania A, Desalle R, Hadrys H. Insect phylogenomics: exploring the source of incongruence using new transcriptomic data. Genome biology and evolution. 2012;4(12):1295–309. doi: 10.1093/gbe/evs104 . PubMed DOI PMC

Curler GR, Moulton JK. Phylogeny of psychodid subfamilies (Diptera: Psychodidae) inferred from nuclear DNA sequences with a review of morphological evidence for relationships. Syst Entomol. 2012;37(3):603–16. doi: 10.1111/j.1365-3113.2012.00634.x DOI

Akhoundi M, Kuhls K, Cannet A, Votypka J, Marty P, Delaunay P, et al.. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl Trop Dis. 2016;10(3):e0004349. Epub 2016/03/05. doi: 10.1371/journal.pntd.0004349 . PubMed DOI PMC

Hamarsheh O. Distribution of Leishmania major zymodemes in relation to populations of Phlebotomus papatasi sand flies. Parasites & vectors. 2011;4:9. doi: 10.1186/1756-3305-4-9 . PubMed DOI PMC

Colacicco-Mayhugh MG, Masuoka PM, Grieco JP. Ecological niche model of Phlebotomus alexandri and P. papatasi (Diptera: Psychodidae) in the Middle East. Int J Health Geogr. 2010;9. Artn 210.1186/1476-072x-9-2. doi: 10.1186/1476-072X-9-2 PubMed DOI PMC

Depaquit J, Lienard E, Verzeaux-Griffon A, Ferte H, Bounamous A, Gantier JC, et al.. Molecular homogeneity in diverse geographical populations of Phlebotomus papatasi (Diptera, Psychodidae) inferred from ND4 mtDNA and ITS2 rDNA Epidemiological consequences. Infect Genet Evol. 2008;8(2):159–70. doi: 10.1016/j.meegid.2007.12.001 . PubMed DOI

Hamarsheh O, Presber W, Abdeen Z, Sawalha S, Al-Lahem A, Schonian G. Genetic structure of Mediterranean populations of the sandfly Phlebotomus papatasi by mitochondrial cytochrome b haplotype analysis. Med Vet Entomol. 2007;21(3):270–7. doi: 10.1111/j.1365-2915.2007.00695.x . PubMed DOI

Hamarsheh O, Presber W, Al-Jawabreh A, Abdeen Z, Amro A, Schonian G. Molecular markers for Phlebotomus papatasi (Diptera: Psychodidae) and their usefulness for population genetic analysis. Trans R Soc Trop Med Hyg. 2009;103(11):1085–6. doi: 10.1016/j.trstmh.2009.02.011 . PubMed DOI

Hamarsheh O, Presber W, Yaghoobi-Ershadi MR, Amro A, Al-Jawabreh A, Sawalha S, et al.. Population structure and geographical subdivision of the Leishmania major vector Phlebotomus papatasi as revealed by microsatellite variation. Med Vet Entomol. 2009;23(1):69–77. doi: 10.1111/j.1365-2915.2008.00784.x . PubMed DOI

Flanley CM, Ramalho-Ortigao M, Coutinho-Abreu IV, Mukbel R, Hanafi HA, El-Hossary SS, et al.. Population genetics analysis of Phlebotomus papatasi sand flies from Egypt and Jordan based on mitochondrial cytochrome b haplotypes. Parasites & vectors. 2018;11(1):214. Epub 2018/03/29. doi: 10.1186/s13071-018-2785-9 . PubMed DOI PMC

Khalid NM, Aboud MA, Alrabba FM, Elnaiem DE, Tripet F. Evidence for genetic differentiation at the microgeographic scale in Phlebotomus papatasi populations from Sudan. Parasites & vectors. 2012;5:249. doi: 10.1186/1756-3305-5-249 . PubMed DOI PMC

Araki AS, Ferreira GE, Mazzoni CJ, Souza NA, Machado RC, Bruno RV, et al.. Multilocus analysis of divergence and introgression in sympatric and allopatric sibling species of the Lutzomyia longipalpis complex in Brazil. PLoS neglected tropical diseases. 2013;7(10):e2495. Epub 2013/10/23. doi: 10.1371/journal.pntd.0002495 . PubMed DOI PMC

Souza NA, Vigoder FM, Araki AS, Ward RD, Kyriacou CP, Peixoto AA. Analysis of the copulatory courtship songs of Lutzomyia longipalpis in six populations from Brazil. J Med Entomol. 2004;41(5):906–13. Epub 2004/11/13. doi: 10.1603/0022-2585-41.5.906 . PubMed DOI

Araki AS, Vigoder FM, Bauzer LG, Ferreira GE, Souza NA, Araujo IB, et al.. Molecular and behavioral differentiation among Brazilian populations of Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae). PLoS neglected tropical diseases. 2009;3(1):e365. Epub 2009/01/28. doi: 10.1371/journal.pntd.0000365 . PubMed DOI PMC

Vigoder FM, Souza NA, Brazil RP, Bruno RV, Costa PL, Ritchie MG, et al.. Phenotypic differentiation in love song traits among sibling species of the Lutzomyia longipalpis complex in Brazil. Parasites & vectors. 2015;8:290. Epub 2015/05/29. doi: 10.1186/s13071-015-0900-8 . PubMed DOI PMC

Vigoder FM, Araki AS, Carvalho AB, Brazil RP, Ritchie MG. Dinner and a show: The role of male copulatory courtship song and female blood-feeding in the reproductive success of Lutzomyia longipalpis from Lapinha, Brazil. Infect Genet Evol. 2020;85:104470. Epub 2020/08/09. doi: 10.1016/j.meegid.2020.104470 . PubMed DOI

González MA, Bell M, Souza CF, Maciel-de-Freitas R, Brazil RP, Courtenay O, et al.. Synthetic sex-aggregation pheromone of Lutzomyia longipalpis, the South American sand fly vector of Leishmania infantum, attracts males and females over long-distance. PLoS neglected tropical diseases. 2020;14(10):e0008798. doi: 10.1371/journal.pntd.0008798 PubMed DOI PMC

Hamilton JG, Maingon RD, Alexander B, Ward RD, Brazil RP. Analysis of the sex pheromone extract of individual male Lutzomyia longipalpis sandflies from six regions in Brazil. Med Vet Entomol. 2005;19(4):480–8. Epub 2005/12/13. doi: 10.1111/j.1365-2915.2005.00594.x . PubMed DOI

Hamilton JG, Ward RD. Chemical analysis of a putative sex pheromone from Lutzomyia pessoai (Diptera: Psychodidae). Annals of Tropical Medicine & Parasitology. 1994;88(4):405–12. Epub 1994/08/01. doi: 10.1080/00034983.1994.11812883 . PubMed DOI

Hamilton JGC, Ward RD, Dougherty MJ, Maignon R, Ponce C, Ponce E, et al.. Comparison of the sex-pheromone components of Lutzomyia longipalpis (Diptera: Psychodidae) from areas of visceral and atypical cutaneous leishmaniasis in Honduras and Costa Rica. Annals of Tropical Medicine & Parasitology. 1996;90(5):533–41. doi: 10.1080/00034983.1996.11813079 PubMed DOI

Hickner PV, Timoshevskaya N, Nowling RJ, Labbé F, Nguyen AD, McDowell MA, et al.. Molecular signatures of sexual communication in the phlebotomine sand flies. PLoS Negl Trop Dis. 2020;14(12):e0008967. Epub 20201228. doi: 10.1371/journal.pntd.0008967 . PubMed DOI PMC

Palframan MJ, Bandi KK, Hamilton JGC, Pattenden G. Sobralene, a new sex-aggregation pheromone and likely shunt metabolite of the taxadiene synthase cascade, produced by a member of the sand fly Lutzomyia longipalpis species complex. Tetrahedron Lett. 2018;59(20):1921–3. Epub 2018/05/22. doi: 10.1016/j.tetlet.2018.03.088 . PubMed DOI PMC

González-Caballero N, Rodríguez-Vega A, Dias-Lopes G, Valenzuela JG, Ribeiro JM, Carvalho PC, et al.. Expression of the mevalonate pathway enzymes in the Lutzomyia longipalpis (Diptera: Psychodidae) sex pheromone gland demonstrated by an integrated proteomic approach. Journal of Proteomics. 2014;96:117–32. Epub 2013/11/05. doi: 10.1016/j.jprot.2013.10.028 . PubMed DOI PMC

Palframan MJ, Bamdi KK, Hamilton JGC, Pattenden G. Acid-Catalysed rearrangement of the sandfly pheromone sobralene to verticillenes, consolidating its relationship inter alia to the taxanes and phomactins. Synlett. 2019;30(16):1899–903. doi: 10.1055/s-0039-1690131 DOI

Souza NA, Andrade-Coelho CA, Vigoder FM, Ward RD, Peixoto AA. Reproductive isolation between sympatric and allopatric Brazilian populations of Lutzomyia longipalpis s.l. (Diptera: Psychodidae). Mem Inst Oswaldo Cruz. 2008;103(2):216–9. Epub 2008/04/22. doi: 10.1590/s0074-02762008000200017 . PubMed DOI

Ward RD, Ribeiro AL, Ready PD, Murtagh A. Reproductive isolation between different forms of Lutzomyia longipalpis (Lutz & Neiva), (Diptera: Psychodidae), the vector of Leishmania donovani chagasi Cunha & Chagas and its significance to Kala-Azar distribution in South America. Memorias do Instituto Oswaldo Cruz. 1983;78:269–80. doi: http%3A//dx.doi.org/10.1590/S0074-02761983000300005

Boulanger N, Lowenberger C, Volf P, Ursic R, Sigutova L, Sabatier L, et al.. Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect Immun. 2004;72(12):7140–6. doi: 10.1128/IAI.72.12.7140-7146.2004 . PubMed DOI PMC

Telleria EL, Sant’Anna MR, Alkurbi MO, Pitaluga AN, Dillon RJ, Traub-Cseko YM. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis. Parasites & vectors. 2013;6:12. doi: 10.1186/1756-3305-6-12 . PubMed DOI PMC

Telleria EL, Tinoco-Nunes B, Leštinová T, de Avellar LM, Tempone AJ, Pitaluga AN, et al.. Antimicrobial Peptides: Differential Expression during Development and Potential Involvement in Vector Interaction with Microbiota and. Microorganisms. 2021;9(6). Epub 20210611. doi: 10.3390/microorganisms9061271 PubMed DOI PMC

Kykalová B, Tichá L, Volf P, Loza Telleria E. Antimicrobial Peptides in Larvae and Females and a Gut-Specific Defensin Upregulated by. Microorganisms. 2021;9(11). Epub 20211106. doi: 10.3390/microorganisms9112307 PubMed DOI PMC

Telleria EL, Sant’Anna MR, Ortigao-Farias JR, Pitaluga AN, Dillon VM, Bates PA, et al.. Caspar-like gene depletion reduces Leishmania infection in sand fly host Lutzomyia longipalpis. J Biol Chem. 2012;287(16):12985–93. doi: 10.1074/jbc.M111.331561 . PubMed DOI PMC

Louradour I, Ghosh K, Inbar E, Sacks DL. CRISPR/Cas9 Mutagenesis in Phlebotomus papatasi: the Immune Deficiency Pathway Impacts Vector Competence for Leishmania major. mBio. 2019;10(4). Epub 20190827. doi: 10.1128/mBio.01941-19 . PubMed DOI PMC

Abdeladhim M, Kamhawi S, Valenzuela JG. What’s behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infect Genet Evol. 2014;28:691–703. doi: 10.1016/j.meegid.2014.07.028 . PubMed DOI PMC

Meireles-Filho AC, Kyriacou CP. Circadian rhythms in insect disease vectors. Mem Inst Oswaldo Cruz. 2013;108 Suppl 1:48–58. doi: 10.1590/0074-0276130438 . PubMed DOI PMC

Meireles-Filho AC, da S Rivas GB, Gesto JS, Machado RC, Britto C, de Souza NA, et al.. The biological clock of an hematophagous insect: locomotor activity rhythms, circadian expression and downregulation after a blood meal. FEBS Lett. 2006;580(1):2–8. Epub 20051201. doi: 10.1016/j.febslet.2005.11.031 . PubMed DOI

Meireles-Filho AC, Amoretty PR, Souza NA, Kyriacou CP, Peixoto AA. Rhythmic expression of the cycle gene in a hematophagous insect vector. BMC Mol Biol. 2006;7:38. doi: 10.1186/1471-2199-7-38 . PubMed DOI PMC

Yuan Q, Metterville D, Briscoe AD, Reppert SM. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol. 2007;24(4):948–55. doi: 10.1093/molbev/msm011 . PubMed DOI

Ceriani MF, Darlington TK, Staknis D, Mas P, Petti AA, Weitz CJ, et al.. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science. 1999;285(5427):553–6. doi: 10.1126/science.285.5427.553 . PubMed DOI

Thomas MB. Biological control of human disease vectors: a perspective on challenges and opportunities. Biocontrol (Dordr). 2018;63(1):61–9. Epub 2018/02/03. doi: 10.1007/s10526-017-9815-y . PubMed DOI PMC

Modi GB, Tesh RB. A simple technique for mass rearing Lutzomyia longipalpis and Phlebotomus papatasi (Diptera: Psychodidae) in the laboratory. J Med Entomol. 1983;20(5):568–9. doi: 10.1093/jmedent/20.5.568 . PubMed DOI

Warren WC, Kuderna L, Alexander A, Catchen J, Pérez-Silva JG, López-Otín C, et al.. The Novel Evolution of the Sperm Whale Genome. Genome Biol Evol. 2017;9(12):3260–4. doi: 10.1093/gbe/evx187 . PubMed DOI PMC

Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7(1–2):203–14. doi: 10.1089/10665270050081478 . PubMed DOI

Choi YJ, Bisset SA, Doyle SR, Hallsworth-Pepin K, Martin J, Grant WN, et al.. Genomic introgression mapping of field-derived multiple-anthelmintic resistance in Teladorsagia circumcincta. PLoS Genet. 2017;13(6):e1006857. Epub 20170623. doi: 10.1371/journal.pgen.1006857 . PubMed DOI PMC

Rosa BA, Choi YJ, McNulty SN, Jung H, Martin J, Agatsuma T, et al.. Comparative genomics and transcriptomics of 4 Paragonimus species provide insights into lung fluke parasitism and pathogenesis. Gigascience. 2020;9(7). doi: 10.1093/gigascience/giaa073 . PubMed DOI PMC

Magrini V, Gao X, Rosa BA, McGrath S, Zhang X, Hallsworth-Pepin K, et al.. Improving eukaryotic genome annotation using single molecule mRNA sequencing. BMC Genomics. 2018;19(1):172. Epub 20180301. doi: 10.1186/s12864-018-4555-7 . PubMed DOI PMC

Deng J, Worley KC. Atlas-Link 2010. https://www.hgsc.bcm.edu/software/atlas-link.

Song X, Liu Y, Qu J, Gibbs RA, Worley KC. ATLAS gapfill 2.2. 2012.

Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 2011;12:491. Epub 20111222. doi: 10.1186/1471-2105-12-491 . PubMed DOI PMC

Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, et al.. Genome sequence of Aedes aegypti, a major arbovirus vector. Science. 2007;316(5832):1718–23. doi: 10.1126/science.1138878 . PubMed DOI PMC

Waterhouse RM, Tegenfeldt F, Li J, Zdobnov EM, Kriventseva EV. OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res. 2013;41(Database issue):D358–65. doi: 10.1093/nar/gks1116 . PubMed DOI PMC

Neafsey DE, Christophides GK, Collins FH, Emrich SJ, Fontaine MC, Gelbart W, et al.. The evolution of the Anopheles 16 genomes project. G3. 2013;3(7):1191–4. doi: 10.1534/g3.113.006247 . PubMed DOI PMC

Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, et al.. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science. 2015;347(6217):1258522. doi: 10.1126/science.1258522 . PubMed DOI PMC

Rognes T. Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation. BMC bioinformatics. 2011;12:221. doi: 10.1186/1471-2105-12-221 . PubMed DOI PMC

Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC bioinformatics. 2004;5:113. doi: 10.1186/1471-2105-5-113 . PubMed DOI PMC

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3. doi: 10.1093/bioinformatics/btp348 . PubMed DOI PMC

Salichos L, Rokas A. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature. 2013;497(7449):327–31. doi: 10.1038/nature12130 . PubMed DOI

Salichos L, Stamatakis A, Rokas A. Novel information theory-based measures for quantifying incongruence among phylogenetic trees. Mol Biol Evol. 2014;31(5):1261–71. doi: 10.1093/molbev/msu061 . PubMed DOI

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3. doi: 10.1093/bioinformatics/btu033 . PubMed DOI PMC

Junier T, Zdobnov EM. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics. 2010;26(13):1669–70. doi: 10.1093/bioinformatics/btq243 . PubMed DOI PMC

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997v1 [q-bio.GN]; 2013.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al.. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. papers2://publication/doi/10.1093/bioinformatics/btp352. doi: 10.1093/bioinformatics/btp352 PubMed DOI PMC

Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al.. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genes Dev. 2012;22(3):568–76. papers2://publication/doi/10.1101/gr.129684.111. doi: 10.1101/gr.129684.111 PubMed DOI PMC

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. Epub 2015/02/28. doi: 10.1186/s13742-015-0047-8 . PubMed DOI PMC

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al.. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. Epub 2007/08/19. doi: 10.1086/519795 . PubMed DOI PMC

Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28(24):3326–8. papers3://publication/doi/10.1093/bioinformatics/bts606. doi: 10.1093/bioinformatics/bts606 PubMed DOI PMC

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al.. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8. doi: 10.1093/bioinformatics/btr330 PubMed DOI PMC

Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome research. 2009;19(9):1655–64. Epub 2009/08/04. doi: 10.1101/gr.094052.109 . PubMed DOI PMC

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour. 2015;15(5):1179–91. Epub 2015/02/17. doi: 10.1111/1755-0998.12387 . PubMed DOI PMC

Suite 2011: LigPrep, version 2.5, Schrödinger, LLC, New York, NY, 2011.

Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2(12):e190. Epub 2006/12/30. doi: 10.1371/journal.pgen.0020190 . PubMed DOI PMC

Bonhomme M, Chevalet C, Servin B, Boitard S, Abdallah J, Blott S, et al.. Detecting selection in population trees: the Lewontin and Krakauer test extended. Genetics. 2010;186(1):241–62. Epub 2010/09/22. doi: 10.1534/genetics.104.117275 . PubMed DOI PMC

Fariello MI, Boitard S, Naya H, SanCristobal M, Servin B. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics. 2013;193(3):929–41. Epub 2013/01/12. doi: 10.1534/genetics.112.147231 . PubMed DOI PMC

Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics (Oxford, England). 2008;24(11):1403–5. Epub 2008/04/10. doi: 10.1093/bioinformatics/btn129 . PubMed DOI

Jombart T, Ahmed I. adegenet 1.3–1: new tools for the analysis of genome-wide SNP data. Bioinformatics (Oxford, England). 2011;27(21):3070–1. Epub 2011/09/20. doi: 10.1093/bioinformatics/btr521 . PubMed DOI PMC

Paradis E, Claude J, Strimmer K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics (Oxford, England). 2004;20(2):289–90. Epub 2004/01/22. doi: 10.1093/bioinformatics/btg412 . PubMed DOI

Kamvar ZN, Tabima JF, Grunwald NJ. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2:e281. Epub 2014/04/02. doi: 10.7717/peerj.281 . PubMed DOI PMC

Knaus BJ, Grunwald NJ. vcfr: a package to manipulate and visualize variant call format data in R. Mol Ecol Resour. 2017;17(1):44–53. Epub 2016/07/13. doi: 10.1111/1755-0998.12549 . PubMed DOI

Efron B, Halloran E, Holmes S. Bootstrap confidence levels for phylogenetic trees. Proc Natl Acad Sci U S A. 1996;93(23):13429–34. Epub 1996/11/12. doi: 10.1073/pnas.93.23.13429 . PubMed DOI PMC

Kriventseva EV, Tegenfeldt F, Petty TJ, Waterhouse RM, Simao FA, Pozdnyakov IA, et al.. OrthoDB v8: update of the hierarchical catalog of orthologs and the underlying free software. Nucleic Acids Res. 2015;43(Database issue):D250–6. doi: 10.1093/nar/gku1220 . PubMed DOI PMC

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al.. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular systems biology. 2011;7:539. doi: 10.1038/msb.2011.75 PubMed DOI PMC

Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34(Web Server issue):W609–12. doi: 10.1093/nar/gkl315 . PubMed DOI PMC

Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91. doi: 10.1093/molbev/msm088 . PubMed DOI

Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics (Oxford, England). 2015;31(19):3210–2. Epub 2015/06/11. doi: 10.1093/bioinformatics/btv351 . PubMed DOI

Gilbert C, Peccoud J, Cordaux R. Transposable Elements and the Evolution of Insects. Annu Rev Entomol. 2021;66:355–72. Epub 20200915. doi: 10.1146/annurev-ento-070720-074650 . PubMed DOI

Petrov DA, Hartl DL. High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol. 1998;15(3):293–302. Epub 1998/03/21. doi: 10.1093/oxfordjournals.molbev.a025926 . PubMed DOI

Vasta GR. Roles of galectins in infection. Nature reviews Microbiology. 2009;7(6):424–38. doi: 10.1038/nrmicro2146 . PubMed DOI PMC

Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG, Turco SJ, et al.. A role for insect galectins in parasite survival. Cell. 2004;119(3):329–41. doi: 10.1016/j.cell.2004.10.009 . PubMed DOI

Abrudan J, Ramalho-Ortigao M, O’Neil S, Stayback G, Wadsworth M, Bernard M, et al.. The characterization of the Phlebotomus papatasi transcriptome. Insect Mol Biol. 2013;22(2):211–32. doi: 10.1111/imb.12015 . PubMed DOI PMC

Coutinho-Abreu IV, Sharma NK, Robles-Murguia M, Ramalho-Ortigao M. Targeting the midgut secreted PpChit1 reduces Leishmania major development in its natural vector, the sand fly Phlebotomus papatasi. PLoS neglected tropical diseases. 2010;4(11):e901. Epub 2010/12/15. doi: 10.1371/journal.pntd.0000901 . PubMed DOI PMC

Coutinho-Abreu IV, Sharma NK, Robles-Murguia M, Ramalho-Ortigao M. Characterization of Phlebotomus papatasi peritrophins, and the role of PpPer1 in Leishmania major survival in its natural vector. PLoS Negl Trop Dis. 2013;7(3):e2132. doi: 10.1371/journal.pntd.0002132 . PubMed DOI PMC

Ortigao-Farias JR, Di-Blasi T, Telleria EL, Andorinho AC, Lemos-Silva T, Ramalho-Ortigao M, et al.. Alternative splicing originates different domain structure organization of Lutzomyia longipalpis chitinases. Mem Inst Oswaldo Cruz. 2018;113(2):96–101. Epub 2017/12/14. doi: 10.1590/0074-02760170179 . PubMed DOI PMC

Pitaluga AN, Beteille V, Lobo AR, Ortigao-Farias JR, Davila AM, Souza AA, et al.. EST sequencing of blood-fed and Leishmania-infected midgut of Lutzomyia longipalpis, the principal visceral leishmaniasis vector in the Americas. Mol Genet Genomics. 2009;282(3):307–17. Epub 2009/07/01. doi: 10.1007/s00438-009-0466-2 . PubMed DOI

Pruzinova K, Sadlova J, Seblova V, Homola M, Votypka J, Volf P. Comparison of Bloodmeal Digestion and the Peritrophic Matrix in Four Sand Fly Species Differing in Susceptibility to Leishmania donovani. PloS one. 2015;10(6):e0128203. Epub 2015/06/02. doi: 10.1371/journal.pone.0128203 . PubMed DOI PMC

Ramalho-Ortigao JM, Kamhawi S, Rowton ED, Ribeiro JM, Valenzuela JG. Cloning and characterization of trypsin- and chymotrypsin-like proteases from the midgut of the sand fly vector Phlebotomus papatasi. Insect Biochem Mol Biol. 2003;33(2):163–71. doi: 10.1016/s0965-1748(02)00187-x . PubMed DOI

Ramalho-Ortigao JM, Temporal P, de Oliveira SM, Barbosa AF, Vilela ML, Rangel EF, et al.. Characterization of constitutive and putative differentially expressed mRNAs by means of expressed sequence tags, differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR from the sand fly vector Lutzomyia longipalpis. Mem Inst Oswaldo Cruz. 2001;96(1):105–11. doi: 10.1590/s0074-02762001000100012 . PubMed DOI

Ramalho-Ortigao JM, Traub-Cseko YM. Molecular characterization of Llchit1, a midgut chitinase cDNA from the leishmaniasis vector Lutzomyia longipalpis. Insect Biochem Mol Biol. 2003;33(3):279–87. doi: 10.1016/s0965-1748(02)00209-6 . PubMed DOI

Vale VF, Moreira BH, Moraes CS, Pereira MH, Genta FA, Gontijo NF. Carbohydrate digestion in Lutzomyia longipalpis’ larvae (Diptera—Psychodidae). J Insect Physiol. 2012;58(10):1314–24. Epub 2012/07/31. doi: 10.1016/j.jinsphys.2012.07.005 . PubMed DOI

da Costa-Latgé SG, Bates P, Dillon R, Genta FA. Characterization of Glycoside Hydrolase Families 13 and 31 Reveals Expansion and Diversification of α-Amylase Genes in the Phlebotomine. Front Physiol. 2021;12:635633. Epub 20210409. doi: 10.3389/fphys.2021.635633 PubMed DOI PMC

Benoit JB, Hansen IA, Szuter EM, Drake LL, Burnett DL, Attardo GM. Emerging roles of aquaporins in relation to the physiology of blood-feeding arthropods. Journal of comparative physiology B, Biochemical, systemic, and environmental physiology. 2014;184(7):811–25. doi: 10.1007/s00360-014-0836-x . PubMed DOI

Liu N, Li T, Wang Y, Liu S. G-Protein Coupled Receptors (GPCRs) in Insects-A Potential Target for New Insecticide Development. Molecules. 2021;26(10). Epub 20210518. doi: 10.3390/molecules26102993 . PubMed DOI PMC

Nowling RJ, Abrudan JL, Shoue DA, Abdul-Wahid B, Wadsworth M, Stayback G, et al.. Identification of novel arthropod vector G protein-coupled receptors. Parasites & vectors. 2013;6:150. doi: 10.1186/1756-3305-6-150 . PubMed DOI PMC

Fevereisen R. Insect CYP, genes and P450 enzymes. In: Gilbert LI, editors. Insect Molecular Biology and Biochemistry. Amsterdam: Elsevier; 2012. p. 236–316.

Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol. 2014;23(13):3133–57. Epub 2014/05/23. doi: 10.1111/mec.12796 . PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...