Comparative genomics of the Leukocyte Receptor Complex in carnivores
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37234165
PubMed Central
PMC10206138
DOI
10.3389/fimmu.2023.1197687
Knihovny.cz E-zdroje
- Klíčová slova
- KIR, LILR, Leukocyte Receptor Complex, carnivora, felids, long-read sequencing,
- MeSH
- Canidae * MeSH
- Carnivora * genetika MeSH
- Felidae * MeSH
- fylogeneze MeSH
- genomika MeSH
- lachtani * MeSH
- leukocyty MeSH
- lidé MeSH
- Mustelidae * MeSH
- myši MeSH
- receptory imunologické genetika MeSH
- receptory KIR genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- receptory imunologické MeSH
- receptory KIR MeSH
BACKGROUND: The mammalian Leukocyte Receptor Complex (LRC) chromosomal region may contain gene families for the killer cell immunoglobulin-like receptor (KIR) and/or leukocyte immunoglobulin-like receptor (LILR) collections as well as various framing genes. This complex region is well described in humans, mice, and some domestic animals. Although single KIR genes are known in some Carnivora, their complements of LILR genes remain largely unknown due to obstacles in the assembly of regions of high homology in short-read based genomes. METHODS: As part of the analysis of felid immunogenomes, this study focuses on the search for LRC genes in reference genomes and the annotation of LILR genes in Felidae. Chromosome-level genomes based on single-molecule long-read sequencing were preferentially sought and compared to representatives of the Carnivora. RESULTS: Seven putatively functional LILR genes were found across the Felidae and in the Californian sea lion, four to five genes in Canidae, and four to nine genes in Mustelidae. They form two lineages, as seen in the Bovidae. The ratio of functional genes for activating LILRs to inhibitory LILRs is slightly in favor of inhibitory genes in the Felidae and the Canidae; the reverse is seen in the Californian sea lion. This ratio is even in all of the Mustelidae except the Eurasian otter, which has a predominance of activating LILRs. Various numbers of LILR pseudogenes were identified. CONCLUSIONS: The structure of the LRC is rather conservative in felids and the other Carnivora studied. The LILR sub-region is conserved within the Felidae and has slight differences in the Canidae, but it has taken various evolutionary paths in the Mustelidae. Overall, the process of pseudogenization of LILR genes seems to be more frequent for activating receptors. Phylogenetic analysis found no direct orthologues across the Carnivora which corroborate the rapid evolution of LILRs seen in mammals.
Research Group Animal Immunogenomics Central European Institute of Technology VETUNI Brno Czechia
Research Institute of Wildlife Ecology University of Veterinary Medicine Vienna Vienna Austria
Zobrazit více v PubMed
Trowsdale J, Barten R, Haude A, Stewart CA, Beck S, Wilson MJ. The genomic context of natural killer receptor extended gene families. Immunol Rev (2001) 181(1):20–38. doi: 10.1034/j.1600-065X.2001.1810102.x PubMed DOI
Guselnikov SV, Taranin AV. Unraveling the LRC evolution in mammals: IGSF1 and A1BG provide the keys. Genome Biol Evol (2019) 11(6):1586–601. doi: 10.1093/gbe/evz102 PubMed DOI PMC
Hilton HG, Rubinstein ND, Janki P, Ireland AT, Bernstein N, Fong NL, et al. . Single-cell transcriptomics of the naked mole-rat reveals unexpected features of mammalian immunity. PloS Biol (2019) 17(11):e3000528. doi: 10.1371/journal.pbio.3000528 PubMed DOI PMC
Odewhan R, Wright BR, Czirják GÁ, Higgins DP. Differences in constitutive innate immunity between divergent Australian marsupials. Dev Comp Immunol (2022) 132:104399. doi: 10.1016/j.dci.2022.104399 PubMed DOI
Heinrich SK, Hofer H, Courtiol A, Melzheimer J, Dehnhard M, Czirják GÁ, et al. . Cheetahs have a stronger constitutive innate immunity than leopards. Sci Rep (2017) 7(1):1–11. doi: 10.1038/srep44837 PubMed DOI PMC
Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol (2021) 18(2):85–100. doi: 10.1038/s41571-020-0426-7 PubMed DOI PMC
Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discovery (2020) 19(3):200–18. doi: 10.1038/s41573-019-0052-1 PubMed DOI
Carrillo-Bustamante P, Keşmir C, de Boer RJ. The evolution of natural killer cell receptors. Immunogenetics (2016) 68(1):3–18. doi: 10.1007/s00251-015-0869-7 PubMed DOI PMC
Guethlein LA, Norman PJ, Hilton HG, Parham P. Co-Evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol Rev (2015) 267(1):259–82. doi: 10.1111/imr.12326 PubMed DOI PMC
Lanier LL. NK cell receptors. Annu Rev Immunol (1998) 16(1):359–93. doi: 10.1146/annurev.immunol.16.1.359 PubMed DOI
Kumánovics A, Takada T, Lindahl KF. Genomic organization of the mammalian MHC. Annu Rev Immunol (2003) 21:629–57. doi: 10.1146/annurev.immunol.21.090501.080116 PubMed DOI
Kelley J, Walter L, Trowsdale J. Comparative genomics of natural killer cell receptor gene clusters. PloS Genet (2005) 1(2):e27. doi: 10.1371/journal.pgen.0010027 PubMed DOI PMC
Volz A, Wende H, Laun K, Ziegler A. Genesis of the ILT/LIR/MIR clusters within the human leukocyte receptor complex. Immunol Rev (2001) 181(1):39–51. doi: 10.1034/j.1600-065X.2001.1810103.x PubMed DOI
Rahim MMA, Makrigiannis AP. Ly49 receptors: evolution, genetic diversity, and impact on immunity. Immunol Rev (2015) 267(1):137–47. doi: 10.1111/imr.12318 PubMed DOI
Takahashi T, Yawata M, Raudsepp T, Lear TL, Chowdhary BP, Antczak DF, et al. . Natural killer cell receptors in the horse: evidence for the existence of multiple transcribed LY49 genes. Eur J Immunol (2004) 34(3):773–84. doi: 10.1002/eji.200324695 PubMed DOI
Averdam A, Petersen B, Rosner C, Neff J, Roos C, Eberle M, et al. . A novel system of polymorphic and diverse NK cell receptors in primates. PloS Genet (2009) 5(10):e1000688. doi: 10.1371/journal.pgen.1000688 PubMed DOI PMC
Hammond JA, Guethlein LA, Abi-Rached L, Moesta AK, Parham P. Evolution and survival of marine carnivores did not require a diversity of killer cell Ig-like receptors or Ly49 NK cell receptors. J Immunol (2009) 182(6):3618–27. doi: 10.4049/jimmunol.0803026 PubMed DOI PMC
Storm L, Bruijnesteijn J, de Groot NG, Bontrop RE. The genomic organization of the LILR region remained largely conserved throughout primate evolution: implications for health and disease. Front Immunol (2021) 12:716289. doi: 10.3389/fimmu.2021.716289 PubMed DOI PMC
Takai T. Paired immunoglobulin-like receptors and their MHC class I recognition. Immunology (2005) 115(4):433–40. doi: 10.1111/j.1365-2567.2005.02177.x PubMed DOI PMC
Schwartz JC, Hammond JA. The unique evolution of the pig LRC, a single KIR but expansion of LILR and a novel Ig receptor family. Immunogenetics (2018) 70(10):661–9. doi: 10.1007/s00251-018-1067-1 PubMed DOI PMC
Schwartz JC, Sanderson ND, Bickhart DM, Smith TPL, Hammond JA. The structure, evolution, and gene expression within the caprine leukocyte receptor complex. Front Immunol (2019) 10:2302. doi: 10.3389/fimmu.2019.02302 PubMed DOI PMC
Hogan L, Bhuju S, Jones DC, Laing K, Trowsdale J, Butcher P, et al. . Characterisation of bovine leukocyte Ig-like receptors. PloS One (2012) 7(4):e34291. doi: 10.1371/journal.pone.0034291 PubMed DOI PMC
Samaridis J, Colonna M. Cloning of novel immunoglobulin superfamily receptors expressed on human myeloid and lymphoid cells: structural evidence for new stimulatory and inhibitory pathways. Eur J Immunol (1997) 27(3):660–5. doi: 10.1002/eji.1830270313 PubMed DOI
Brown D, Trowsdale J, Allen R. The LILR family: modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens (2004) 64(3):215–25. doi: 10.1111/j.0001-2815.2004.00290.x PubMed DOI
An H, Chandra V, Piraino B, Borges L, Geczy C, McNEIL HP, et al. . Soluble LILRA3, a potential natural antiinflammatory protein, is increased in patients with rheumatoid arthritis and is tightly regulated by interleukin 10, tumor necrosis factor-α, and interferon-γ. J Rheumatol (2010) 37(8):1596–606. doi: 10.3899/jrheum.091119 PubMed DOI
Kubagawa H, Burrows PD, Cooper MD. A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. Proc Natl Acad Sci USA (1997) 94(10):5261–6. doi: 10.1073/pnas.94.10.5261 PubMed DOI PMC
Jones DC, Kosmoliaptsis V, Apps R, Lapaque N, Smith I, Kono A, et al. . HLA class I allelic sequence and conformation regulate leukocyte Ig-like receptor binding. J Immunol (2011) 186(5):2990–7. doi: 10.4049/jimmunol.1003078 PubMed DOI
Burshtyn DN, Morcos C. The expanding spectrum of ligands for leukocyte Ig-like receptors. J Immunol (2016) 196(3):947–55. doi: 10.4049/jimmunol.1501937 PubMed DOI
Al-Moussawy M, Abdelsamed HA, Lakkis FG. Immunoglobulin-like receptors and the generation of innate immune memory. Immunogenetics (2022) 74(1):179–95. doi: 10.1007/s00251-021-01240-7 PubMed DOI PMC
Gao A, Sun Y, Peng G. ILT4 functions as a potential checkpoint molecule for tumor immunotherapy. Biochim Biophys Acta Rev Cancer (2018) 1869(2):278–85. doi: 10.1016/j.bbcan.2018.04.001 PubMed DOI
Kim T, Vidal GS, Djurisic M, William CM, Birnbaum ME, Garcia KC, et al. . Human LilrB2 is a β-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an alzheimer’s model. Science (2013) 341(6152):1399–404. doi: 10.1126/science.1242077 PubMed DOI PMC
Ścieżyńska A, Komorowski M, Soszyńska M, Malejczyk J. NK cells as potential targets for immunotherapy in endometriosis. J Clin Med (2019) 8(9):1468. doi: 10.3390/jcm8091468 PubMed DOI PMC
Takeda K, Nakamura A. Regulation of immune and neural function via leukocyte Ig-like receptors. J Biochem (2017) 162(2):73–80. doi: 10.1093/jb/mvx036 PubMed DOI
Plasil M, Futas J, Jelinek A, Burger PA, Horin P. Comparative genomics of the major histocompatibility complex (MHC) of felids. Front Genet (2022) 8:829891(10). doi: 10.3389/fgene.2022.829891 PubMed DOI PMC
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser (1999) 41:95–8.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol (2018) 35(6):1547. doi: 10.1093/molbev/msy096 PubMed DOI PMC
Bubenikova J, Futas J, Oppelt J, Plasil M, Vodicka R, Burger PA, et al. . The natural cytotoxicity receptor genes in the family felidae. HLA. (2022) 100(6):597–609. doi: 10.1111/tan.14803 PubMed DOI
Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet (2012) 13(1):36–46. doi: 10.1038/nrg3117 PubMed DOI PMC
Hotaling S, Kelley JL, Frandsen PB. Toward a genome sequence for every animal: where are we now? Proc Natl Acad Sci USA (2021) 118(52):e2109019118. doi: 10.1073/pnas.2109019118 PubMed DOI PMC
Method of the year 2022: long-read sequencing. Nat Methods (2023) 20(1):1–1. doi: 10.1038/s41592-022-01759-x PubMed DOI
Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res (2018) 46(5):2159–68. doi: 10.1093/nar/gky066 PubMed DOI PMC
Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, et al. . Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol (2019) 37(10):1155–62. doi: 10.1038/s41587-019-0217-9 PubMed DOI PMC
Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. . Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol (2018) 36(4):338–45. doi: 10.1038/nbt.4060 PubMed DOI PMC
Graphodatsky AS, Yang F, Perelman PL, O’Brien PCM, Serdukova NA, Milne BS, et al. . Comparative molecular cytogenetic studies in the order Carnivora: mapping chromosomal rearrangements onto the phylogenetic tree. Cytogenet Genome Res (2002) 96(1–4):137–45. doi: 10.1159/000063032 PubMed DOI
Hameister H, Klett C, Bruch J, Dixkens C, Vogel W. Zoo-FISH analysis: the American mink (Mustela vison) closely resembles the cat karyotype. Chromosome Res (1995) 3(8):479–86. doi: 10.1007/BF00713962 PubMed DOI
Armstrong EE, Campana MG, Solari KA, Morgan SR, Ryder OA, Naude VN, et al. . Genome report: chromosome-level draft assemblies of the snow leopard, African leopard, and tiger (Panthera uncia, panthera pardus pardus, and panthera tigris). G3: Genes Genomes Genet (2022) 12(12):jkac277. doi: 10.1093/g3journal/jkac277 PubMed DOI PMC
Yuhki N, O’Brien SJ. DNA Variation of the mammalian major histocompatibility complex reflects genomic diversity and population history. Proc Natl Acad Sci USA (1990) 87(2):836–40. doi: 10.1073/pnas.87.2.836 PubMed DOI PMC
Castro-Prieto A, Wachter B, Sommer S. Cheetah paradigm revisited: MHC diversity in the world’s largest free-ranging population. Mol Biol Evol (2011) 28(4):1455–68. doi: 10.1093/molbev/msq330 PubMed DOI PMC
Prost S, Machado AP, Zumbroich J, Preier L, Mahtani-Williams S, Meissner R, et al. . Genomic analyses show extremely perilous conservation status of African and Asiatic cheetahs (Acinonyx jubatus). Mol Ecol (2022) 31(16):4208–23. doi: 10.1111/mec.16577 PubMed DOI PMC
Pokorny I, Sharma R, Goyal SP, Mishra S, Tiedemann R. MHC class I and MHC class II DRB gene variability in wild and captive Bengal tigers (Panthera tigris tigris). Immunogenetics (2010) 62(10):667–79. doi: 10.1007/s00251-010-0475-7 PubMed DOI
Wang X, Wei K, Zhang Z, Xu X, Zhang W, Shen F, et al. . Major histocompatibility complex class II DRB exon-2 diversity of the Eurasian lynx (Lynx lynx) in China. J Nat Hist (2010) 26(6):767–72. doi: 10.1080/00222930802478669 DOI
Castro-Prieto A, Wachter B, Melzheimer J, Thalwitzer S, Sommer S. Diversity and evolutionary patterns of immune genes in free-ranging Namibian leopards (Panthera pardus pardus). J Hered (2011) 102(6):653–65. doi: 10.1093/jhered/esr097 PubMed DOI
Saunders PM, Vivian JP, O’Connor GM, Sullivan LC, Pymm P, Rossjohn J, et al. . A bird’s eye view of NK cell receptor interactions with their MHC class I ligands. Immunol Rev (2015) 267(1):148–66. doi: 10.1111/imr.12319 PubMed DOI
Rahim MMA, Tu MM, Mahmoud AB, Wight A, Abou-Samra E, Lima PDA, et al. . Ly49 receptors: innate and adaptive immune paradigms. Front Immunol (2014) 5:145. doi: 10.3389/fimmu.2014.00145 PubMed DOI PMC
Dai H, Lan P, Zhao D, Abou-Daya K, Liu W, Chen W, et al. . PIRs mediate innate myeloid cell memory to nonself MHC molecules. Science (2020) 368(6495):1122–27. doi: 10.1126/science.aax4040 PubMed DOI PMC
Futas J, Oppelt J, Jelinek A, Elbers JP, Wijacki J, Knoll A, et al. . Natural killer cell receptor genes in camels: another mammalian model. Front Genet (2019) 10:620. doi: 10.3389/fgene.2019.00620 PubMed DOI PMC
Sanderson ND, Norman PJ, Guethlein LA, Ellis SA, Williams C, Breen M, et al. . Definition of the cattle killer cell Ig–like receptor gene family: comparison with aurochs and human counterparts. J Immunol (2014) 193(12):6016–30. doi: 10.4049/jimmunol.1401980 PubMed DOI PMC