Associations of height, body mass index, and weight gain with breast cancer risk in carriers of a pathogenic variant in BRCA1 or BRCA2: the BRCA1 and BRCA2 Cohort Consortium
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
U01 CA164920
NCI NIH HHS - United States
BRC-1215-20014
Department of Health - United Kingdom
IS-BRC-1215-20007
Department of Health - United Kingdom
PRCPJT-Nov21\100004
Cancer Research UK - United Kingdom
NIHR203312
Department of Health - United Kingdom
23382
Cancer Research UK - United Kingdom
C1287/A26886
Cancer Research UK - United Kingdom
C1287/A23382
Cancer Research UK - United Kingdom
PubMed
37340476
PubMed Central
PMC10280955
DOI
10.1186/s13058-023-01673-w
PII: 10.1186/s13058-023-01673-w
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- genetická predispozice k nemoci MeSH
- geny BRCA2 * MeSH
- heterozygot MeSH
- hmotnostní přírůstek genetika MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- nádory prsu * epidemiologie genetika patologie MeSH
- protein BRCA1 genetika MeSH
- protein BRCA2 genetika MeSH
- retrospektivní studie MeSH
- riziko MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- BRCA1 protein, human MeSH Prohlížeč
- BRCA2 protein, human MeSH Prohlížeč
- protein BRCA1 MeSH
- protein BRCA2 MeSH
INTRODUCTION: Height, body mass index (BMI), and weight gain are associated with breast cancer risk in the general population. It is unclear whether these associations also exist for carriers of pathogenic variants in the BRCA1 or BRCA2 genes. PATIENTS AND METHODS: An international pooled cohort of 8091 BRCA1/2 variant carriers was used for retrospective and prospective analyses separately for premenopausal and postmenopausal women. Cox regression was used to estimate breast cancer risk associations with height, BMI, and weight change. RESULTS: In the retrospective analysis, taller height was associated with risk of premenopausal breast cancer for BRCA2 variant carriers (HR 1.20 per 10 cm increase, 95% CI 1.04-1.38). Higher young-adult BMI was associated with lower premenopausal breast cancer risk for both BRCA1 (HR 0.75 per 5 kg/m2, 95% CI 0.66-0.84) and BRCA2 (HR 0.76, 95% CI 0.65-0.89) variant carriers in the retrospective analysis, with consistent, though not statistically significant, findings from the prospective analysis. In the prospective analysis, higher BMI and adult weight gain were associated with higher postmenopausal breast cancer risk for BRCA1 carriers (HR 1.20 per 5 kg/m2, 95% CI 1.02-1.42; and HR 1.10 per 5 kg weight gain, 95% CI 1.01-1.19, respectively). CONCLUSION: Anthropometric measures are associated with breast cancer risk for BRCA1 and BRCA2 variant carriers, with relative risk estimates that are generally consistent with those for women from the general population.
Aix Marseille Université INSERM IRD SESSTIM Marseille France
Cancer Epidemiology Division Cancer Council Victoria Melbourne VIC Australia
Centre Antoine Lacassagne Nice France
Centre for Cancer Genetic Epidemiology Department of Oncology University of Cambridge Cambridge UK
Centre François Baclesse Caen France
Centre Léon Bérard Lyon France
Clinical Genetics Karolinska Institutet Stockholm Sweden
Clinical Genetics Service Guy's and St Thomas' NHS Foundation Trust London UK
CRLCC Paul Strauss Strasbourg France
Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute Brno Czech Republic
Department of Clinical Genetics Fox Chase Cancer Center Philadelphia PA USA
Department of Clinical Genetics Guy's and St Thomas' NHS Foundation Trust London UK
Department of Clinical Genetics Maastricht University Medical Center Maastricht The Netherlands
Department of Clinical Genetics Radboud University Medical Center Nijmegen The Netherlands
Department of Clinical Genetics Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
Department of Clinical Genetics St George's University Hospitals NHS Foundation Trust London UK
Department of Clinical Pathology The University of Melbourne Melbourne VIC Australia
Department of Dermatology University of Utah School of Medicine Salt Lake City UT USA
Department of Epidemiology Netherlands Cancer Institute Amsterdam The Netherlands
Department of Genetics and Pathology Pomeranian Medical University Szczecin Poland
Department of Human Genetics Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
Department of Medical Oncology Peter MacCallum Cancer Centre Victoria Australia
Department of Medicine and Huntsman Cancer Institute University of Utah Health Salt Lake City UT USA
Department of Molecular Genetics National Institute of Oncology Budapest Hungary
Department of Molecular Genetics University of Toronto Toronto ON Canada
Department of OB GYN and Comprehensive Cancer Center Medical University of Vienna Vienna Austria
Department of Oncology Clinical Sciences in Lund Lund University Hospital Lund Sweden
Institute for Medical Informatics Statistics and Epidemiology Leipzig University Leipzig Germany
Mines Paris Tech Fontainebleau France
Molecular Oncology Laboratory Hospital Clínico San Carlos IdISSC Madrid Spain
MRC Human Genetics Unit Institute of Genetics and Cancer University of Edinburgh Edinburgh UK
Oncogénétique Poitou Charentes Niort France
PSL Research University Paris France
Sheffield Clinical Genetics Service Sheffield Children's Hospital Sheffield UK
South East of Scotland Regional Genetics Service Western General Hospital Edinburgh UK
Stanford Cancer Institute Stanford University School of Medicine Stanford CA USA
The Sir Peter MacCallum Department of Oncology University of Melbourne Parkville Australia
Yorkshire Regional Genetics Service Leeds Teaching Hospitals NHS Trust Leeds UK
Zobrazit více v PubMed
Green J, Cairns BJ, Casabonne D, Wright FL, Reeves G, Beral V. Million Women Study c: height and cancer incidence in the Million Women Study: prospective cohort, and meta-analysis of prospective studies of height and total cancer risk. Lancet Oncol. 2011;12(8):785–794. doi: 10.1016/S1470-2045(11)70154-1. PubMed DOI PMC
Zhang B, Shu XO, Delahanty RJ, Zeng C, Michailidou K, Bolla MK, Wang Q, Dennis J, Wen W, Long J, et al. Height and breast cancer risk: evidence from prospective studies and mendelian randomization. J Natl Cancer Inst. 2015;107(11):219. doi: 10.1093/jnci/djv219. PubMed DOI PMC
Chan DSM, Abar L, Cariolou M, Nanu N, Greenwood DC, Bandera EV, McTiernan A, Norat T. World Cancer Research Fund International: Continuous Update Project-systematic literature review and meta-analysis of observational cohort studies on physical activity, sedentary behavior, adiposity, and weight change and breast cancer risk. Cancer Causes Control. 2019;30(11):1183–1200. doi: 10.1007/s10552-019-01223-w. PubMed DOI
Premenopausal Breast Cancer Collaborative G, Schoemaker MJ, Nichols HB, Wright LB, Brook MN, Jones ME, O'Brien KM, Adami HO, Baglietto L, Bernstein L, et al. Association of body mass index and age with subsequent breast cancer risk in premenopausal women. JAMA Oncol. 2018;4(11):e181771. doi: 10.1001/jamaoncol.2018.1771. PubMed DOI PMC
van den Brandt PA, Ziegler RG, Wang M, Hou T, Li R, Adami HO, Agnoli C, Bernstein L, Buring JE, Chen Y, et al. Body size and weight change over adulthood and risk of breast cancer by menopausal and hormone receptor status: a pooled analysis of 20 prospective cohort studies. Eur J Epidemiol. 2021;36(1):37–55. doi: 10.1007/s10654-020-00688-3. PubMed DOI PMC
Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–578. doi: 10.1016/S0140-6736(08)60269-X. PubMed DOI
Xue F, Rosner B, Eliassen H, Michels KB. Body fatness throughout the life course and the incidence of premenopausal breast cancer. Int J Epidemiol. 2016;45(4):1103–1112. PubMed PMC
Schoemaker MJ, Nichols HB, Wright LB, Brook MN, Jones ME, O'Brien KM, Adami HO, Baglietto L, Bernstein L, Bertrand KA, et al. Adult weight change and premenopausal breast cancer risk: a prospective pooled analysis of data from 628,463 women. Int J Cancer. 2020;147(5):1306–1314. doi: 10.1002/ijc.32892. PubMed DOI PMC
Hilakivi-Clarke L, Forsen T, Eriksson JG, Luoto R, Tuomilehto J, Osmond C, Barker DJ. Tallness and overweight during childhood have opposing effects on breast cancer risk. Br J Cancer. 2001;85(11):1680–1684. doi: 10.1054/bjoc.2001.2109. PubMed DOI PMC
Yochum L, Tamimi RM, Hankinson SE. Birthweight, early life body size and adult mammographic density: a review of epidemiologic studies. Cancer Causes Control. 2014;25(10):1247–1259. doi: 10.1007/s10552-014-0432-0. PubMed DOI
Schoemaker MJ, Jones ME, Allen S, Hoare J, Ashworth A, Dowsett M, Swerdlow AJ. Childhood body size and pubertal timing in relation to adult mammographic density phenotype. Breast Cancer Res. 2017;19(1):13. doi: 10.1186/s13058-017-0804-y. PubMed DOI PMC
Grodstein F, Goldman MB, Cramer DW. Body mass index and ovulatory infertility. Epidemiology. 1994;5(2):247–250. doi: 10.1097/00001648-199403000-00016. PubMed DOI
Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, Jervis S, van Leeuwen FE, Milne RL, Andrieu N, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–2416. doi: 10.1001/jama.2017.7112. PubMed DOI
Chang-Claude J, Becher H, Eby N, Bastert G, Wahrendorf J, Hamann U. Modifying effect of reproductive risk factors on the age at onset of breast cancer for German BRCA1 mutation carriers. J Cancer Res Clin Oncol. 1997;123(5):272–279. PubMed
King MC, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643–646. doi: 10.1126/science.1088759. PubMed DOI
Kotsopoulos J, Olopado OI, Ghadirian P, Lubinski J, Lynch HT, Isaacs C, Weber B, Kim-Sing C, Ainsworth P, Foulkes WD, et al. Changes in body weight and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res. 2005;7(5):R833–843. doi: 10.1186/bcr1293. PubMed DOI PMC
Manders P, Pijpe A, Hooning MJ, Kluijt I, Vasen HF, Hoogerbrugge N, van Asperen CJ, Meijers-Heijboer H, Ausems MG, van Os TA, et al. Body weight and risk of breast cancer in BRCA1/2 mutation carriers. Breast Cancer Res Treat. 2011;126(1):193–202. doi: 10.1007/s10549-010-1120-8. PubMed DOI
Kim SJ, Huzarski T, Gronwald J, Singer CF, Moller P, Lynch HT, Armel S, Karlan BY, Foulkes WD, Neuhausen SL, et al. Prospective evaluation of body size and breast cancer risk among BRCA1 and BRCA2 mutation carriers. Int J Epidemiol. 2018;47:987–997. doi: 10.1093/ije/dyy039. PubMed DOI PMC
Pettapiece-Phillips R, Narod SA, Kotsopoulos J. The role of body size and physical activity on the risk of breast cancer in BRCA mutation carriers. Cancer Causes Control. 2015;26(3):333–344. doi: 10.1007/s10552-014-0521-0. PubMed DOI
Qian F, Wang S, Mitchell J, McGuffog L, Barrowdale D, Leslie G, Oosterwijk JC, Chung WK, Evans DG, Engel C, et al. Height and Body mass index as modifiers of breast cancer risk in BRCA1/2 mutation carriers: a Mendelian randomization study. J Natl Cancer Inst. 2019;111(4):350–364. doi: 10.1093/jnci/djy132. PubMed DOI PMC
Lecarpentier J, Nogues C, Mouret-Fourme E, Buecher B, Gauthier-Villars M, Stoppa-Lyonnet D, Bonadona V, Fricker JP, Berthet P, Caron O, et al. Breast cancer risk associated with estrogen exposure and truncating mutation location in BRCA1/2 carriers. Cancer Epidemiol Biomark Prev. 2015;24(4):698–707. doi: 10.1158/1055-9965.EPI-14-0884. PubMed DOI
Goldgar D, Bonnardel C, Renard H, Yaqoubi O. The international BRCA1/2 carrier cohort study: purpose, rationale, and study design. Breast Cancer Res. 2000;2(6):E010. doi: 10.1186/bcr93. DOI
John EM, Hopper JL, Beck JC, Knight JA, Neuhausen SL, Senie RT, Ziogas A, Andrulis IL, Anton-Culver H, Boyd N, et al. The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Res. 2004;6(4):R375–389. doi: 10.1186/bcr801. PubMed DOI PMC
Phillips KA, Butow PN, Stewart AE, Chang JH, Weideman PC, Price MA, McLachlan SA, Lindeman GJ, McKay MJ, Friedlander ML, et al. Predictors of participation in clinical and psychosocial follow-up of the kConFab breast cancer family cohort. Fam Cancer. 2005;4(2):105–113. doi: 10.1007/s10689-004-6129-x. PubMed DOI
Terry MB, Phillips KA, Daly MB, John EM, Andrulis IL, Buys SS, Goldgar DE, Knight JA, Whittemore AS, Chung WK, et al. Cohort profile: the breast cancer prospective family study cohort (ProF-SC) Int J Epidemiol. 2016;45(3):683–692. doi: 10.1093/ije/dyv118. PubMed DOI PMC
Thorne H, Mitchell G, Fox S. kConFab c: kConFab: a familial breast cancer consortium facilitating research and translational oncology. J Natl Cancer Inst Monogr. 2011;2011(43):79–81. doi: 10.1093/jncimonographs/lgr042. PubMed DOI
Mavaddat N, Antoniou AC, Mooij TM, Hooning MJ, Heemskerk-Gerritsen BA, Genepso, Nogues C, Gauthier-Villars M, Caron O, Gesta P et al. Risk-reducing salpingo-oophorectomy, natural menopause, and breast cancer risk: an international prospective cohort of BRCA1 and BRCA2 mutation carriers. Breast Cancer Res 2020;22(1):8. PubMed PMC
Antoniou AC, Goldgar DE, Andrieu N, Chang-Claude J, Brohet R, Rookus MA, Easton DF. A weighted cohort approach for analysing factors modifying disease risks in carriers of high-risk susceptibility genes. Genet Epidemiol. 2005;29(1):1–11. doi: 10.1002/gepi.20074. PubMed DOI
Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72(5):1117–1130. doi: 10.1086/375033. PubMed DOI PMC
Berkey CS, Rosner B, Tamimi RM, Willett WC, Hickey M, Toriola A, Frazier AL, Colditz GA. Body size from birth through adolescence in relation to risk of benign breast disease in young women. Breast Cancer Res Treat. 2017;162(1):139–149. doi: 10.1007/s10549-016-4084-5. PubMed DOI PMC
Rosner B, Eliassen AH, Toriola AT, Chen WY, Hankinson SE, Willett WC, Berkey CS, Colditz GA. Weight and weight changes in early adulthood and later breast cancer risk. Int J Cancer. 2017;140(9):2003–2014. doi: 10.1002/ijc.30627. PubMed DOI PMC
Guo W, Key TJ, Reeves GK. Adiposity and breast cancer risk in postmenopausal women: results from the UK Biobank prospective cohort. Int J Cancer. 2018;143(5):1037–1046. doi: 10.1002/ijc.31394. PubMed DOI PMC
Ye Z, Li S, Dite GS, Nguyen TL, MacInnis RJ, Andrulis IL, Buys SS, Daly MB, John EM, Kurian AW et al. Weight is more informative than body mass index for predicting post-menopausal breast cancer risk: Prospective Family Study Cohort (ProF-SC). Cancer Prevention Research (Philadelphia, PA) 2021. PubMed PMC
Schrijver LH, Olsson H, Phillips KA, Terry MB, Goldgar DE, Kast K, Engel C, Mooij TM, Adlard J, Barrowdale D, et al. Oral contraceptive use and breast cancer risk: retrospective and prospective analyses from a BRCA1 and BRCA2 mutation carrier cohort study. JNCI Cancer Spectr. 2018;2(2):pky023. doi: 10.1093/jncics/pky023. PubMed DOI PMC
Ritte R, Lukanova A, Berrino F, Dossus L, Tjonneland A, Olsen A, Overvad TF, Overvad K, Clavel-Chapelon F, Fournier A, et al. Adiposity, hormone replacement therapy use and breast cancer risk by age and hormone receptor status: a large prospective cohort study. Breast Cancer Res. 2012;14(3):R76. doi: 10.1186/bcr3186. PubMed DOI PMC
Phipps AI, Chlebowski RT, Prentice R, McTiernan A, Stefanick ML, Wactawski-Wende J, Kuller LH, Adams-Campbell LL, Lane D, Vitolins M, et al. Body size, physical activity, and risk of triple-negative and estrogen receptor-positive breast cancer. Cancer Epidemiol Biomark Prev. 2011;20(3):454–463. doi: 10.1158/1055-9965.EPI-10-0974. PubMed DOI PMC
Phipps AI, Malone KE, Porter PL, Daling JR, Li CI. Body size and risk of luminal, HER2-overexpressing, and triple-negative breast cancer in postmenopausal women. Cancer Epidemiol Biomark Prev. 2008;17(8):2078–2086. doi: 10.1158/1055-9965.EPI-08-0206. PubMed DOI PMC
Dolle JM, Daling JR, White E, Brinton LA, Doody DR, Porter PL, Malone KE. Risk factors for triple-negative breast cancer in women under the age of 45 years. Cancer Epidemiol Biomark Prev. 2009;18(4):1157–1166. doi: 10.1158/1055-9965.EPI-08-1005. PubMed DOI PMC
Nolan E, Lindeman GJ, Visvader JE. Out-RANKing BRCA1 in mutation carriers. Can Res. 2017;77(3):595–600. doi: 10.1158/0008-5472.CAN-16-2025. PubMed DOI
Hilton HN, Patterson McDonald LJ, Santucci N, van der Bent FR, Silvestri A, Graham JD, Clarke CL. BRCA1 attenuates progesterone effects on proliferation and NFkappaB activation in normal human mammary epithelial cells. J Mammary Gland Biol Neoplasia. 2019;24(3):257–270. doi: 10.1007/s10911-019-09431-5. PubMed DOI
Nolan E, Vaillant F, Branstetter D, Pal B, Giner G, Whitehead L, Lok SW, Mann GB, Rohrbach K, Huang LY, et al. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nat Med. 2016;22(8):933–939. doi: 10.1038/nm.4118. PubMed DOI
Schramek D, Sigl V, Penninger JM. RANKL and RANK in sex hormone-induced breast cancer and breast cancer metastasis. Trends Endocrinol Metab. 2011;22(5):188–194. doi: 10.1016/j.tem.2011.02.007. PubMed DOI
Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, Pinkas J, Branstetter D, Dougall WC. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468(7320):103–107. doi: 10.1038/nature09495. PubMed DOI
Poole AJ, Li Y, Kim Y, Lin SC, Lee WH, Lee EY. Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science (New York, NY) 2006;314(5804):1467–1470. doi: 10.1126/science.1130471. PubMed DOI
Nolan E, Vaillant F, Branstetter D, Pal B, Giner G, Whitehead L, Lok SW, Mann GB, Kathleen Cuningham Foundation Consortium for Research into Familial Breast C, Rohrbach K et al. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nat Med 2016;22(8):933–39. PubMed
Sau A, Lau R, Cabrita MA, Nolan E, Crooks PA, Visvader JE, Pratt MA. Persistent activation of NF-kappaB in BRCA1-deficient mammary progenitors drives aberrant proliferation and accumulation of DNA damage. Cell Stem Cell. 2016;19(1):52–65. doi: 10.1016/j.stem.2016.05.003. PubMed DOI PMC
Sau A, Cabrita MA, Pratt MAC. NF-kappaB at the crossroads of normal mammary gland biology and the pathogenesis and prevention of BRCA1-mutated breast cancer. Cancer Prev Res (Phila) 2018;11(2):69–80. doi: 10.1158/1940-6207.CAPR-17-0225. PubMed DOI
Mavaddat N, Barrowdale D, Andrulis IL, Domchek SM, Eccles D, Nevanlinna H, Ramus SJ, Spurdle A, Robson M, Sherman M, et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) Cancer Epidemiol Biomark Prev. 2012;21(1):134–147. doi: 10.1158/1055-9965.EPI-11-0775. PubMed DOI PMC
Hopper JL, Dite GS, MacInnis RJ, Liao Y, Zeinomar N, Knight JA, Southey MC, Milne RL, Chung WK, Giles GG, et al. Age-specific breast cancer risk by body mass index and familial risk: prospective family study cohort (ProF-SC) Breast Cancer Res. 2018;20(1):132. doi: 10.1186/s13058-018-1056-1. PubMed DOI PMC
Grill S, Yahiaoui-Doktor M, Dukatz R, Lammert J, Ullrich M, Engel C, Pfeifer K, Basrai M, Siniatchkin M, Schmidt T, et al. Smoking and physical inactivity increase cancer prevalence in BRCA-1 and BRCA-2 mutation carriers: results from a retrospective observational analysis. Arch Gynecol Obstet. 2017;296(6):1135–1144. doi: 10.1007/s00404-017-4546-y. PubMed DOI
Spector D. Lifestyle behaviors in women with a BRCA1 or BRCA2 genetic mutation: an exploratory study guided by concepts derived from the Health Belief Model. Cancer Nurs. 2007;30(1):E1–10. doi: 10.1097/00002820-200701000-00015. PubMed DOI
Kiechle M, Engel C, Berling A, Hebestreit K, Bischoff S, Dukatz R, Gerber WD, Siniatchkin M, Pfeifer K, Grill S, et al. Lifestyle intervention in BRCA1/2 mutation carriers: study protocol for a prospective, randomized, controlled clinical feasibility trial (LIBRE-1 study) Pilot Feasibility Stud. 2016;2:74. doi: 10.1186/s40814-016-0114-7. PubMed DOI PMC
Lee A, Mavaddat N, Wilcox AN, Cunningham AP, Carver T, Hartley S, Babb de Villiers C, Izquierdo A, Simard J, Schmidt MK, et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet Med. 2019;21:1462. doi: 10.1038/s41436-019-0459-4. PubMed DOI PMC
Loi S, Milne RL, Friedlander ML, McCredie MR, Giles GG, Hopper JL, Phillips KA. Obesity and outcomes in premenopausal and postmenopausal breast cancer. Cancer Epidemiol Biomark Prev. 2005;14(7):1686–1691. doi: 10.1158/1055-9965.EPI-05-0042. PubMed DOI
Chan DSM, Vieira AR, Aune D, Bandera EV, Greenwood DC, McTiernan A, Navarro Rosenblatt D, Thune I, Vieira R, Norat T. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol. 2014;25(10):1901–1914. doi: 10.1093/annonc/mdu042. PubMed DOI PMC