What Controls the Quality of Photodynamical Simulations? Electronic Structure Versus Nonadiabatic Algorithm
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
37939301
PubMed Central
PMC10688183
DOI
10.1021/acs.jctc.3c00908
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau-Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics.
See more in PubMed
Maiuri M.; Garavelli M.; Cerullo G. Ultrafast spectroscopy: State of the art and open challenges. J. Am. Chem. Soc. 2020, 142, 3–15. 10.1021/jacs.9b10533. PubMed DOI
Bressler C.; Chergui M. Ultrafast X-ray absorption spectroscopy. Chem. Rev. 2004, 104, 1781–1812. 10.1021/cr0206667. PubMed DOI
Kraus P. M.; Zürch M.; Cushing S. K.; Neumark D. M.; Leone S. R. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem 2018, 2, 82–94. 10.1038/s41570-018-0008-8. DOI
Huppert M.; Jordan I.; Baykusheva D.; von Conta A.; Wörner H. J. Attosecond delays in molecular photoionization. Phys. Rev. Lett. 2016, 117, 093001.10.1103/PhysRevLett.117.093001. PubMed DOI
Jordan I.; Huppert M.; Brown M. A.; van Bokhoven J. A.; Wörner H. J. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases. Rev. Sci. Instrum. 2015, 86, 123905.10.1063/1.4938175. PubMed DOI
Wang C.; Waters M. D. J.; Zhang P.; Suchan J.; Svoboda V.; Luu T. T.; Perry C.; Yin Z.; Slavíček P.; Wörner H. J. Different timescales during ultrafast stilbene isomerization in the gas and liquid phases revealed using time-resolved photoelectron spectroscopy. Nat. Chem. 2022, 14, 1126–1132. 10.1038/s41557-022-01012-0. PubMed DOI PMC
Wolter B.; Pullen M. G.; Le A.-T.; Baudisch M.; Doblhoff-Dier K.; Senftleben A.; Hemmer M.; Schröter C. D.; Ullrich J.; Pfeifer T.; Moshammer R.; Gräfe S.; Vendrell O.; Lin C. D.; Biegert J. Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene. Science 2016, 354, 308–312. 10.1126/science.aah3429. PubMed DOI
Lin M.-F.; Singh N.; Liang S.; Mo M.; Nunes J. P. F.; Ledbetter K.; Yang J.; Kozina M.; Weathersby S.; Shen X.; Cordones A. A.; Wolf T. J. A.; Pemmaraju C. D.; Ihme M.; Wang X. J. Imaging the short-lived hydroxyl-hydronium pair in ionized liquid water. Science 2021, 374, 92–95. 10.1126/science.abg3091. PubMed DOI
Mai S.; Marquetand P.; González L. Nonadiabatic dynamics: The SHARC approach. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e137010.1002/wcms.1370. PubMed DOI PMC
Barbatti M.; Bondanza M.; Crespo-Otero R.; Demoulin B.; Dral P. O.; Granucci G.; Kossoski F.; Lischka H.; Mennucci B.; Mukherjee S.; Pederzoli M.; Persico M.; Pinheiro Jr M.; Pittner J.; Plasser F.; Sangiogo Gil E.; Stojanovic L. Newton-X Platform: New Software Developments for surface hopping and nuclear ensembles. J. Chem. Theory Comput. 2022, 18, 6851–6865. 10.1021/acs.jctc.2c00804. PubMed DOI PMC
Worth G. A.; Giri K.; Richings G.; Burghardt I.; Beck M. H.; Jäckle A.; Meyer H.-D.. The QUANTICS Package, Version 1.1; University of Birmingham, 2015.
Agostini F.; Curchod B. F. E. Different flavors of nonadiabatic molecular dynamics. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2019, 9, 1–21. 10.1002/wcms.1417. DOI
Crespo-Otero R.; Barbatti M. Recent advances and perspectives on nonadiabatic mixed quantum–classical dynamics. Chem. Rev. 2018, 118, 7026–7068. 10.1021/acs.chemrev.7b00577. PubMed DOI
Barbatti M. Nonadiabatic dynamics with trajectory surface hopping method. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 620–633. 10.1002/wcms.64. DOI
Tully J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 1990, 93, 1061–1071. 10.1063/1.459170. DOI
Granucci G.; Persico M. Critical appraisal of the fewest switches algorithm for surface hopping. J. Chem. Phys. 2007, 126, 134114.10.1063/1.2715585. PubMed DOI
Vindel-Zandbergen P.; Ibele L. M.; Ha J.-K.; Min S. K.; Curchod B. F. E.; Maitra N. T. Study of the Decoherence Correction Derived from the Exact Factorization approach for nonadiabatic dynamics. J. Chem. Theory Comput. 2021, 17, 3852–3862. 10.1021/acs.jctc.1c00346. PubMed DOI PMC
Subotnik J. E.; Shenvi N. A new approach to decoherence and momentum rescaling in the surface hopping algorithm. J. Chem. Phys. 2011, 134, 024105.10.1063/1.3506779. PubMed DOI
Subotnik J. E.; Ouyang W.; Landry B. R. Can we derive Tully’s surface-hopping algorithm from the semiclassical quantum Liouville equation? Almost, but only with decoherence. J. Chem. Phys. 2013, 139, 214107.10.1063/1.4829856. PubMed DOI
Subotnik J. E.; Jain A.; Landry B.; Petit A.; Ouyang W.; Bellonzi N. Understanding the surface hopping view of electronic transitions and decoherence. Annu. Rev. Phys. Chem. 2016, 67, 387–417. 10.1146/annurev-physchem-040215-112245. PubMed DOI
Ha J.-K.; Lee I. S.; Min S. K. Surface hopping dynamics beyond nonadiabatic couplings for quantum coherence. J. Phys. Chem. Lett. 2018, 9, 1097–1104. 10.1021/acs.jpclett.8b00060. PubMed DOI
Subotnik J. E. Augmented Ehrenfest dynamics yields a rate for surface hopping. J. Chem. Phys. 2010, 132, 134112.10.1063/1.3314248. PubMed DOI
Akimov A. V.; Long R.; Prezhdo O. V. Coherence penalty functional: A simple method for adding decoherence in Ehrenfest dynamics. J. Chem. Phys. 2014, 140, 194107.10.1063/1.4875702. PubMed DOI
Nijjar P.; Jankowska J.; Prezhdo O. V. Ehrenfest and classical path dynamics with decoherence and detailed balance. J. Chem. Phys. 2019, 150, 204124.10.1063/1.5095810. PubMed DOI
Belyaev A. K.; Lebedev O. V. Nonadiabatic nuclear dynamics of atomic collisions based on branching classical trajectories. Phys. Rev. A 2011, 84, 014701.10.1103/physreva.84.014701. DOI
Belyaev A. K. Model approach for low-energy inelastic atomic collisions and application to Al+H and Al+2H–. Phys. Rev. A: At., Mol., Opt. Phys. 2013, 88, 052704.10.1103/PhysRevA.88.052704. DOI
Belyaev A. K.; Lasser C.; Trigila G. Landau-Zener type surface hopping algorithms. J. Chem. Phys. 2014, 140, 224108.10.1063/1.4882073. PubMed DOI
Suchan J.; Janoš J.; Slavíček P. Pragmatic approach to photodynamics: Mixed Landau–Zener surface hopping with intersystem crossing. J. Chem. Theory Comput. 2020, 16, 5809–5820. 10.1021/acs.jctc.0c00512. PubMed DOI
Shu Y.; Truhlar D. G. Decoherence and its role in electronically nonadiabatic dynamics. J. Chem. Theory Comput. 2023, 19, 380–395. 10.1021/acs.jctc.2c00988. PubMed DOI PMC
Li X.; Tully J. C.; Schlegel H. B.; Frisch M. J. Ab initio Ehrenfest dynamics. J. Chem. Phys. 2005, 123, 084106.10.1063/1.2008258. PubMed DOI
Fedorov D. A.; Levine B. G. Nonadiabatic quantum molecular dynamics in dense manifolds of electronic states. J. Phys. Chem. Lett. 2019, 10, 4542–4548. 10.1021/acs.jpclett.9b01902. PubMed DOI
Krumland J.; Jacobs M.; Cocchi C. Ab initio simulation of laser-induced electronic and vibrational coherence. Phys. Rev. B 2022, 106, 144304.10.1103/PhysRevB.106.144304. DOI
Li X.; Govind N.; Isborn C.; DePrince A. E.; Lopata K. Real-time time-dependent electronic structure theory. Chem. Rev. 2020, 120, 9951–9993. 10.1021/acs.chemrev.0c00223. PubMed DOI
Martinez T. J.; Levine R. D. First-principles molecular dynamics on multiple electronic states: A case study of NaI. J. Chem. Phys. 1996, 105, 6334–6341. 10.1063/1.472486. DOI
Martínez T. J. Ab initio molecular dynamics around a conical intersection: Li(2p) + H2. Chem. Phys. Lett. 1997, 272, 139–147. 10.1016/S0009-2614(97)88000-1. DOI
Curchod B. F. E.; Martínez T. J. Ab initio nonadiabatic quantum molecular dynamics. Chem. Rev. 2018, 118, 3305–3336. 10.1021/acs.chemrev.7b00423. PubMed DOI
Lassmann Y.; Curchod B. F. E. AIMSWISS— ab initio multiple spawning with informed stochastic selections. J. Chem. Phys. 2021, 154, 211106.10.1063/5.0052118. PubMed DOI
Lassmann Y.; Hollas D.; Curchod B. F. E. Extending the applicability of the multiple-spawning framework for nonadiabatic molecular dynamics. J. Phys. Chem. Lett. 2022, 13, 12011–12018. 10.1021/acs.jpclett.2c03295. PubMed DOI PMC
Worth G. A.; Robb M. A.; Burghardt I. A novel algorithm for non-adiabatic direct dynamics using variational Gaussian wavepackets. Faraday Discuss. 2004, 127, 307.10.1039/b314253a. PubMed DOI
Richings G. W.; Polyak I.; Spinlove K. E.; Worth G. A.; Burghardt I.; Lasorne B. Quantum dynamics simulations using Gaussian wavepackets: the vMCG method. Int. Rev. Phys. Chem. 2015, 34, 269–308. 10.1080/0144235X.2015.1051354. DOI
Christopoulou G.; Tran T.; Worth G. A. Direct nonadiabatic quantum dynamics simulations of the photodissociation of phenol. Phys. Chem. Chem. Phys. 2021, 23, 23684–23695. 10.1039/D1CP01843D. PubMed DOI
González L.; Escudero D.; Serrano-Andrés L. Progress and challenges in the calculation of electronic excited states. ChemPhysChem 2012, 13, 28–51. 10.1002/cphc.201100200. PubMed DOI
Plasser F.; Barbatti M.; Aquino A. J. A.; Lischka H. Electronically excited states and photodynamics: a continuing challenge. Theor. Chem. Acc. 2012, 131, 1073.10.1007/s00214-011-1073-y. DOI
Matsika S. Electronic structure methods for the description of nonadiabatic effects and conical intersections. Chem. Rev. 2021, 121, 9407–9449. 10.1021/acs.chemrev.1c00074. PubMed DOI
Curchod B. F. E.; Rothlisberger U.; Tavernelli I. Trajectory-based nonadiabatic dynamics with time-dependent density functional theory. ChemPhysChem 2013, 14, 1314–1340. 10.1002/cphc.201200941. PubMed DOI
Tapavicza E.; Tavernelli I.; Rothlisberger U.; Filippi C.; Casida M. E. Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry. J. Chem. Phys. 2008, 129, 124108.10.1063/1.2978380. PubMed DOI
Shao Y.; Head-Gordon M.; Krylov A. I. The spin–flip approach within time-dependent density functional theory: Theory and applications to diradicals. J. Chem. Phys. 2003, 118, 4807–4818. 10.1063/1.1545679. DOI
Zhang X.; Herbert J. M. Nonadiabatic dynamics with spin-flip vs linear-response time-dependent density functional theory: A case study for the protonated Schiff base C5H6NH 2+. J. Chem. Phys. 2021, 155, 124111.10.1063/5.0062757. PubMed DOI
Vandaele E.; Mališ M.; Luber S. The photodissociation of solvated cyclopropanone and its hydrate explored via non-adiabatic molecular dynamics using ΔSCF. Phys. Chem. Chem. Phys. 2022, 24, 5669–5679. 10.1039/d1cp05187c. PubMed DOI PMC
Mališ M.; Vandaele E.; Luber S. Spin–orbit couplings for nonadiabatic molecular dynamics at the ΔSCF level. J. Chem. Theory Comput. 2022, 18, 4082–4094. 10.1021/acs.jctc.1c01046. PubMed DOI
Yu J. K.; Bannwarth C.; Hohenstein E. G.; Martínez T. J. Ab initio nonadiabatic molecular dynamics with Hole–Hole Tamm–Dancoff approximated density functional theory. J. Chem. Theory Comput. 2020, 16, 5499–5511. 10.1021/acs.jctc.0c00644. PubMed DOI
Behler J.; Delley B.; Reuter K.; Scheffler M. Nonadiabatic potential-energy surfaces by constrained density-functional theory. Phys. Rev. B 2007, 75, 115409.10.1103/PhysRevB.75.115409. DOI
Slavíček P.; Martínez T. J. Ab initio floating occupation molecular orbital-complete active space configuration interaction: An efficient approximation to CASSCF. J. Chem. Phys. 2010, 132, 234102.10.1063/1.3436501. PubMed DOI
Hohenstein E. G.; Bouduban M. E. F.; Song C.; Luehr N.; Ufimtsev I. S.; Martínez T. J. Analytic first derivatives of floating occupation molecular orbital-complete active space configuration interaction on graphical processing units. J. Chem. Phys. 2015, 143, 014111.10.1063/1.4923259. PubMed DOI
Hollas D.; Šištík L.; Hohenstein E. G.; Martínez T. J.; Slavíček P. Nonadiabatic ab initio molecular dynamics with the floating occupation molecular orbital-complete active space configuration interaction method. J. Chem. Theory Comput. 2018, 14, 339–350. 10.1021/acs.jctc.7b00958. PubMed DOI
Dral P. O.; Wu X.; Spörkel L.; Koslowski A.; Weber W.; Steiger R.; Scholten M.; Thiel W. Semiempirical quantum-chemical orthogonalization-corrected methods: Theory, implementation, and parameters. J. Chem. Theory Comput. 2016, 12, 1082–1096. 10.1021/acs.jctc.5b01046. PubMed DOI PMC
Granucci G.; Toniolo A. Molecular gradients for semiempirical CI wavefunctions with floating occupation molecular orbitals. Chem. Phys. Lett. 2000, 325, 79–85. 10.1016/S0009-2614(00)00691-6. DOI
Filatov M.; Min S. K.; Choi C. H. Theoretical modelling of the dynamics of primary photoprocess of cyclopropanone. Phys. Chem. Chem. Phys. 2019, 21, 2489–2498. 10.1039/C8CP07104G. PubMed DOI
Li Manni G.; Carlson R. K.; Luo S.; Ma D.; Olsen J.; Truhlar D. G.; Gagliardi L. Multiconfiguration pair-density functional theory. J. Chem. Theory Comput. 2014, 10, 3669–3680. 10.1021/ct500483t. PubMed DOI
Hoyer C. E.; Ghosh S.; Truhlar D. G.; Gagliardi L. Multiconfiguration pair-density functional theory is as accurate as CASPT2 for electronic excitation. J. Phys. Chem. Lett. 2016, 7, 586–591. 10.1021/acs.jpclett.5b02773. PubMed DOI
Bao J. J.; Zhou C.; Varga Z.; Kanchanakungwankul S.; Gagliardi L.; Truhlar D. G. Multi-state pair-density functional theory. Faraday Discuss. 2020, 224, 348–372. 10.1039/D0FD00037J. PubMed DOI
Cui G.; Fang W. Ab initio based surface-hopping dynamics study on ultrafast internal conversion in cyclopropanone. J. Phys. Chem. A 2011, 115, 1547–1555. 10.1021/jp110632g. PubMed DOI
Stein C. J.; Reiher M. Automated selection of active orbital spaces. J. Chem. Theory Comput. 2016, 12, 1760–1771. 10.1021/acs.jctc.6b00156. PubMed DOI
Ibele L. M.; Lassmann Y.; Martínez T. J.; Curchod B. F. E. Comparing (stochastic-selection) ab initio multiple spawning with trajectory surface hopping for the photodynamics of cyclopropanone, fulvene, and dithiane. J. Chem. Phys. 2021, 154, 104110.10.1063/5.0045572. PubMed DOI
Werner H.-J.; Knowles P. J.; Knizia G.; Manby F. R.; Schütz M. Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 242–253. 10.1002/wcms.82. DOI
Werner H.-J.; Knowles P. J.; Manby F. R.; Black J. A.; Doll K.; Heßelmann A.; Kats D.; Köhn A.; Korona T.; Kreplin D. A.; Ma Q.; Miller T. F.; Mitrushchenkov A.; Peterson K. A.; Polyak I.; Rauhut G.; Sibaev M. The Molpro quantum chemistry package. J. Chem. Phys. 2020, 152, 144107.10.1063/5.0005081. PubMed DOI
Shiozaki T. BAGEL: Brilliantly advanced general electronic-structure library. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e133110.1002/wcms.1331. DOI
Thiel W.Program MNDO, Version 7.0; Max-Planck-Institut für Kohlenforschung, 2005.
Ufimtsev I. S.; Martinez T. J. Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theory Comput. 2009, 5, 2619–2628. 10.1021/ct9003004. PubMed DOI
Titov A. V.; Ufimtsev I. S.; Luehr N.; Martinez T. J. Generating efficient quantum Chemistry codes for novel architectures. J. Chem. Theory Comput. 2013, 9, 213–221. 10.1021/ct300321a. PubMed DOI
Suchan J.; Hollas D.; Curchod B. F. E.; Slavíček P. On the importance of initial conditions for excited-state dynamics. Faraday Discuss. 2018, 212, 307–330. 10.1039/C8FD00088C. PubMed DOI
Martínez-Mesa A.; Saalfrank P. Semiclassical modelling of finite-pulse effects on non-adiabatic photodynamics via initial condition filtering: The predissociation of NaI as a test case. J. Chem. Phys. 2015, 142, 194107.10.1063/1.4919780. PubMed DOI
Evans D. J.; Holian B. L. The Nose–Hoover thermostat. J. Chem. Phys. 1985, 83, 4069–4074. 10.1063/1.449071. DOI
Hollas D.; Suchan J.; Ončák M.; Slavíček P.. PHOTOX/ABIN: Pre-release of version 1.1, https://github.com/PHOTOX/ABIwebN; ZENODO, 2019.
Levine B. G.; Coe J. D.; Virshup A. M.; Martínez T. J. Implementation of ab initio multiple spawning in the Molpro quantum chemistry package. Chem. Phys. 2008, 347, 3–16. 10.1016/j.chemphys.2008.01.014. DOI
Li X.; Hu D.; Xie Y.; Lan Z. Analysis of trajectory similarity and configuration similarity in on-the-fly surface-hopping simulation on multi-channel nonadiabatic photoisomerization dynamics. J. Chem. Phys. 2018, 149, 244104.10.1063/1.5048049. PubMed DOI
Calvert J. G.; Atkinson R.; Kerr J. A.; Madronich S.; Moortgat G. K.; Wallington T. J.; Yarwood G.. Mechanisms of Atmospheric Oxidation of the Alkanes; Oxford University Press, 2008, pp 725–728.
Rodriguez H. J.; Chang J.-C.; Thomas T. F. Thermal, photochemical, and photophysical processes in cyclopropanone vapor. J. Am. Chem. Soc. 1976, 98, 2027–2034. 10.1021/ja00424a001. DOI
Cui G.; Ai Y.; Fang W. Conical intersection is responsible for the fluorescence disappearance below 365 nm in cyclopropanone. J. Phys. Chem. A 2010, 114, 730–734. 10.1021/jp908936u. PubMed DOI
Shiozaki T.; Woywod C.; Werner H.-J. Pyrazine excited states revisited using the extended multi-state complete active space second-order perturbation method. Phys. Chem. Chem. Phys. 2013, 15, 262–269. 10.1039/C2CP43381H. PubMed DOI
Tao H.; Levine B. G.; Martínez T. J. Ab initio multiple spawning dynamics using multi-state second-order perturbation theory. J. Phys. Chem. A 2009, 113, 13656–13662. 10.1021/jp9063565. PubMed DOI
Kuhlman T. S.; Glover W. J.; Mori T.; Møller K. B.; Martínez T. J. Between ethylene and polyenes - the non-adiabatic dynamics of cis-dienes. Faraday Discuss. 2012, 157, 193–212. 10.1039/c2fd20055d. PubMed DOI
Liu L.; Liu J.; Martinez T. J. Dynamical correlation effects on photoisomerization: ab initio multiple spawning dynamics with MS-CASPT2 for a model trans-protonated Schiff base. J. Phys. Chem. B 2016, 120, 1940–1949. 10.1021/acs.jpcb.5b09838. PubMed DOI
Mignolet B.; Curchod B. F.; Martínez T. J. Rich athermal ground-state chemistry triggered by dynamics through a conical intersection. Angew. Chem., Int. Ed. 2016, 55, 14993–14996. 10.1002/anie.201607633. PubMed DOI
Sen S.; Schapiro I. A comprehensive benchmark of the XMS-CASPT2 method for the photochemistry of a retinal chromophore model. Mol. Phys. 2018, 116, 2571–2582. 10.1080/00268976.2018.1501112. DOI
Park J. W.; Shiozaki T. Analytical derivative coupling for multistate CASPT2 theory. J. Chem. Theory Comput. 2017, 13, 2561–2570. 10.1021/acs.jctc.7b00018. PubMed DOI
Park J. W. Single-State Single-Reference and Multistate Multireference Zeroth-order Hamiltonians in MS-CASPT2 and conical intersections. J. Chem. Theory Comput. 2019, 15, 3960–3973. 10.1021/acs.jctc.9b00067. PubMed DOI
Shiozaki T.; Győrffy W.; Celani P.; Werner H.-J. Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients. J. Chem. Phys. 2011, 135, 81106.10.1063/1.3633329. PubMed DOI
Battaglia S.; Lindh R. Extended Dynamically weighted CASPT2: The best of two worlds. J. Chem. Theory Comput. 2020, 16, 1555–1567. 10.1021/acs.jctc.9b01129. PubMed DOI PMC
Finley J.; Malmqvist P. Å.; Roos B. O.; Serrano-Andrés L. The multi-state CASPT2 method. Chem. Phys. Lett. 1998, 288, 299–306. 10.1016/S0009-2614(98)00252-8. DOI
Levine B. G.; Martínez T. J. Isomerization through conical intersections. Annu. Rev. Phys. Chem. 2007, 58, 613–634. 10.1146/annurev.physchem.57.032905.104612. PubMed DOI
Pieroni C.; Becuzzi F.; Creatini L.; Granucci G.; Persico M. Effect of initial conditions sampling on surface hopping simulations in the ultrashort and picosecond time range. azomethane photodissociation as a case study. J. Chem. Theory Comput. 2023, 19, 2430–2445. 10.1021/acs.jctc.3c00024. PubMed DOI
Ibele L. M.; Curchod B. F. A molecular perspective on Tully models for nonadiabatic dynamics. Phys. Chem. Chem. Phys. 2020, 22, 15183–15196. 10.1039/D0CP01353F. PubMed DOI
Barbatti M. Velocity adjustment in surface hopping: Ethylene as a case study of the maximum error caused by direction choice. J. Chem. Theory Comput. 2021, 17, 3010–3018. 10.1021/acs.jctc.1c00012. PubMed DOI
Merritt I. C.; Jacquemin D.; Vacher M. Nonadiabatic coupling in trajectory surface hopping: How approximations impact excited-state reaction dynamics. J. Chem. Theory Comput. 2023, 19, 1827–1842. 10.1021/acs.jctc.2c00968. PubMed DOI
Westermayr J.; Gastegger M.; Menger M. F. S. J.; Mai S.; González L.; Marquetand P. Machine learning enables long time scale molecular photodynamics simulations. Chem. Sci. 2019, 10, 8100–8107. 10.1039/C9SC01742A. PubMed DOI PMC
Li J.; Stein R.; Adrion D. M.; Lopez S. A. Machine-learning photodynamics simulations uncover the role of substituent effects on the photochemical formation of cubanes. J. Am. Chem. Soc. 2021, 143, 20166–20175. 10.1021/jacs.1c07725. PubMed DOI
Dral P. O.; Barbatti M. Molecular excited states through a machine learning lens. Nat. Rev. Chem 2021, 5, 388–405. 10.1038/s41570-021-00278-1. PubMed DOI
Roadmap for Molecular Benchmarks in Nonadiabatic Dynamics