Sperm mitochondria dysfunction in response to testicular cancer
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Review
Grant support
CZ.1.05/1.1.00/02.0109
BIOCEV
RVO 86652036
Institute of Biotechnology of the Czech Academy of Sciences
NU20-03-00309
Ministry of Health of the Czech Republic
PubMed
38069497
DOI
10.1111/eci.14146
Knihovny.cz E-resources
- Keywords
- OXPHOS, glycolysis, mitochondrial dysfunction, sperm pathology, testicular cancer,
- MeSH
- Semen Analysis MeSH
- Neoplasms, Germ Cell and Embryonal * MeSH
- Humans MeSH
- Mitochondrial Diseases * metabolism MeSH
- Semen metabolism MeSH
- Spermatozoa MeSH
- Testicular Neoplasms * metabolism MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Testicular cancer is the most common form of cancer in young men of reproductive age and its incidence is increasing globally. With the currently successful treatment and 95% survival rate, there is a need for deeper understanding of testicular cancer-related infertility. Most patients with testicular cancer experience semen abnormalities prior to cancer therapy. However, the exact mechanism of the effect of testicular cancer on sperm anomalies is not known. Mitochondria are organelles that play a crucial role in both tumorigenesis and spermatogenesis and their malfunction may be an important factor resulting in sperm abnormalities in testicular cancer patients. Within the scope of this review, we will discuss current knowledge of testicular cancer-related alterations in the ATP production pathway, a possible pathophysiological switch from oxidative phosphorylation (OXPHOS) to glycolysis, as well as the role of oxidative stress promoting sperm dysfunction. In this regard, the review provides a summary of the impact of testicular cancer on sperm quality as a possible consequence of impaired mitochondrial function including the energy metabolic pathways that are known to be altered in the sperm of testicular cancer patients.
Department of Oncology 2nd Faculty of Medicine and Motol University Hospital Prague Czech Republic
Department of Zoology Faculty of Science Charles University Prague Czech Republic
School of Pharmacy and Medical Science Griffith University Southport Queensland Australia
See more in PubMed
Huang J, Chan SC, Tin MS, et al. Worldwide distribution, risk factors, and temporal trends of testicular cancer incidence and mortality: a global analysis. Eur Urol Oncol. 2022;5(5):566-576.
Wee CE, Gilligan TD. Management of testicular germ cell tumors. Management. 2023;21(4):179-188.
Djaladat H, Burner E, Parikh PM, Beroukhim Kay D, Hays K. The association between testis cancer and semen abnormalities before orchiectomy: a systematic review. J Adolesc Young Adult Oncol. 2014;3(4):153-159.
Boublikova L, Buchler T, Stary J, Abrahamova J, Trka J. Molecular biology of testicular germ cell tumors: unique features awaiting clinical application. Crit Rev Oncol Hematol. 2014;89(3):366-385.
McGlynn KA, Cook MB. Etiologic factors in testicular germ-cell tumors. Future Oncol. 2009;5(9):1389-1402.
Dieckmann K-P, Pichlmeier U. Clinical epidemiology of testicular germ cell tumors. World J Urol. 2004;22:2-14.
Hanson HA, Anderson RE, Aston KI, Carrell DT, Smith KR, Hotaling JM. Subfertility increases risk of testicular cancer: evidence from population-based semen samples. Fertil Steril. 2016;105(2):322-328.e1.
Andrade MB, Bertolla RP, Intasqui P, et al. Effect of orchiectomy on sperm functional aspects and semen oxidative stress in men with testicular tumours. Andrologia. 2019;51(3):e13205.
WHO. 1 in 6 People Globally Affected by Infertility: WHO. WHO; 2023.
Maiolino G, Fernández-Pascual E, Ochoa Arvizo MA, Vishwakarma R, Martínez-Salamanca JI. Male infertility and the risk of developing testicular cancer: a critical contemporary literature review. Medicina. 2023;59(7):1305.
Panner Selvam M, Agarwal A, Pushparaj P. A quantitative global proteomics approach to understanding the functional pathways dysregulated in the spermatozoa of asthenozoospermic testicular cancer patients. Andrology. 2019;7(4):454-462.
Picard M, Wallace DC, Burelle Y. The rise of mitochondria in medicine. Mitochondrion. 2016;30:105-116.
Tourmente M, Sansegundo E, Rial E, Roldan ERS. Capacitation promotes a shift in energy metabolism in murine sperm. Front Cell Dev Biol. 2022;10:950979.
Barbagallo F, la Vignera S, Cannarella R, Aversa A, Calogero AE, Condorelli RA. Evaluation of sperm mitochondrial function: a key organelle for sperm motility. J Clin Med. 2020;9(2):363.
Dias TR, Agarwal A, Pushparaj PN, Ahmad G, Sharma R. New insights on the mechanisms affecting fertility in men with non-seminoma testicular cancer before cancer therapy. World J Men Health. 2020;38(2):198-207.
Boguenet M, Bouet PE, Spiers A, Reynier P, May-Panloup P. Mitochondria: their role in spermatozoa and in male infertility. Hum Reprod Update. 2021;27(4):697-719.
Vertika S, Singh KK, Rajender S. Mitochondria, spermatogenesis, and male infertility-an update. Mitochondrion. 2020;54:26-40.
Zirkin BR, Papadopoulos V. Leydig cells: formation, function, and regulation. Biol Reprod. 2018;99(1):101-111.
Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update. 2009;15(5):553-572.
Wang X, Yin L, Wen Y, Yuan S. Mitochondrial regulation during male germ cell development. Cell Mol Life Sci. 2022;79(2):91.
Costa J, Braga PC, Rebelo I, Oliveira PF, Alves MG. Mitochondria quality control and male fertility. Biology. 2023;12(6):827.
Amaral A, Lourenço B, Marques M, Ramalho-Santos J. Mitochondria functionality and sperm quality. Reproduction. 2013;146(5):R163-R174.
Piomboni P, Focarelli R, Stendardi A, Ferramosca A, Zara V. The role of mitochondria in energy production for human sperm motility. Int J Androl. 2012;35(2):109-124.
Aitken RJ, Drevet JR. The importance of oxidative stress in determining the functionality of mammalian spermatozoa: a two-edged sword. Antioxidants. 2020;9(2):111.
Amaral A. Energy metabolism in mammalian sperm motility. WIREs Mech Dis. 2022;14(5):e1569.
Moraes CR, Meyers S. The sperm mitochondrion: organelle of many functions. Anim Reprod Sci. 2018;194:71-80.
du Plessis SS, Agarwal A, Mohanty G, van der Linde M. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use? Asian J Androl. 2015;17(2):230-235.
Amaral A, Castillo J, Estanyol JM, Ballescà JL, Ramalho-Santos J, Oliva R. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol Cell Proteomics. 2013;12(2):330-342.
Kuang W, Zhang J, Lan Z, et al. SLC22A14 is a mitochondrial riboflavin transporter required for sperm oxidative phosphorylation and male fertility. Cell Rep. 2021;35(3):109025.
Ferramosca A, Zara V. Bioenergetics of mammalian sperm capacitation. Biomed Res Int. 2014;2014:1-8.
Hereng T, Elgstøen KB, Cederkvist FH, et al. Exogenous pyruvate accelerates glycolysis and promotes capacitation in human spermatozoa. Hum Reprod. 2011;26(12):3249-3263.
Xavier R, de Carvalho RC, Fraietta R. Semen quality from patients affected by seminomatous and non-seminomatous testicular tumor. Int Braz J Urol. 2021;47:495-502.
Miranda-Goncalves V, Lameirinhas A, Henrique R, Baltazar F, Jerónimo C. The metabolic landscape of urological cancers: new therapeutic perspectives. Cancer Lett. 2020;477:76-87.
Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12(10):685-698.
Grasso D, Zampieri LX, Capelôa T, van de Velde JA, Sonveaux P. Mitochondria in cancer. Cell Stress. 2020;4(6):114-146.
Wu W, Zhao S. Metabolic changes in cancer: beyond the Warburg effect. Acta Biochim Biophys Sin. 2013;45(1):18-26.
Zhong X, He X, Wang Y, et al. Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol. 2022;15(1):160.
Hoseok I, Cho J-Y. Lung cancer biomarkers. Adv Clin Chem. 2015;72:107-170.
Tyagi K, Mandal S, Roy A. Recent advancements in therapeutic targeting of the Warburg effect in refractory ovarian cancer: a promise towards disease remission. Biochim Biophys Acta Rev Cancer. 2021;1876(1):188563.
Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211-218.
Bonatelli M, Silva ECA, Cárcano FM, et al. The Warburg effect is associated with tumor aggressiveness in testicular germ cell tumors. Front Endocrinol. 2019;10:417.
Oliveira PF, Martins AD, Moreira AC, Cheng CY, Alves MG. The Warburg effect revisited-lesson from the Sertoli cell. Med Res Rev. 2015;35(1):126-151.
Harris RA, Johnson JS. Glycolysis Overview. Elsevier; 2019.
Finley LW, Thompson CB. The metabolism of cell growth and proliferation. In: Mendelsohn J, Gray JW, Howley PM, Israel MA, Thompson CB, eds. The Molecular Basis of Cancer. Elsevier; 2015:191-208.e2.
Fitzgerald G, Soro-Arnaiz I, De Bock K. The Warburg effect in endothelial cells and its potential as an anti-angiogenic target in cancer. Front Cell Dev Biol. 2018;6:100.
Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309-314.
Fukushi A, Kim HD, Chang YC, Kim CH. Revisited metabolic control and reprogramming cancers by means of the Warburg effect in tumor cells. Int J Mol Sci. 2022;23(17):10037.
Ganapathy-Kanniappan S, Geschwind J-FH. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. 2013;12(1):1-11.
Granchi C, Minutolo F. Anticancer agents that counteract tumor glycolysis. ChemMedChem. 2012;7(8):1318-1350.
Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating glycolysis to improve cancer therapy. Int J Mol Sci. 2023;24(3):2606.
Burns JS, Manda G. Metabolic pathways of the Warburg effect in health and disease: perspectives of choice, chain or chance. Int J Mol Sci. 2017;18(12):2755.
Kocianova E, Piatrikova V, Golias T. Revisiting the Warburg effect with focus on lactate. Cancer. 2022;14(24):6028.
Mirzaei H, Hamblin MR. Regulation of glycolysis by non-coding RNAs in cancer: switching on the Warburg effect. Mol Ther Oncolytics. 2020;19:218-239.
Vaupel P, Multhoff G. Revisiting the Warburg effect: historical dogma versus current understanding. J Physiol. 2021;599(6):1745-1757.
Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the “Warburg effect” and a pivotal target for effective therapy. Semin Cancer Biol. 2009;19:17-24.
Wolf A, Agnihotri S, Micallef J, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011;208(2):313-326.
Panner Selvam MK, Finelli R, Baskaran S, Agarwal A. Dysregulation of key proteins associated with sperm motility and fertility potential in cancer patients. Int J Mol Sci. 2020;21(18):6754.
Agarwal A, Dias TR, Pushparaj PN, Ahmad G, Sharma R. Infertility in men with testicular cancer non-seminoma is associated with sperm mitochondrial dysfunction and defects in motility and sperm-oocyte binding. Fertil Steril. 2018;110(4):e306.
Aurrière J, Goudenège D, Baris OR, et al. Cancer/testis antigens into mitochondria: a hub between spermatogenesis, tumorigenesis and mitochondrial physiology adaptation. Mitochondrion. 2021;56:73-81.
Babatunde KA, Najafi A, Salehipour P, Modarressi MH, Mobasheri MB. Cancer/testis genes in relation to sperm biology and function. Iran J Basic Med Sci. 2017;20(9):967-974.
Soper SF, van der Heijden GW, Hardiman TC, et al. Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev Cell. 2008;15(2):285-297.
Yang F, Eckardt S, Leu NA, McLaughlin KJ, Wang PJ. Mouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis. J Cell Biol. 2008;180(4):673-679.
Vasileva A, Tiedau D, Firooznia A, Müller-Reichert T, Jessberger R. Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression. Curr Biol. 2009;19(8):630-639.
Nin DS, Deng L-W. Biology of cancer-testis antigens and their therapeutic implications in cancer. Cell. 2023;12(6):926.
Kalejs M, Erenpreisa J. Cancer/testis antigens and gametogenesis: a review and “brain-storming” session. Cancer Cell Int. 2005;5:1-11.
Shuvalov O, Kizenko A, Petukhov A, Fedorova O, Daks A, Barlev N. Emerging roles of cancer-testis antigenes, semenogelin 1 and 2, in neoplastic cells. Cell Death Discov. 2021;7(1):97.
Wong KK, Hussain FA, Loo SK, López JI. Cancer/testis antigen SPATA 19 is frequently expressed in benign prostatic hyperplasia and prostate cancer. Apmis. 2017;125(12):1092-1101.
Song J, Yang W, Shih IM, Zhang Z, Bai J. Identification of BCOX1, a novel gene overexpressed in breast cancer. Biochim Biophys Acta Gen Subj. 2006;1760(1):62-69.
Xu Z, Wu Z, Zhang J, et al. Development and validation of an oxidative phosphorylation-related gene signature in lung adenocarcinoma. Epigenomics. 2020;12(15):1333-1348.
Peng X, Zeng X, Peng S, Deng D, Zhang J. The association risk of male subfertility and testicular cancer: a systematic review. PLoS One. 2009;4(5):e5591.
Raman JD, Nobert CF, Goldstein M. Increased incidence of testicular cancer in men presenting with infertility and abnormal semen analysis. J Urol. 2005;174(5):1819-1822.
Moody JA, Ahmed K, Yap T, Minhas S, Shabbir M. Fertility managment in testicular cancer: the need to establish a standardized and evidence-based patient-centric pathway. BJU Int. 2019;123(1):160-172.
Panner Selvam MK, Agarwal A, Pushparaj PN. Altered molecular pathways in the proteome of cryopreserved sperm in testicular cancer patients before treatment. Int J Mol Sci. 2019;20(3):677.
Ellinger J, Poss M, Brüggemann M, et al. Systematic expression analysis of mitochondrial complex I identifies NDUFS1 as a biomarker in clear-cell renal-cell carcinoma. Clin Genitourin Cancer. 2017;15(4):e551-e562.
Abou Haidar L, Harris RC, Pachnis P, et al. Novel pathogenic UQCRC2 variants in a female with normal neurodevelopment. Cold Spring Harb Mol Case Stud. 2023;mcs.a006295. doi:10.1101/mcs.a006295. Online ahead of print.
Raimondi V, Ciccarese F, Ciminale V. Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer. 2020;122(2):168-181.
Mannucci A, Argento FR, Fini E, et al. The impact of oxidative stress in male infertility. Front Mol Biosci. 2022;8:799294.
Dong H, Chen Z, Wang C, et al. Rictor regulates spermatogenesis by controlling Sertoli cell cytoskeletal organization and cell polarity in the mouse testis. Endocrinology. 2015;156(11):4244-4256.
Deng C-Y, Lv M, Luo BH, Zhao SZ, Mo ZC, Xie YJ. The role of the PI3K/AKT/mTOR signalling pathway in male reproduction. Curr Mol Med. 2021;21(7):539-548.
McDermott J, Sánchez G, Nangia AK, Blanco G. Role of human Na, K-ATPase alpha 4 in sperm function, derived from studies in transgenic mice. Mol Reprod Dev. 2015;82(3):167-181.
Syeda SS, Sánchez G, McDermott JP, Hong KH, Blanco G, Georg GI. The Na+ and K+ transport system of sperm (ATP1A4) is essential for male fertility and an attractive target for male contraception. Biol Reprod. 2020;103(2):343-356.
Jimenez T, McDermott JP, Sánchez G, Blanco G. Na, K-ATPase α4 isoform is essential for sperm fertility. Proc Natl Acad Sci USA. 2011;108(2):644-649.
Thundathil JC, Rajamanickam GD, Kastelic JP. Na/K-ATPase and regulation of sperm function. Anim Reprod. 2018;15(Suppl 1):711-720.
Blumer CG, Fariello RM, Restelli AE, Spaine DM, Bertolla RP, Cedenho AP. Sperm nuclear DNA fragmentation and mitochondrial activity in men with varicocele. Fertil Steril. 2008;90(5):1716-1722.
Yang H, Li G, Jin H, Guo Y, Sun Y. The effect of sperm DNA fragmentation index on assisted reproductive technology outcomes and its relationship with semen parameters and lifestyle. Transl Androl Urol. 2019;8(4):356-365.
Robinson L, Gallos ID, Conner SJ, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27(10):2908-2917.
Calamai C, Ammar O, Rosta V, et al. Testicular and Haematological cancer induce very high levels of sperm oxidative stress. Antioxidants. 2023;12(6):1145.
Pedley R, Gilmore AP. Mitosis and mitochondrial priming for apoptosis. Biol Chem. 2016;397(7):595-605.
Spierings DC, de Vries EGE, Vellenga E, de Jong S. The attractive Achilles heel of germ cell tumours: an inherent sensitivity to apoptosis-inducing stimuli. J Pathol. 2003;200(2):137-148.
Taylor-Weiner A, Zack T, O'Donnell E, et al. Genomic evolution and chemoresistance in germ-cell tumours. Nature. 2016;540(7631):114-118.
Bloom JC, Loehr AR, Schimenti JC, Weiss RS. Germline genome protection: implications for gamete quality and germ cell tumorigenesis. Andrology. 2019;7(4):516-526.
Johnson J, Mercado-Ayon E, Mercado-Ayon Y, et al. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Arch Biochem Biophys. 2021;702:108698.
Williams DH, Karpman E, Sander JC, Spiess PE, Pisters LL, Lipshultz LI. Pretreatment semen parameters in men with cancer. J Urol. 2009;181(2):736-740.
Parekh NV, Lundy SD, Vij SC. Fertility considerations in men with testicular cancer. Transl Androl Urol. 2020;9(Suppl 1):S14-S23.
Hotaling JM, Lopushnyan NA, Davenport M, et al. Raw and test-thaw semen parameters after cryopreservation among men with newly diagnosed cancer. Fertil Steril. 2013;99(2):464-469. e2.
Degl'Innocenti S, Filimberti E, Magini A, et al. Semen cryopreservation for men banking for oligospermia, cancers, and other pathologies: prediction of post-thaw outcome using basal semen quality. Fertil Steril. 2013;100(6):1555-1563.e3.
Thakur N, Sharma AK, Singh H, Singh S. Role of mitochondrial DNA (mtDNA) variations in cancer development: a systematic review. Cancer Invest. 2020;38(7):375-393.
Luo S, Valencia CA, Zhang J, et al. Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci USA. 2018;115(51):13039-13044.
Munasinghe M, Ågren JA. When and why are mitochondria paternally inherited? Curr Opin Genet Dev. 2023;80:102053.