RNA G-quadruplex formation in biologically important transcribed regions: can two-tetrad intramolecular RNA quadruplexes be formed?
Language English Country England, Great Britain Media print
Document type Journal Article
Grant support
GF22-04242L
Czech Science and German Research Foundation
LM2023042
MEYS CR
CZ.02.1.01/0.0/0.0/18_046/0015974
European Regional Development Fund
nr. 22-29738S
Czech Science Foundation
Inserm, CNRS, Ecole Polytechnique
PubMed
39494519
PubMed Central
PMC11602125
DOI
10.1093/nar/gkae927
PII: 7874850
Knihovny.cz E-resources
- MeSH
- Dimerization MeSH
- G-Quadruplexes * MeSH
- Transcription, Genetic MeSH
- Humans MeSH
- Nucleotide Motifs * MeSH
- RNA * chemistry metabolism genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA * MeSH
G-quadruplexes (G4s) formed within RNA are emerging as promising targets for therapeutic intervention in cancer, neurodegenerative disorders and infectious diseases. Sequences containing a succession of short GG blocks, or uneven G-tract lengths unable to form three-tetrad G4s (GG motifs), are overwhelmingly more frequent than canonical motifs involving multiple GGG blocks. We recently showed that DNA is not able to form stable two-tetrad intramolecular parallel G4s. Whether RNA GG motifs can form intramolecular G4s under physiological conditions and play regulatory roles remains a burning question. In this study, we performed a systematic analysis and experimental evaluation of a number of biologically important RNA regions involving RNA GG motifs. We show that most of these motifs do not form stable intramolecular G4s but need to dimerize to form stable G4 structures. The strong tendency of RNA GG motif G4s to associate may participate in RNA-based aggregation under conditions of cellular stress.
See more in PubMed
Gilbert D.E., Feigon J.. Multistranded DNA structures. Curr. Opin. Struct. Biol. 1999; 9:305–314. PubMed
Neidle S., Balasubramanian S.. Quadruplex Nucleic Acids. Royal Society of Chemistry. 2006; London, Cambridge.
Bochman M.L., Paeschke K., Zakian V.A.. DNA secondary structures: stability and function of G–quadruplex structures. Nat. Rev. Genet. 2012; 13:770–780. PubMed PMC
Burge S., Parkinson G.N., Hazel P., Todd A.K., Neidle S.. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006; 34:5402–5415. PubMed PMC
Biffi G., Tannahill D., McCafferty J., Balasubramanian S.. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013; 5:182–186. PubMed PMC
Salgado G.F., Cazenave C., Kerkour A., Mergny J.-L.. G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy. Chem. Sci. 2015; 6:3314–3320. PubMed PMC
Di Antonio M., Ponjavic A., Radzevičius A., Ranasinghe R.T., Catalano M., Zhang X., Shen J., Needham L.-M., Lee S.F., Klenerman D.et al. .. Single-molecule visualization of DNA G-quadruplex formation in live cells. Nat. Chem. 2020; 12:832–837. PubMed PMC
Hänsel-Hertsch R., Di Antonio M., Balasubramanian S.. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol. 2017; 18:279–284. PubMed
Maizels N. G4-associated human diseases. EMBO Rep. 2015; 16:910–922. PubMed PMC
Cimino-Reale G., Zaffaroni N., Folini M.. Emerging role of G-quadruplex DNA as target in anticancer therapy. Curr. Pharm. Des. 2016; 22:6612–6624. PubMed
Abiri A., Lavigne M., Rezaei M., Nikzad S., Zare P., Mergny J.-L., Rahimi H.-R.. Unlocking G-quadruplexes as antiviral targets. Pharmacol. Rev. 2021; 73:897–923. PubMed
Mergny J.L., De Cian A., Ghelab A., Sacca B., Lacroix L.. Kinetics of tetramolecular quadruplexes. Nucleic Acids Res. 2005; 33:81–94. PubMed PMC
Schultze P., Macaya R.F., Feigon J.. Three-dimensional solution structure of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). J. Mol. Biol. 1994; 235:1532–1547. PubMed
Lim K.W., Amrane S., Bouaziz S., Xu W., Mu Y., Patel D.J., Luu K.N., Phan A.T.. Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers. J. Am. Chem. Soc. 2009; 131:4301–4309. PubMed PMC
Kotar A., Rigo R., Sissi G., Plavec J.. Two-quartet kit* G-quadruplex is formed via double-stranded pre-folded structure. Nucleic Acids Res. 2019; 47:2641–2653. PubMed PMC
Chen J., Cheng M., Salgado G.F., Stadlbauer P., Zhang X., Amrane S., Guedin A., He F., Sponer J., Ju H.et al. .. The beginning and the end: flanking nucleotides induce a parallel G-quadruplex topology. Nucleic Acids Res. 2021; 49:9548–9559. PubMed PMC
Cheng M., Cheng Y., Hao J., Jia G., Zhou J., Mergny J.-L., Li C.. Loop permutation affects the topology and stability of G-quadruplexes. Nucleic Acids Res. 2018; 46:9264–9275. PubMed PMC
Guédin A., Gros J., Alberti P., Mergny J.-L.. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 2010; 38:7858–7868. PubMed PMC
Parkinson G.N., Lee M.P., Neidle S.. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature. 2002; 417:876–880. PubMed
Sket P., Plavec J.. Tetramolecular DNA quadruplexes in solution: insights into structural diversity and cation movement. J.Am. Chem. Soc. 2010; 132:12724–12732. PubMed
Webba da Silva M. Geometric formalism for DNA quadruplex folding. Chem. Eur. J. 2007; 13:9738–9745. PubMed
Phan A.T. Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBS J. 2010; 277:1107–1117. PubMed
Lech C.J., Heddi B., Phan A.T.. Guanine base stacking in G-quadruplex nucleic acids. Nucleic Acids Res. 2013; 41:2034–2046. PubMed PMC
Chan K.L., Peng B., Umar M.I., Chun C.Y., Sahakyan A.B., Le M.T.N., Kwok C.K.. Structural analysis reveals the formation and role of RNA G-quadruplex structures in human mature microRNAs. Chem. Commun. 2018; 54:10878–10881. PubMed
Qin M.Y., Chen Z.X., Luo Q.C., Wen Y., Zhang N.X., Jiang H.L., Yang H.Y.. Two-quartet G-quadruplexes formed by DNA sequences containing four contiguous GG runs. J. Phys. Chem. B. 2015; 119:3706–3713. PubMed
Chung W.J., Heddi B., Schmitt E., Lim K.W., Mechulam Y., Phan A.T.. Structure of a left-handed DNA G-quadruplex. Proc. Natl. Acad. Sci. USA. 2015; 112:2729–2733. PubMed PMC
Do N.Q., Chung W.J., Truong T., Hong A., Heddi B., Phan A.T.. G-quadruplex structure of an anti-proliferative DNA sequence. Nucleic Acids Res. 2017; 45:7487–7493. PubMed PMC
Maity A., Winnerdy F.R., Chang W.D., Chen G., Phan A.T.. Intra-locked G-quadruplex structures formed by irregular DNA G-rich motifs. Nucleic Acids Res. 2020; 48:3315–3327. PubMed PMC
Kejnovska I., Stadlbauer P., Trantirek L., Renciuk D., Gajarsky M., Krafcik D., Palacky J., Bednarova K., Sponer J., Mergny J.L.et al. .. G-quadruplex formation by DNA sequences deficient in guanines: two tetrad parallel quadruplexes do not fold intramolecularly. Chem. 2021; 27:12115–12125. PubMed
Islam B., Stadlbauer P., Vorlickova M., Mergny J.L., Otyepka M., Sponer J.. Stability of two-quartet G-quadruplexes and their dimers in atomistic simulations. J. Chem. Theory Comput. 2020; 16:3447–3463. PubMed
Binas O., Bessi I., Schwalbe H.. Structure validation of G-rich RNAs in noncoding regions of the human genome. ChemBioChem. 2020; 21:1656–1663. PubMed PMC
Gomez D., Guédin A., Mergny J.L., Salles B., Riou J.F., Teulade-Fichou M.P., Calsou P.. A G-quadruplex structure within the 5'-UTR of TRF2 mRNA represses translation in human cells. Nucleic Acids Res. 2010; 38:7187–7198. PubMed PMC
Zhao C., Qin G., Niu J., Wang Z., Wang C., Ren J., Qu X.. Targeting RNA G-quadruplex in SARS-CoV-2: a promising therapeutic target for COVID-19?. Angew. Chem. Int. Ed Engl. 2021; 60:432–438. PubMed
Hon J., Martínek T., Zendulka J., Lexa M.. pqsfinder: an exhaustive and imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioinformatics. 2017; 33:3373–3379. PubMed
O’Leary N.A., Wright M.W., Brister J.R., Ciufo S., Haddad D., McVeigh R., Rajput B., Robbertse B., Smith-White B., Ako-Adjei D.et al. .. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016; 44:D733–D745. PubMed PMC
The RNAcentral Consortium RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Res. 2018; 47:D1250–D1251. PubMed PMC
Ma L., Cao J., Liu L., Du Q., Li Z., Zou D., Bajic V.B., Zhang Z.. LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res. 2019; 47:2699. PubMed PMC
Raney B.J., Barber G.P., Benet-Pagès A., Casper J., Clawson H., Cline M.S., Diekhans M., Fischer C., Navarro Gonzalez J., Hickey G.et al. .. The UCSC Genome Browser database: 2024 update. Nucleic Acids Res. 2024; 52:D1082–D1088. PubMed PMC
Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haussler D. The human genome browser at UCSC. Genome Res. 2002; 12:996–1006. PubMed PMC
Quinlan A.R., Hall I.M.. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26:841–842. PubMed PMC
Team, T.B.D. BSgenome.Hsapiens.UCSC.Hg38: full genomic sequences for homo sapiens (UCSC genome hg38. 2023;
Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A.V., Mikheenko A., Vollger M.R., Altemose N., Uralsky L., Gershman A.et al. .. The complete sequence of a human genome. Science. 2022; 376:44–53. PubMed PMC
Kejnovska I., Renciuk D., Palacky J., Vorlickova M.. Yang D., Lin C.. G-Quadruplex Nucleic Acids: Methods and Protocols. 2019; 2035:Totowa, NJ, USA: Humana Press; 25–44.
Mergny J.L., Phan A.T., Lacroix L.. Following G-quartet formation by UV-spectroscopy. FEBS Lett. 1998; 435:74–78. PubMed
Luo Y., Granzhan A., Verga D., Mergny J.-L.. FRET-MC: a fluorescence melting competition assayfor studying G4 structures in vitro. Biopolymers. 2021; 112:e23415. PubMed
Sabharwal N.C., Savikhin V., Turek-Herman J.R., Nicoludis J.M., Szalai V.A., Yatsunyk L.A.. N-methylmesoporphyrin IX fluorescence as a reporter of strand orientation in guanine quadruplexes. FEBS J. 2014; 281:1726–1737. PubMed PMC
Sklenář V., Bax A.. Spin-echo water suppression for the generation of pure-phase two-dimensional NMR spectra. J. Magn. Reson. 1987; 74:469–479.
Vorlíčková M., Kejnovská I., Bednářová K., Renčiuk D., Kypr J.. Circular dichroism spectroscopy of DNA: from duplexes to quadruplexes. Chirality. 2012; 24:691–698. PubMed
Vorlíčková M., Kejnovská I., Sagi J., Renčiuk D., Bednářová K., Motlová J., Kypr J.. Circular dichroism and guanine quadruplexes. Methods. 2012; 57:64–75. PubMed
Holoubek J., Bednářová K., Haviernik J., Huvarová I., Dvořáková Z., Černý J., Outlá M., Salát J., Konkol’ová E., Boura E.et al. .. Guanine quadruplexes in the RNA genome of the tick-borne encephalitis virus: their role as a new antiviral target and in virus biology. Nucleic Acids Res. 2022; 50:4574–4600. PubMed PMC
Malgowska M., Gudanis D., Kierzek R., Wyszko E., Gabelica V., Gdaniec Z.. Distinctive structural motifs of RNA G-quadruplexes composed of AGG, CGG and UGG trinucleotide repeats. Nucleic Acids Res. 2014; 42:10196–10207. PubMed PMC
Yett A., Lin L.Y., Beseiso D., Miao J., Yatsunyk L.A.. N-methyl mesoporphyrin IX as a highly selective light-up probe for G-quadruplex DNA. J. Porphyr. Phthalocya. 2019; 23:1195–1215. PubMed PMC
Renciuk D., Rynes J., Kejnovska I., Foldynova-Trantirkova S., Andang M., Trantirek L., Vorlickova M.. G-quadruplex formation in the Oct4 promoter positively regulates Oct4 expression. Biochim. Biophys. Acta-Gene Regulat. Mech. 2017; 1860:175–183. PubMed
Bednářová K., Vorlíčková M., Renčiuk D. Diversity of parallel guanine quadruplexes induced by guanine substitutions. Int. J. Mol. Sci. 2020; 21:6123. PubMed PMC
Cervenak M., Molnár O.R., Horváth P., Smeller L.. Stabilization of G-quadruplex structures of the SARS-CoV-2 genome by TMPyP4, BRACO19, and PhenDC3. Int. J. Mol. Sci. 2024; 25:2482. PubMed PMC
Kypr J., Fialová M., Chládková J., Tůmová M., Vorlícková M.. Conserved guanine-guanine stacking in tetraplex and duplex DNA. Eur. Biophys. J. 2001; 30:555–558. PubMed
Kypr J., Kejnovska I., Renciuk D., Vorlickova M.. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009; 37:1713–1725. PubMed PMC
Georgakopoulos-Soares I., Parada G.E., Wong H.Y., Medhi R., Furlan G., Munita R., Miska E.A., Kwok C.K., Hemberg M.. Alternative splicing modulation by G-quadruplexes. Nat. Commun. 2022; 13:2404. PubMed PMC
Lee C.-Y., Joshi M., Wang A., Myong S.. 5′UTR G-quadruplex structure enhances translation in size dependent manner. Nat. Commun. 2024; 15:3963. PubMed PMC
Yang S.Y., Lejault P., Chevrier S., Boidot R., Robertson A.G., Wong J.M.Y., Monchaud D. Transcriptome-wide identification of transient RNA G-quadruplexes in human cells. Nat. Commun. 2018; 9:4730. PubMed PMC
Yang S.Y., Monchaud D., Wong J.M.Y.. Global mapping of RNA G-quadruplexes (G4-RNAs) using G4RP-seq. Nat. Protoc. 2022; 17:870–889. PubMed
Kwok C.K., Marsico G., Sahakyan A.B., Chambers V.S., Balasubramanian S.. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods. 2016; 13:841–844. PubMed
Xiao C.-D., Ishizuka T., Xu Y.. Antiparallel RNA G-quadruplex formed by human telomere RNA containing 8-bromoguanosine. Sci. Rep. 2017; 7:6695. PubMed PMC
Arora A., Suess B.. An RNA G-quadruplex in the 3' UTR of the proto-oncogene PIM1 represses translation. RNA Biol. 2011; 8:802–805. PubMed
Beaudoin J.-D., Perreault J.-P.. 5′-UTR G-quadruplex structures acting as translational repressors. Nucleic Acids Res. 2010; 38:7022–7036. PubMed PMC
Agarwala P., Pandey S., Maiti S.. Role of G-quadruplex located at 5′ end of mRNAs. Biochim. Biophys. Gen. Sub. 2014; 1840:3503–3510. PubMed
Hacht A.v., Seifert O., Menger M., Schütze T., Arora A., Konthur Z., Neubauer P., Wagner A., Weise C., Kurreck J.. Identification and characterization of RNA guanine-quadruplex binding proteins. Nucleic Acids Res. 2014; 42:6630–6644. PubMed PMC
Zhang Y., Liu S., Jiang H., Deng H., Dong C., Shen W., Chen H., Gao C., Xiao S., Liu Z.-F.et al. .. G2-quadruplex in the 3’UTR of IE180 regulates Pseudorabies virus replication by enhancing gene expression. RNA Biol. 2020; 17:816–827. PubMed PMC
Van Treeck B., Protter D.S.W., Matheny T., Khong A., Link C.D., Parker R.. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc. Natl. Acad. Sci. USA. 2018; 115:2734–2739. PubMed PMC
Fay M.M., Anderson P.J., Ivanov P.. ALS/FTD-associated C9ORF72 repeat RNA promotes phase transitions in vitro and in cells. Cell Rep. 2017; 21:3573–3584. PubMed PMC
Danino Y.M., Molitor L., Rosenbaum-Cohen T., Kaiser S., Cohen Y., Porat Z., Marmor-Kollet H., Katina C., Savidor A., Rotkopf R.et al. .. BLM helicase protein negatively regulates stress granule formation through unwinding RNA G-quadruplex structures. Nucleic Acids Res. 2023; 51:9369–9384. PubMed PMC
Sauer M., Juranek S.A., Marks J., De Magis A., Kazemier H.G., Hilbig D., Benhalevy D., Wang X., Hafner M., Paeschke K.. DHX36 prevents the accumulation of translationally inactive mRNAs with G4-structures in untranslated regions. Nat. Commun. 2019; 10:2421. PubMed PMC