• This record comes from PubMed

The impact of 3-sulfo-taurolithocholic acid on ATPase activity in patients' colorectal cancer and normal colon tissues, and its hepatic effects in rodents

. 2024 ; 11 () : 1480122. [epub] 20241205

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Colorectal cancer is influenced by genetic mutations, lifestyle factors, and diet, particularly high fat intake, which raises bile acid levels in the intestinal lumen. This study hypothesized that bile acids contribute to tumorigenesis by disrupting ion transport and ATPase activity in the intestinal mucosa. The effects of 3-sulfo-taurolithocholic acid (TLC-S) on ATPase activity were investigated in colorectal cancer samples from 10 patients, using adjacent healthy tissue as controls, and in rodent liver function. ATPase activity was measured spectrophotometrically by determining inorganic phosphorus (Pi) in postmitochondrial fractions. Ca2+ dynamics were assessed in isolated mouse hepatocytes with fluorescence imaging, and rat liver mitochondria were studied using polarographic methods to evaluate respiration and oxidative phosphorylation. TLC-S increased Na+/K+ ATPase activity by 1.5 times in colorectal cancer samples compared to controls (p ≤ 0.05). In healthy mucosa, TLC-S decreased Mg2+ ATPase activity by 3.6 times (p ≤ 0.05), while Mg2+ ATPase activity in cancer tissue remained unchanged. TLC-S had no significant effect on Ca2+ ATPase activity in healthy colon mucosa but showed a trend toward decreased activity in cancer tissue. In rat liver, TLC-S decreased Ca2+ ATPase and Na+/K+ ATPase activities while increasing basal Mg2+ ATPase activity (p ≤ 0.05). Additionally, TLC-S induced cytosolic Ca2+ signals in mouse hepatocytes, partially attenuated by NED-19, an NAADP antagonist (p ≤ 0.05). TLC-S also reduced the V3 respiration rate of isolated rat liver mitochondria during α-ketoglutarate oxidation. These findings suggest that TLC-S modulates ATPase activity differently in cancerous and healthy colon tissues, playing a role in colorectal cancer development. In rat liver, TLC-S affects mitochondrial activity and ATPase function, contributing to altered cytosolic calcium levels, providing insight into the mechanistic effects of bile acids on colorectal cancer and liver function.

See more in PubMed

Gillard J, Leclercq IA. Biological tuners to reshape the bile acid pool for therapeutic purposes in non-alcoholic fatty liver disease. Clin Sci. (2023) 137:65–85. doi: 10.1042/CS20220697, PMID: PubMed DOI PMC

Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal absorption of bile acids in health and disease. Comprehen. Physiol. (2019) 10:21–56. doi: 10.1002/cphy.c190007, PMID: PubMed DOI PMC

Tveter KM, Mezhibovsky E, Wu Y, Roopchand DE. Bile acid metabolism and signaling: emerging pharmacological targets of dietary polyphenols. Pharmacol Ther. (2023) 248:108457. doi: 10.1016/j.pharmthera.2023.108457, PMID: PubMed DOI PMC

Bernstein C, Holubec H, Bhattacharyya AK, Nguyen H, Payne CM, Zaitlin B, et al. . Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol. (2011) 85:863–71. doi: 10.1007/s00204-011-0648-7, PMID: PubMed DOI PMC

Ridlon JM, Harris SC, Bhowmik S, Kang D-J, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. (2016) 7:22–39. doi: 10.1080/19490976.2015.1127483, PMID: PubMed DOI PMC

Bernstein H, Bernstein C, Payne CM, Dvorakova K, Garewal H. Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res. (2005) 589:47–65. doi: 10.1016/j.mrrev.2004.08.001 PubMed DOI

Li J, Chen D, Shen M. Tumor microenvironment shapes colorectal Cancer progression, metastasis, and treatment responses. Front Med. (2022) 9:869010. doi: 10.3389/fmed.2022.869010, PMID: PubMed DOI PMC

He Q, Wu J, Ke J, Zhang Q, Zeng W, Luo Z, et al. . Therapeutic role of ursodeoxycholic acid in colitis-associated cancer via gut microbiota modulation. Mol Ther. (2023) 31:585–98. doi: 10.1016/j.ymthe.2022.10.014, PMID: PubMed DOI PMC

Jia W, Xie G, Jia W. Bile acid–microbiota cross-talk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. (2018) 15:111–28. doi: 10.1038/nrgastro.2017.119, PMID: PubMed DOI PMC

Da Silva CI, Gonçalves-de-Albuquerque CF, De Moraes BPT, Garcia DG, Burth P. Na/K-ATPase: their role in cell adhesion and migration in cancer. Biochimie. (2021) 185:1–8. doi: 10.1016/j.biochi.2021.03.002, PMID: PubMed DOI

Song Y, Lee S-Y, Kim S, Choi I, Kim S-H, Shum D, et al. . Inhibitors of Na+/K+ ATPase exhibit antitumor effects on multicellular tumor spheroids of hepatocellular carcinoma. Sci Rep. (2020) 10:5318. doi: 10.1038/s41598-020-62134-4, PMID: PubMed DOI PMC

Wilson FA, Treanor LL. Studies of relationship among bile-acid uptake, Na+, K+-ATPase, and Na+ gradient in isolated cells from rat ileum. Gastroenterology. (1981) 81:54–60. doi: 10.1016/0016-5085(81)90652-1, PMID: PubMed DOI

Chen D, Song M, Mohamad O, Yu SP. Inhibition of Na+/K+-ATPase induces hybrid cell death and enhanced sensitivity to chemotherapy in human glioblastoma cells. BMC Cancer. (2014) 14:716. doi: 10.1186/1471-2407-14-716, PMID: PubMed DOI PMC

Aung CS, Ye W, Plowman G, Peters AA, Monteith GR, Roberts-Thomson SJ. Plasma membrane calcium ATPase 4 and the remodeling of calcium homeostasis in human colon cancer cells. Carcinogenesis. (2009) 30:1962–9. doi: 10.1093/carcin/bgp223, PMID: PubMed DOI

Chen J, Sitsel A, Benoy V, Sepúlveda MR, Vangheluwe P. Primary active ca 2+ transport Systems in Health and Disease. Cold Spring Harb Perspect Biol. (2020) 12:a035113. doi: 10.1101/cshperspect.a035113, PMID: PubMed DOI PMC

Peters AA, Milevskiy MJG, Lee WC, Curry MC, Smart CE, Saunus JM, et al. . The calcium pump plasma membrane Ca2+-ATPase 2 (PMCA2) regulates breast cancer cell proliferation and sensitivity to doxorubicin. Sci Rep. (2016) 6:25505. doi: 10.1038/srep25505, PMID: PubMed DOI PMC

Chemaly ER, Troncone L, Lebeche D. SERCA control of cell death and survival. Cell Calcium. (2018) 69:46–61. doi: 10.1016/j.ceca.2017.07.001, PMID: PubMed DOI PMC

Bychkova S, Bychkov M, Dordevic D, Vítězová M, Rittmann SK-MR, Kushkevych I. Bafilomycin A1 molecular effect on ATPase activity of subcellular fraction of human colorectal Cancer and rat liver. IJMS. (2024) 25:1657. doi: 10.3390/ijms25031657, PMID: PubMed DOI PMC

Bychkova SV, Stasyshyn AR, Bychkov MA. The role of bafilomycin as a therapeutic agent in the modulation of endo-lysosomal store of rat hepatocytes. Med perspekt. (2022) 27:22–6. doi: 10.26641/2307-0404.2022.3.265768 DOI

Kushkevych I, Bychkov M, Bychkova S, Gajdács M, Merza R, Vítězová M. ATPase activity of the subcellular fractions of colorectal Cancer samples under the action of nicotinic acid adenine dinucleotide phosphate. Biomedicines. (2021) 9:1805. doi: 10.3390/biomedicines9121805, PMID: PubMed DOI PMC

Kushkevych I, Fafula R, Parák T, Bartoš M. Activity of Na+/K+-activated Mg2+−dependent ATP-hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet Brno. (2015) 84:3–12. doi: 10.2754/avb201585010003 DOI

Hreniukh V, Bychkova S, Kulachkovsky O, Babsky A. Effect of bafilomycin and NAADP on membrane-associated ATPases and respiration of isolated mitochondria of the murine Nemeth-Kellner lymphoma: mitochondria and ATPase activities in lymphoma. Cell Biochem Funct. (2016) 34:579–87. doi: 10.1002/cbf.3231, PMID: PubMed DOI

Babsky A, Doliba N, Doliba N, Savchenko A, Wehrli S, Osbakken M. Na + effects on mitochondrial respiration and oxidative phosphorylation in diabetic hearts. Exp Biol Med (Maywood). (2001) 226:543–51. doi: 10.1177/153537020122600606, PMID: PubMed DOI

Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. (1955) 217:383–93. doi: 10.1016/S0021-9258(19)57189-7 PubMed DOI

Nicholls D. G. (2013). Bioenergetics. Available online at: https://shop.elsevier.com/books/bioenergetics/nicholls/978-0-12-388425-1 (Accessed July 24, 2024)

Combettes L, Berthon B, Doucet E, Erlinger S, Claret M. Characteristics of bile acid-mediated Ca2+ release from permeabilized liver cells and liver microsomes. J Biol Chem. (1989) 264:157–67. doi: 10.1016/S0021-9258(17)31237-1, PMID: PubMed DOI

Combettes L, Dumont M, Berthon B, Erlinger S, Claret M. Release of calcium from the endoplasmic reticulum by bile acids in rat liver cells. J Biol Chem. (1988) 263:2299–303. doi: 10.1016/S0021-9258(18)69205-1, PMID: PubMed DOI

Dordevic D, Capikova J, Dordevic S, Tremlová B, Gajdács M, Kushkevych I. Sulfur content in foods and beverages and its role in human and animal metabolism: a scoping review of recent studies. Heliyon. (2023) 9:e15452. doi: 10.1016/j.heliyon.2023.e15452, PMID: PubMed DOI PMC

Dordević D, Jančíková S, Vítězová M, Kushkevych I. Hydrogen sulfide toxicity in the gut environment: Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. J Adv Res. (2020) 27:55–69. doi: 10.1016/j.jare.2020.03.003, PMID: PubMed DOI PMC

Kushkevych I, Cejnar J, Treml J, Dordević D, Kollar P, Vítězová M. Recent advances in metabolic pathways of sulfate reduction in intestinal Bacteria. Cells. (2020) 9:698. doi: 10.3390/cells9030698, PMID: PubMed DOI PMC

Kushkevych I, Dordević D, Kollár P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. (2019) 13:481–8. doi: 10.1515/biol-2018-0057, PMID: PubMed DOI PMC

Kushkevych I, Dordević D, Vítězová M. Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development. J Adv Res. (2020) 27:71–8. doi: 10.1016/j.jare.2020.03.007, PMID: PubMed DOI PMC

Kushkevych I, Dordević D, Vítězová M, Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. (2018) 73:1137–43. doi: 10.2478/s11756-018-0118-2 DOI

Kushkevych I, Leščanová O, Dordević D, Jančíková S, Hošek J, Vítězová M, et al. . The sulfate-reducing microbial communities and Meta-analysis of their occurrence during diseases of small-large intestine Axis. JCM. (2019) 8:1656. doi: 10.3390/jcm8101656, PMID: PubMed DOI PMC

Kushkevych I, Martínková K, Mráková L, Giudici F, Baldi S, Novak D, et al. . Comparison of microbial communities and the profile of sulfate-reducing bacteria in patients with ulcerative colitis and their association with bowel diseases: a pilot study. Microb Cell. (2024) 11:79–89. doi: 10.15698/mic2024.03.817, PMID: PubMed DOI PMC

Kushkevych I, Vítězová M, Fedrová P, Vochyanová Z, Paráková L, Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet Brno. (2017) 86:405–11. doi: 10.2754/avb201786040405 DOI

Gadaleta RM, Garcia-Irigoyen O, Moschetta A. Bile acids and colon cancer: is FXR the solution of the conundrum? Mol Asp Med. (2017) 56:66–74. doi: 10.1016/j.mam.2017.04.002, PMID: PubMed DOI

Ocvirk S, O’Keefe SJ. Influence of bile acids on colorectal Cancer risk: potential mechanisms mediated by diet-gut microbiota interactions. Curr Nutr Rep. (2017) 6:315–22. doi: 10.1007/s13668-017-0219-5, PMID: PubMed DOI PMC

Stamp DH. Three hypotheses linking bile to carcinogenesis in the gastrointestinal tract: certain bile salts have properties that may be used to complement chemotherapy. Med Hypotheses. (2002) 59:398–405. doi: 10.1016/S0306-9877(02)00125-1, PMID: PubMed DOI

Kühn T, Stepien M, López-Nogueroles M, Damms-Machado A, Sookthai D, Johnson T, et al. . Prediagnostic plasma bile acid levels and Colon Cancer risk: a prospective study. JNCI J Natl Cancer Inst. (2020) 112:516–24. doi: 10.1093/jnci/djz166, PMID: PubMed DOI PMC

Durník R, Šindlerová L, Babica P, Jurček O. Bile acids transporters of enterohepatic circulation for targeted drug delivery. Molecules. (2022) 27:2961. doi: 10.3390/molecules27092961, PMID: PubMed DOI PMC

Hafkenscheid JCM. Influence of bile acids on the (Na+−K+)-activated- and Mg2+−activated ATPase of rat colon. Pflugers Arch. (1977) 369:203–6. doi: 10.1007/BF00582185, PMID: PubMed DOI

El Idrissi A. (2019). “Taurine regulation of neuroendocrine function,” in Taurine 11, eds. Hu J., Piao F., Schaffer S. W., Idrissi A., Wu J.-Y. (Singapore: Springer Singapore; ), 977–985. PubMed

Simon FR, Sutherland E, Sutherland J. Selective modulation of hepatic and ileal Na+-K+-ATPase by bile salts in the rat. Am J Physiol Gastrointest Liver Physiol. (1988) 254:G761–7. doi: 10.1152/ajpgi.1988.254.5.G761 PubMed DOI

Tejeda-Muñoz N, Azbazdar Y, Sosa EA, Monka J, Wei P-S, Binder G, et al. . Na,K-ATPase activity promotes macropinocytosis in colon cancer via Wnt signaling. Biol Open. (2024) 13:bio060269. doi: 10.1242/bio.060269, PMID: PubMed DOI PMC

Sumiyoshi S, Shiozaki A, Kosuga T, Simizu H, Kudo M, Kiuchi J, et al. . Functional analysis and clinical importance of ATP1A1 in Colon Cancer. Ann Surg Oncol. (2023) 30:6898–910. doi: 10.1245/s10434-023-13779-8, PMID: PubMed DOI

Qi Y, Duan G, Wei D, Zhao C, Ma Y. The bile acid membrane receptor TGR5 in Cancer: friend or foe? Molecules. (2022) 27:5292. doi: 10.3390/molecules27165292, PMID: PubMed DOI PMC

Zhang H, Xu H, Zhang C, Tang Q, Bi F. Ursodeoxycholic acid suppresses the malignant progression of colorectal cancer through TGR5-YAP axis. Cell Death Discov. (2021) 7:207. doi: 10.1038/s41420-021-00589-8, PMID: PubMed DOI PMC

Cheng K-C, Chang W-T, Kuo FY, Chen Z-C, Li Y, Cheng J-T. TGR5 activation ameliorates hyperglycemia-induced cardiac hypertrophy in H9c2 cells. Sci Rep. (2019) 9:3633. doi: 10.1038/s41598-019-40002-0, PMID: PubMed DOI PMC

Kim JY, Kim KH, Lee JA, Namkung W, Sun A, Ananthanarayanan M, et al. . Transporter-mediated bile acid uptake causes Ca2+−dependent cell death in rat pancreatic acinar cells. Gastroenterology. (2002) 122:1941–53. doi: 10.1053/gast.2002.33617, PMID: PubMed DOI

Kosterin SO, Veklich TO, Pryluts’kyi Iu I. Kinetic interpretation of the original pH-dependence of enzymatic activity of „basal” Mg2+ ATPase of the smooth muscle sarcolemma. Ukr Biokhim Zh. (2005) 2005:37–45. PubMed

Luu-The V, Goffeau A, Thinès-Sempoux D. Rat liver plasma membrane Ca2+− or Mg2+−activated ATPase. Evidence for proton movement in reconstituted vesicles. Biochimica et Biophysica Acta. (1987) 904:251–8. doi: 10.1016/0005-2736(87)90374-9 PubMed DOI

Voronina SG, Gryshchenko OV, Gerasimenko OV, Green AK, Petersen OH, Tepikin AV. Bile acids induce a cationic current, depolarizing pancreatic acinar cells and increasing the intracellular Na+ concentration. J Biol Chem. (2005) 280:1764–70. doi: 10.1074/jbc.M410230200, PMID: PubMed DOI

Becker S, Reinehr R, Graf D, Vom Dahl S, Häussinger D. Hydrophobic bile salts induce hepatocyte shrinkage via NADPH oxidase activation. Cell Physiol Biochem. (2007) 19:89–98. doi: 10.1159/000099197, PMID: PubMed DOI

Mamedova E, Árting LB, Rekling JC. Bile acids induce Ca2+ signaling and membrane permeabilizations in vagal nodose ganglion neurons. Biochem Biophys Rep. (2022) 31:101288. doi: 10.1016/j.bbrep.2022.101288, PMID: PubMed DOI PMC

Billington RA, Thuring JW, Conway SJ, Packman L, Holmes AB, Genazzani AA. Production and characterization of reduced NAADP (nicotinic acid-adenine dinucleotide phosphate). Biochem J. (2004) 378:275–80. doi: 10.1042/bj20031284, PMID: PubMed DOI PMC

Voronina SG, Barrow SL, Gerasimenko OV, Petersen OH, Tepikin AV. Effects of Secretagogues and bile acids on mitochondrial membrane potential of pancreatic acinar cells. J Biol Chem. (2004) 279:27327–38. doi: 10.1074/jbc.M311698200, PMID: PubMed DOI

Ferdek PE, Jakubowska MA, Gerasimenko JV, Gerasimenko OV, Petersen OH. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium-driven bile uptake. J Physiol. (2016) 594:6147–64. doi: 10.1113/JP272774, PMID: PubMed DOI PMC

Booth DM, Mukherjee R, Sutton R, Criddle DN. Calcium and reactive oxygen species in acute pancreatitis: friend or foe? Antioxid Redox Signal. (2011) 15:2683–98. doi: 10.1089/ars.2011.3983, PMID: PubMed DOI PMC

Karimian G, Buist-Homan M, Mikus B, Henning RH, Faber KN, Moshage H. Angiotensin II protects primary rat hepatocytes against bile salt-induced apoptosis. PLoS One. (2012) 7:e52647. doi: 10.1371/journal.pone.0052647, PMID: PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...