Enzymatic synthesis of reactive RNA probes containing squaramate-linked cytidine or adenosine for bioconjugations and cross-linking with lysine-containing peptides and proteins
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
39748090
PubMed Central
PMC11696893
DOI
10.1038/s42004-024-01399-6
PII: 10.1038/s42004-024-01399-6
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Protein-RNA interactions play important biological roles and hence reactive RNA probes for cross-linking with proteins are important tools in their identification and study. To this end, we designed and synthesized 5'-O-triphosphates bearing a reactive squaramate group attached to position 5 of cytidine or position 7 of 7-deazaadenosine and used them as substrates for polymerase synthesis of modified RNA. In vitro transcription with T7 RNA polymerase or primer extension using TGK polymerase was used for synthesis of squaramate-modified RNA probes which underwent covalent bioconjugations with amine-linked fluorophore and lysine-containing peptides and proteins including several viral RNA polymerases or HIV reverse transcriptase. Inhibition of RNA-depending RNA polymerases from Japanese Encephalitis virus was observed through formation of covalent cross-link which was partially identified by MS/MS analysis. Thus, the squaramate-linked NTP analogs are useful building blocks for the synthesis of reactive RNA probes for bioconjugations with primary amines and cross-linking with lysine residues.
See more in PubMed
Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol.19, 327–341 (2018). PubMed
Nechay, M. & Kleiner, R. E. High-throughput approaches to profile RNA-protein interactions. Curr. Opin. Chem. Biol.54, 37–44 (2020). PubMed PMC
Ramanathan, M., Porter, D. F. & Khavari, P. A. Methods to study RNA-protein interactions. Nat. Methods16, 225–234 (2019). PubMed PMC
Bae, J. W., Kwon, S. C., Na, Y., Kim, V. N. & Kim, J.-S. Chemical RNA digestion enables robust RNA-binding site mapping at single amino acid resolution. Nat. Struct. Mol. Biol.27, 678–682 (2020). PubMed
Willis, M., Hicke, B., Uhienbeck, O., Cech, T. & Koch, T. Photocrosslinking of 5-lodouracil-Substituted RNA and DNA to Proteins. Science262, 1255–1257 (1993). PubMed
Kramer, K. et al. Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nat. Methods11, 1064–1070 (2014). PubMed PMC
Panhale, A. et al. CAPRI enables comparison of evolutionarily conserved RNA interacting regions. Nat. Commun.10, 2682 (2019). PubMed PMC
Luo, H. et al. Photocatalytic Chemical Crosslinking for Profiling RNA-Protein Interactions in Living. Cells Angew. Chem. Int. Ed.61, e202202008 (2022). PubMed
Patton, R. D. et al. Chemical crosslinking enhances RNA immunoprecipitation for efficient identification of binding sites of proteins that photo-crosslink poorly with RNA. RNA26, 1216–1233 (2020). PubMed PMC
Chiaruttini, C. et al. Protein-RNA crosslinking in Escherichia coli 30S ribosomal subunits. Identification of a 16S rRNA fragment crosslinked to protein S12 by the use of the chemical crosslinking reagent 1-ethyl-3-dimethyl-aminopropylcarbodiimide. Nucleic Acids Res.23, 7657–7676 (1982). PubMed PMC
Zaman, U. et al. Dithiothreitol (DTT) acts as a specific, UV-inducible cross-linker in elucidation of protein-RNA interactions. Mol. Cell. Proteom.14, 3196–3210 (2015). PubMed PMC
Ivancová, I., Leone, D.-L. & Hocek, M. Reactive modifications of DNA nucleobases for labelling, bioconjugations, and cross-linking. Curr. Opin. Chem. Biol.52, 136–144 (2019). PubMed
Dadová, J. et al. Vinylsulfonamide and acrylamide modification of DNA for cross-linking with proteins. Angew. Chem. Int. Ed.52, 10515–10518 (2013). PubMed
Olszewska, A., Pohl, R., Brázdová, M., Fojta, M. & Hocek, M. Chloroacetamide-linked nucleotides and DNA for cross-linking with peptides and proteins. Bioconjugate Chem.27, 2089–2094 (2016). PubMed
Leone, D.-L. et al. Glyoxal-linked nucleotides and DNA for bioconjugations and crosslinking with arginine-containing peptides and proteins. Chem. Eur. J.28, e202104208 (2022). PubMed
Leone, D., Hubálek, M., Pohl, R., Sýkorová, V. & Hocek, M. 1,3‐diketone‐modified nucleotides and DNA for cross‐linking with arginine‐containing peptides and proteins. Angew. Chem. Int. Ed.133, 17523–17527 (2021). PubMed PMC
Guo, A.-D. et al. Spatiotemporal and global profiling of DNA-protein interactions enables discovery of low-affinity transcription factors. Nat. Chem.15, 803–814 (2023). PubMed
Ivancová, I., Pohl, R., Hubálek, M. & Hocek, M. Squaramate-modified nucleotides and DNA for specific cross-linking with lysine-containing peptides and proteins. Angew. Chem. Int. Ed.58, 13345–13348 (2019). PubMed PMC
Liu, Y. & Santi, D. V. m5C RNA and m5C DNA methyl transferases use different cysteine residues as catalysts. Proc. Natl Acad. Sci. USA97, 8263–8265 (2000). PubMed PMC
Khoddami, V. & Cairns, B. R. Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat. Biotechnol.31, 458–464 (2013). PubMed PMC
Dai, W. et al. Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation. Nat. Chem. Biol.17, 1178–1187 (2021). PubMed PMC
Fantoni, N. Z., El-Sagheer, A. H. & Brown, T. A Hitchhiker’s guide to click-chemistry with nucleic acids. Chem. Rev.121, 7122–7154 (2021). PubMed
George, J. T. & Srivatsan, S. G. Posttranscriptional chemical labeling of RNA by using bioorthogonal chemistry. Methods120, 28–38 (2017). PubMed
Sawant, A. A. et al. A versatile toolbox for posttranscriptional chemical labeling and imaging of RNA. Nucleic Acids Res.44, e16 (2016). PubMed PMC
Walunj, M. B., Tanpure, A. A. & Srivatsan, S. G. Post-transcriptional labeling by using Suzuki-Miyaura cross-coupling generates functional RNA probes. Nucleic Acids Res.46, e65 (2018). PubMed PMC
Someya, T., Ando, A., Kimoto, M. & Hirao, I. Site-specific labeling of RNA by combining genetic alphabet expansion transcription and copper-free click chemistry. Nucleic Acids Res43, 6665–6676 (2015). PubMed PMC
Eggert, F. & Kath-Schorr, S. A cyclopropene-modified nucleotide for site-specific RNA labeling using genetic alphabet expansion transcription. Chem. Commun.52, 7284–7287 (2016). PubMed
Eggert, F., Kulikov, K., Domnick, C., Leifels, P. & Kath-Schorr, S. Iluminated by foreign letters—strategies for site-specific cyclopropene modification of large functional RNAs via in vitro transcription. Methods120, 17–27 (2017). PubMed
Bornewasser, L., Domnick, C. & Kath-Schorr, S. Stronger together for in-cell translation: natural and unnatural base modified mRNA. Chem. Sci.13, 4753–4761 (2022). PubMed PMC
Mattay, J., Dittmar, M. & Rentmeister, A. Chemoenzymatic strategies for RNA modification and labeling. Curr. Opin. Chem. Biol.63, 46–56 (2021). PubMed
Anhäuser, L., Hüwel, S., Zobel, T. & Rentmeister, A. Multiple covalent fluorescence labeling of eukaryotic mRNA at the poly(A) tail enhances translation and can be performed in living cells. Nucleic Acids Res.47, e42 (2019). PubMed PMC
Hartstock, K. et al. MePMe-seq: antibody-free simultaneous m6A and m5C mapping in mRNA by metabolic propargyl labeling and sequencing. Nat. Commun.14, 7154 (2023). PubMed PMC
van Dülmen, M., Muthmann, N. & Rentmeister, A. Chemo-enzymatic modification of the 5’ cap maintains translation and increases immunogenic properties of mRNA. Angew. Chem. Int. Ed.60, 13280–13286 (2021). PubMed PMC
Brunderová, M., Krömer, M., Vlková, M. & Hocek, M. Chloroacetamide-modified nucleotide and RNA for bioconjugations and cross-linking with RNA-binding. Proteins Angew. Chem. Int. Ed.62, e202213764 (2023). PubMed PMC
Bartas, M., Červeň, J., Guziurová, S., Slychko, K. & Pečinka, P. Amino acid composition in various types of nucleic acid-binding proteins. Int. J. Mol. Sci.22, 922 (2021). PubMed PMC
Hacker, S. et al. Global profiling of lysine reactivity and ligandability in the human proteome. Nat. Chem.9, 1181–1190 (2017). PubMed PMC
Ukmar-Godec, T. et al. Lysine/RNA-interactions drive and regulate biomolecular condensation. Nat. Commun.10, 2909 (2019). PubMed PMC
Vaught, J. D., Dewey, T. & Eaton, B. E. T7 RNA polymerase transcription with 5-position modified UTP derivatives. J. Am. Chem. Soc.126, 11231–11237 (2004). PubMed
Pawar, M. G., Nuthanakanti, A. & Srivatsan, S. G. Heavy atom containing fluorescent ribonucleoside analog probe for the fluorescence detection of RNA-ligand binding. Bioconjug. Chem.24, 1367–1377 (2013). PubMed
Milisavljevič, N., Perlíková, P., Pohl, R. & Hocek, M. Enzymatic synthesis of base-modified RNA by T7 RNA polymerase. A systematic study and comparison of 5-substituted pyrimidine and 7-substituted 7-deazapurine nucleoside triphosphates as substrates. Org. Biomol. Chem.16, 5800–5807 (2018). PubMed
Flamme, M., McKenzie, L. K., Sarac, I. & Hollenstein, M. Chemical methods for the modification of RNA. Methods161, 64–82 (2019). PubMed
Liu, Y. et al. Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature522, 368–372 (2015). PubMed PMC
Hertler, J. et al. Synthesis of point-modified mRNA. Nucleic Acids Res.50, e115 (2022). PubMed PMC
Brunderová, M. et al. Expedient production of site specifically nucleobase-labelled or hypermodified RNA with engineered thermophilic DNA polymerases. Nat. Commun.15, 3054 (2024). PubMed PMC
Haslecker, R. et al. Extending the toolbox for RNA biology with SegModTeX: a polymerase-driven method for site-specific and segmental labeling of RNA. Nat. Commun.14, 8422 (2023). PubMed PMC
Yoshikawa, M., Kato, T. & Takenishi, T. A novel method for phosphorylation of nucleosides to 5′-nucleotides. Tetrahedron Lett.8, 5065–5068 (1967). PubMed
Kao, C., Zheng, M. & Rüdisser, S. A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA5, 1268–1272 (1999). PubMed PMC
Storer, R. I., Aciro, C. & Jones, L. H. Squaramides: physical properties, synthesis and applications. Chem. Soc. Rev.40, 2330 (2011). PubMed
Pomerantz, R. T. et al. Mechanism of nucleotide misincorporation during transcription due to template-strand misalignment. Mol. Cell24, 245–255 (2006). PubMed PMC
Cozens, C., Pinheiro, V. B., Vaisman, A., Woodgate, R. & Holliger, P. A short adaptive path from DNA to RNA polymerases. Proc. Natl Acad. Sci. USA109, 8067–8072 (2012). PubMed PMC
Malet, H. et al. The flavivirus polymerase as a target for drug discovery. Antivir. Res.80, 23–35 (2008). PubMed
Mishra, A. & Rathore, A. S. RNA dependent RNA polymerase (RdRp) as a drug target for SARS-CoV2. J. Biomol. Struct. Dyn.40, 6039–6051 (2022). PubMed PMC
Cubuk, J. et al. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat. Commun.12, 1–17 (2021). PubMed PMC
Singh, A. K. & Das, K. Insights into HIV-1 reverse transcriptase (RT) inhibition and drug resistance from thirty years of structural studies. Viruses14 (2022). PubMed PMC
Boehmer, P. E. RNA binding and R-loop formation by the herpes simplex virus type-1 single-stranded DNA-binding protein (ICP8). Nucleic Acids Res.32, 4576–4584 (2004). PubMed PMC
Konkolova, E. et al. Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses. Antivir. Res.182, 104899 (2020). PubMed PMC
Kim, Y. G., Yoo, J. S., Kim, J. H., Kim, C. M. & Oh, J. W. Biochemical characterization of a recombinant Japanese encephalitis virus RNA-dependent RNA polymerase. BMC Mol. Biol.8, 1–12 (2007). PubMed PMC
Selisko, B. et al. Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases. Virology351, 145–158 (2006). PubMed
Lovett, S. T. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol. Microbiol.52, 1243–1253 (2004). PubMed
Lu, G. & Gong, P. Crystal structure of the full-length japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog.9 (2013). PubMed PMC
Dejmek, M. et al. Non-nucleotide RNA-dependent RNA polymerase inhibitor that blocks SARS-CoV-2 replication. Viruses13, 1585 (2021). PubMed PMC
Marty, M. T. et al. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem.87, 4370–4376 (2015). PubMed PMC