Disruption of Extracellular Matrix and Perineuronal Nets Modulates Extracellular Space Volume and Geometry
Language English Country United States Media electronic
Document type Journal Article
PubMed
39753300
PubMed Central
PMC11841756
DOI
10.1523/jneurosci.0517-24.2024
PII: JNEUROSCI.0517-24.2024
Knihovny.cz E-resources
- Keywords
- extracellular diffusion, extracellular matrix, extracellular transmission, hyaluronan synthase, perineuronal nets, plasticity,
- MeSH
- Astrocytes metabolism MeSH
- Chondroitin Sulfate Proteoglycans metabolism MeSH
- Extracellular Matrix * metabolism MeSH
- Extracellular Space * metabolism MeSH
- Glial Fibrillary Acidic Protein metabolism MeSH
- Hymecromone pharmacology MeSH
- Rats MeSH
- Hyaluronic Acid MeSH
- Brain metabolism MeSH
- Nerve Net drug effects diagnostic imaging MeSH
- Rats, Sprague-Dawley MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chondroitin Sulfate Proteoglycans MeSH
- Glial Fibrillary Acidic Protein MeSH
- Hymecromone MeSH
- Hyaluronic Acid MeSH
Extracellular matrix (ECM) is a network of macromolecules which has two forms-perineuronal nets (PNNs) and a diffuse ECM (dECM)-both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility. Two months after oral treatment of rats with 4-methylumbelliferone (4-MU), an inhibitor of hyaluronan (HA) synthesis, we found downregulated staining for PNNs, HA, chondroitin sulfate proteoglycans, and glial fibrillary acidic protein. These changes were enhanced after 4 and 6 months and were reversible after a normal diet. Morphometric analysis further indicated atrophy of astrocytes. Using real-time iontophoretic method dysregulation of ECM resulted in increased ECS volume fraction α in the somatosensory cortex by 35%, from α = 0.20 in control rats to α = 0.27 after the 4-MU diet. Diffusion-weighted magnetic resonance imaging revealed a decrease of mean diffusivity and fractional anisotropy (FA) in the cortex, hippocampus, thalamus, pallidum, and spinal cord. This study shows the increase in ECS volume, a loss of FA, and changes in astrocytes due to modulation of PNNs and dECM that could affect extrasynaptic transmission, cell-to-cell communication, and neural plasticity.
Department of Pharmacology 2nd Faculty of Medicine Charles University Prague 15000 Czech Republic
Institute of Neuroimmunology Slovak Academy of Science Bratislava 84510 Slovakia
Institute of Scientific Instruments Czech Academy of Sciences Brno 61200 Czech Republic
See more in PubMed
Arranz AM, Perkins KL, Irie F, Lewis DP, Hrabe J, Xiao F, Itano N, Kimata K, Hrabetova S, Yamaguchi Y (2014) Hyaluronan deficiency due to Has3 knock-out causes altered neuronal activity and seizures via reduction in brain extracellular space. J Neurosci 34:6164–6176. 10.1523/JNEUROSCI.3458-13.2014 PubMed DOI PMC
Baldwin KT, Murai KK, Khakh BS (2024) Astrocyte morphology. Trends Cell Biol 34:547–565. 10.1016/j.tcb.2023.09.006 PubMed DOI PMC
Bekku Y, et al. (2010) Bral1: its role in diffusion barrier formation and conduction velocity in the CNS. J Neurosci 30:3113–3123. 10.1523/JNEUROSCI.5598-09.2010 PubMed DOI PMC
Bohr T, et al. (2022) The glymphatic system: current understanding and modeling. iScience 25:104987. 10.1016/j.isci.2022.104987 PubMed DOI PMC
Carulli D, et al. (2020) Cerebellar plasticity and associative memories are controlled by perineuronal nets. Proc Natl Acad Sci U S A 117:6855–6865. 10.1073/pnas.1916163117 PubMed DOI PMC
Cicanic M, Edamatsu M, Bekku Y, Vorisek I, Oohashi T, Vargova L (2018) A deficiency of the link protein Bral2 affects the size of the extracellular space in the thalamus of aged mice. J Neurosci Res 96:313–327. 10.1002/jnr.24136 PubMed DOI
Cicanic M, Sykova E, Vargova L (2012) Bral1: “superglue” for the extracellular matrix in the brain white matter. Int J Biochem Cell Biol 44:596–599. 10.1016/j.biocel.2012.01.009 PubMed DOI
Dityatev A, Schachner M, Sonderegger P (2010) The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci 11:735–746. 10.1038/nrn2898 PubMed DOI
Fawcett JW, Oohashi T, Pizzorusso T (2019) The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci 20:451–465. 10.1038/s41583-019-0196-3 PubMed DOI
Forostyak S, Homola A, Turnovcova K, Svítil P, Jendelova P, Sykova E (2014) Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells 32:3163–3172. 10.1002/stem.1812 PubMed DOI PMC
Fuxe K, Agnati LF (1991) Volume transmission in the brain: novel mechanisms for neural transmission. New York: Raven Press.
Galtrey CM, Asher RA, Nothias F, Fawcett JW (2007) Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair. Brain 130:926–939. 10.1093/brain/awl372 PubMed DOI
García-Alías G, Barkhuysen S, Buckle M, Fawcett JW (2009) Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat Neurosci 12:1145–1151. 10.1038/nn.2377 PubMed DOI
Hanssen KØ, Malthe-Sørenssen A (2022) Perineuronal nets restrict transport near the neuron surface: a coarse-grained molecular dynamics study. Front Comput Neurosci 16:967735. 10.3389/fncom.2022.967735 PubMed DOI PMC
Härtig W, Derouiche A, Welt K, Brauer K, Grosche J, Mäder M, Reichenbach A, Brückner G (1999) Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res 842:15–29. 10.1016/S0006-8993(99)01784-9 PubMed DOI
Hrabetova S, Nicholson C (2007) Biophysical properties of brain extracellular space explored with ion-selective microelectrodes, integrative optical imaging and related techniques. In: Electrochemical methods for neuroscience (Michael AC, Borland LM, eds), pp 167–204. Boca Raton, FL: CRC Press/Taylor & Francis. PubMed
Hylin MJ, Orsi SA, Moore AN, Dash PK (2013) Disruption of the perineuronal net in the hippocampus or medial prefrontal cortex impairs fear conditioning. Lear Mem 20:267–273. 10.1101/lm.030197.112 PubMed DOI PMC
Irvine SF, Gigout S, Štěpánková K, Varea NM, Machová Urdzíková L, Jendelová P, Kwok JCF (2023) 4-Methylumbelliferone enhances neuroplasticity in the central nervous system: potential oral treatment for SCI. bioRxiv. 10.1101/2023.01.23.525137 DOI
Kwok JC, Carulli D, Fawcett JW (2010) In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. J Neurochem 114:1447–1459. 10.1111/j.1471-4159.2010.06878.x PubMed DOI
Kwok JC, Dick G, Wang D, Fawcett JW (2011) Extracellular matrix and perineuronal nets in CNS repair. Dev Neurobiol 71:1073–1089. 10.1002/dneu.20974 PubMed DOI
Lehmenkühler A, Syková E, Svoboda J, Zilles K, Nicholson C (1993) Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience 55:339–351. 10.1016/0306-4522(93)90503-8 PubMed DOI
McRae PA, Porter BA (2012) The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochem Int 61:963–972. 10.1016/j.neuint.2012.08.007 PubMed DOI PMC
Nicholson C (2022) The secret world in the gaps between brain cells. Phys Today 75:26–32. 10.1063/PT.3.4999 DOI
Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol 321:225–257. 10.1113/jphysiol.1981.sp013981 PubMed DOI PMC
Nicholson C, Syková E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21:207–215. 10.1016/S0166-2236(98)01261-2 PubMed DOI
Pantazopoulos H, Berretta S (2016) In sickness and in health: perineuronal nets and synaptic plasticity in psychiatric disorders. Neural Plast 2016:9847696. 10.1155/2016/9847696 PubMed DOI PMC
Pavlova I, Drazanova E, Kratka L, Amchova P, Macicek O, Starcukova J, Starcuk Z, Ruda-Kucerova J (2023) Laterality in functional and metabolic state of the bulbectomised rat brain detected by ASL and 1H MRS: a pilot study. World J Biol Psychiatry 24:414–428. 10.1080/15622975.2022.2124450 PubMed DOI
Paxinos G, Watson C (2013) The Rat brain in stereotaxic coordinates. Oxford: Elsevier Limited. eBook ISBN:9780124157521.
Peters A, Sherman LS (2020) Diverse roles for hyaluronan and hyaluronan receptors in the developing and adult nervous system. Int J Mol Sci 21:5988. 10.3390/ijms21175988 PubMed DOI PMC
Piet R, Vargová L, Syková E, Poulain DA, Oliet SH (2004) Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci U S A 101:2151–2155. 10.1073/pnas.0308408100 PubMed DOI PMC
Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298:1248–1251. 10.1126/science.1072699 PubMed DOI
Prokopová S, Vargová L, Syková E (1997) Heterogeneous and anisotropic diffusion in the developing rat spinal cord. Neuroreport 8:3527–3532. 10.1097/00001756-199711100-00022 PubMed DOI
Rice ME, Okada YC, Nicholson C (1993) Anisotropic and heterogeneous diffusion in the turtle cerebellum: implications for volume transmission. J Neurophysiol 70:2035–2044. 10.1152/jn.1993.70.5.2035 PubMed DOI
Scarlett JM, Hu SJ, Alonge KM (2022) The ‘loss’ of perineuronal nets in Alzheimer's disease: missing or hiding in plain sight? Front Integr Neurosci 16:896400. 10.3389/fnint.2022.896400 PubMed DOI PMC
Sherpa AD, Guilfoyle DN, Naik AA, Isakovic J, Irie F, Yamaguchi Y, Hrabe J, Aoki C, Hrabetova S (2020) Integrity of white matter is compromised in mice with hyaluronan deficiency. Neurochem Res 45:53–67. 10.1007/s11064-019-02819-z PubMed DOI PMC
Sorg BA, Berretta S, Blacktop JM, Fawcett JW, Kitagawa H, Kwok JC, Miquel M (2016) Casting a wide net: role of perineuronal nets in neural plasticity. J Neurosci 36:11459–11468. 10.1523/JNEUROSCI.2351-16.2016 PubMed DOI PMC
Soria FN, et al. (2020) Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling. Nat Commun 11:3440. 10.1038/s41467-020-17328-9 PubMed DOI PMC
Starcuk Z Jr, Starcuková J (2017) Quantum-mechanical simulations for in vivo MR spectroscopy: principles and possibilities demonstrated with the program NMRScopeB. Anal Biochem 529:79–97. 10.1016/j.ab.2016.10.007 PubMed DOI
Starcuková J, Stefan D, Graveron-Demilly D (2023) Quantification of short echo time MRS signals with improved version of quantitation based on quantum estimation algorithm. NMR Biomed 36:e5008. 10.1002/nbm.5008 PubMed DOI
Stefan D, et al. (2009) Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol 20:104035. 10.1088/0957-0233/20/10/104035 DOI
Štěpánková K, et al. (2023) 4-Methylumbeliferone treatment at a dose of 1.2 g/kg/day is safe for long-term usage in rats. Int J Mol Sci 24:3799. 10.3390/ijms24043799 PubMed DOI PMC
Sucha P, Chmelova M, Kamenicka M, Bochin M, Oohashi T, Vargova L (2020) The effect of Hapln4 link protein deficiency on extracellular space diffusion parameters and perineuronal nets in the auditory system during aging. Neurochem Res 45:68–82. 10.1007/s11064-019-02894-2 PubMed DOI
Svoboda J, Syková E (1991) Extracellular space volume changes in the rat spinal cord produced by nerve stimulation and peripheral injury. Brain Res 560:216–224. 10.1016/0006-8993(91)91235-S PubMed DOI
Syková E (1997) The extracellular space in the CNS: its regulation, volume and geometry in normal and pathological neuronal function. Neuroscientist 3:28–41. 10.1177/107385849700300113 DOI
Syková E (2004) Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 129:861–876. 10.1016/j.neuroscience.2004.06.077 PubMed DOI
Syková E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88:1277–1340. 10.1152/physrev.00027.2007 PubMed DOI PMC
Syková E, Mazel T, Simonová Z (1998) Diffusion constraints and neuron-glia interaction during aging. Exp Gerontol 33:837–851. 10.1016/S0531-5565(98)00038-2 PubMed DOI
Syková E, Mazel T, Hasenöhrl RU, Harvey AR, Simonová Z, Mulders WH, Huston JP (2002) Learning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus. Hippocampus 12:269–279. 10.1002/hipo.1101 PubMed DOI
Syková E, Vorísek I, Mazel T, Antonova T, Schachner M (2005a) Reduced extracellular space in the brain of tenascin-R- and HNK-1-sulphotransferase deficient mice. Eur J Neurosci 22:1873–1880. 10.1111/j.1460-9568.2005.04375.x PubMed DOI
Syková E, Vorísek I, Antonova T, Mazel T, Meyer-Luehmann M, Jucker M, Hájek M, Ort M, Bures J (2005b) Changes in extracellular space size and geometry in APP23 transgenic mice: a model of Alzheimer's disease. Proc Natl Acad Sci U S A 102:479–484. 10.1073/pnas.0408235102 PubMed DOI PMC
Tewari BP, Chaunsali L, Prim CE, Sontheimer H (2022) A glial perspective on the extracellular matrix and perineuronal net remodeling in the central nervous system. Front Cell Neurosci 20:1022754. 10.3389/fncel.2022.1022754 PubMed DOI PMC
Tewari BP, Woo AM, Prim CE, Chaunsali L, Patel DC, Kimbrough IF, Engel K, Browning JL, Campbell SL, Sontheimer H (2024) Astrocytes require perineuronal nets to maintain synaptic homeostasis in mice. Nat Neurosci 27:1475–1488. 10.1038/s41593-024-01714-3 PubMed DOI PMC
Thompson EH, Lensjø KK, Wigestrand MB, Malthe-Sørenssen A, Hafting T, Fyhn M (2018) Removal of perineuronal nets disrupts recall of a remote fear memory. Proc Natl Acad Sci U S A 115:607–612. 10.1073/pnas.1713530115 PubMed DOI PMC
Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539. 10.1038/nrc1391 PubMed DOI
Tsien RY (2013) Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc Natl Acad Sci U S A 110:12456–12461. 10.1073/pnas.1310158110 PubMed DOI PMC
van 't Spijker HM, Kwok JCF (2017) A sweet talk: the molecular systems of perineuronal nets in controlling neuronal communication. Front Integr Neurosci 11:33. 10.3389/fnint.2017.00033 PubMed DOI PMC
Wang D, Fawcett J (2012) The perineuronal net and the control of CNS plasticity. Cell Tissue Res 349:147–160. 10.1007/s00441-012-1375-y PubMed DOI
Wang D, Ichiyama RM, Zhao R, Andrews MR, Fawcett JW (2011) Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J Neurosci 31:9332–9344. 10.1523/JNEUROSCI.0983-11.2011 PubMed DOI PMC
Wiese S, Karus M, Faissner A (2012) Astrocytes as a source for extracellular matrix molecules and cytokines. Front Pharmacol 3:120. 10.3389/fphar.2012.00120 PubMed DOI PMC
Woo AM, Sontheimer H (2023) Interactions between astrocytes and extracellular matrix structures contribute to neuroinflammation-associated epilepsy pathology. Front Mol Med 3:1198021. 10.3389/fmmed.2023.1198021 PubMed DOI PMC
Yamaguchi Y (2000) Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci 57:276–289. 10.1007/PL00000690 PubMed DOI PMC
Zoli M, Jansson A, Syková E, Agnati LF, Fuxe K (1999) Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends Pharmacol Sci 20:142–150. 10.1016/S0165-6147(99)01343-7 PubMed DOI