Large Genomes Are Associated With Greater Cell Size and Ecological Shift Towards More Nitrogen-Rich and Higher-Latitude Environments in Microalgae of the Genus Synura
Language English Country United States Media print
Document type Journal Article
Grant support
23-05546O
Grantová Agentura České Republiky
Martina Roeselová Memorial Fellowship
RVO 67985939
Akademie Věd České Republiky
PubMed
40605323
PubMed Central
PMC12223332
DOI
10.1111/jeu.70026
Knihovny.cz E-resources
- Keywords
- GC content, PGLS regression, ecological requirements, evolution, flow cytometry, genome size, silica scales,
- MeSH
- Genome Size * MeSH
- Nitrogen * metabolism MeSH
- Phylogeny MeSH
- Stramenopiles * genetics cytology MeSH
- Microalgae * genetics cytology MeSH
- Evolution, Molecular MeSH
- Cell Size MeSH
- Base Composition MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nitrogen * MeSH
The nuclear genome is essential for encoding most of the genes required for cellular processes, but its size alone can alter the characteristics of cells and organisms. Yet, genome size variation and its ecological and evolutionary impacts, particularly in microorganisms, are not well understood. We used flow cytometry to estimate genome size and GC content in 53 evolutionary lineages of the microalgal genus Synura (Chrysophyceae, Stramenopiles). Genome size evolution was reconstructed in a phylogenetic framework using molecular markers. A set of genomic, morphological, and ecogeographic variables characterizing Synura lineages was evaluated and tested as predictors of genome size variation in phylogeny-corrected statistical models. Both genome size and GC content varied widely in Synura, ranging from 0.19 to 3.70 pg of DNA and 34.0% to 49.3%, respectively. Genome size variation was mainly associated with cell size, less with silica scale size, and not with scale ultrastructure. Higher soil nitrogen, higher latitudes, and lower temperatures correlated with larger genomes. Genome size evolution in Synura shows potential dynamism, with increases confined to short terminal branches, indicating lower macroevolutionary stability. Lineages with larger genomes exhibited a narrower range of suitable ecological conditions, possibly due to selection acting deleteriously against larger genomes (and cells).
Department of Botany Faculty of Science Charles University Prague Czech Republic
Institute of Botany of the Czech Academy of Sciences Průhonice Czech Republic
Research Department for Limnology University of Innsbruck Mondsee Austria
See more in PubMed
Andersen, R. A. , Morton S. L., and Sexton J. P.. 1997. “Provasoli‐Guillard National Center for Culture of Marine Phytolankton 1997 List of Strains.” Journal of Phycology 33: 1–75.
Atkinson, D. , Ciotti B. J., and Montagnes D. J. S.. 2003. “Protists Decrease in Size Linearly With Temperature: Ca. 2.5% Degrees C(−1).” Proceedings of the Royal Society of London, Series B: Biological Sciences 270: 2605–2611. PubMed PMC
Beaudette, D. E. , Roudier P., and O'Geen A. T.. 2013. “Algorithms for Quantitative Pedology: A Toolkit for Soil Scientists.” Computers and Geosciences 52: 258–268.
Bennett, M. D. 1971. “The Duration of Meiosis.” Proceedings of the Royal Society of London, Series B: Biological Sciences 178: 277–299. PubMed
Bennett, M. D. 1987. “Variation in Genomic Form in Plants and Its Ecologoical Implications.” New Phytologist 106: 177–200.
Bhadra, S. , Leitch I. J., and Onstein R. E.. 2023. “From Genome Size to Trait Evolution During Angiosperm Radiation.” Trends in Genetics 39: 728–735. PubMed
Cantwell, H. , and Nurse P.. 2019. “Unravelling Nuclear Size Control.” Current Genetics 65: 1281–1285. PubMed PMC
Cavalier‐Smith, T. 1978. “Nuclear Volume Control by Nucleoskeletal DNA, Selection for Cell Volume and Cell Growth Rate, and the Solution of the DNA C‐Value Paradox.” Journal of Cell Science 34: 247–278. PubMed
Cavalier‐Smith, T. 1982. “Skeletal DNA and the Evolution of Genome Size.” Annual Review of Biophysics and Bioengineering 11: 273–302. PubMed
Cavalier‐Smith, T. 2005. “Economy, Speed and Size Matter: Evolutionary Forces Driving Nuclear Genome Miniaturization and Expansion.” Annals of Botany 95: 147–175. PubMed PMC
Čertnerová, D. , and Škaloud P.. 2020. “Substantial Intraspecific Genome Size Variation in Golden‐Brown Algae and Its Phenotypic Consequences.” Annals of Botany 126: 1077–1087. PubMed PMC
Čertnerová, D. , Čertner M., and Škaloud P.. 2022. “Alternating Nuclear DNA Content in Chrysophytes Provides Evidence of Their Isomorphic Haploid‐Diploid Life Cycle.” Algal Research 64: 102707.
Connolly, J. A. , Oliver M. J., Beaulieu J. M., Knight C. A., Tomanek L., and Moline M. A.. 2008. “Correlated Evolution of Genome Size and Cell Volume in Diatoms (Bacillariophyceae).” Journal of Phycology 44: 124–131. PubMed
Corradi, N. , Pombert J.‐F., Farinelli L., Didier E. S., and Keeling P. J.. 2010. “The Complete Sequence of the Smallest Known Nuclear Genome From the Microsporidian PubMed PMC
Doležel, J. 2005. “Plant DNA Flow Cytometry and Estimation of Nuclear Genome Size.” Annals of Botany 95: 99–110. PubMed PMC
Ellison, A. M. 2006. “Nutrient Limitation and Stoichiometry of Carnivorous Plants.” Plant Biology 8: 740–747. PubMed
Fick, S. E. , and Hijmans R. J.. 2017. “WorldClim 2: New 1‐km Spatial Resolution Climate Surfaces for Global Land Areas.” International Journal of Climatology 37: 4302–4315.
Finkel, Z. V. , Platt T., Sathyendranath S., et al. 2001. “Light Absorption and Size Scaling of Light‐Limited Metabolism in Marine Diatoms.” Limnology and Oceanography 46: 86–94.
Garcia‐Pichel, F. 1994. “A Model for Internal Self‐Shading in Planktonic Organisms and Its Implications for the Usefulness of Ultraviolet Sunscreens.” Limnology and Oceanography 39: 1704–1717.
Gray, D. W. , Lewis L. A., and Cardon Z. G.. 2007. “Photosynthetic Recovery Following Desiccation of Desert Green Algae (Chlorophyta) and Their Aquatic Relatives.” Plant, Cell and Environment 30: 1240–1255. PubMed
Greenwold, M. J. , Cunningham B. R., Lachenmyer E. M., Pullman J. M., Richardson T. L., and Dudycha J. L.. 2019. “Diversification of Light Capture Ability Was Accompanied by the Evolution of Phycobiliproteins in Cryptophyte Algae.” Proceedings of the Royal Society B: Biological Sciences 286: 20190655. PubMed PMC
Gregory, T. R. 2002. “A Bird's‐Eye View of the C‐Value Enigma: Genome Size, Cell Size, and Metabolic Rate in the Class Aves.” Evolution 56: 121–130. PubMed
Gregory, T. R. 2005. “Genome Size Evolution in Animals.” In The Evolution of the Genome, 3–87. Elsevier.
Guignard, M. S. , Nichols R. A., Knell R. J., et al. 2016. “Genome Size and Ploidy Influence Angiosperm Species' Biomass Under Nitrogen and Phosphorus Limitation.” New Phytologist 210: 1195–1206. PubMed PMC
Guillard, R. R. L. , and Lorenzen C. J.. 1972. “Yellow‐Green Algae With Chlorophyllide C.” Journal of Phycology 8: 10–14.
Hengl, T. , De Jesus J. M., Heuvelink G. B. M., et al. 2017. “SoilGrids250m: Global Gridded Soil Information Based on Machine Learning.” PLoS One 12: e0169748. PubMed PMC
Hepperle, D. 2004. “SeqAssem. A Sequence Analysis Tool, Conting Assembler and Trace Data Visualization Tool for Molecular Sequences. Win32‐Version.”
Herben, T. , Suda J., Klimešová J., Mihulka S., Íha P., and Šímová I.. 2012. “Ecological Effects of Cell‐Level Processes: Genome Size, Functional Traits and Regional Abundance of Herbaceous Plant Species.” Annals of Botany 110: 1357–1367. PubMed PMC
Hessen, D. O. , Jeyasingh P. D., Neiman M., and Weider L. J.. 2010. “Genome Streamlining and the Elemental Costs of Growth.” Trends in Ecology & Evolution 25, no. 2: 75–80. PubMed
Hsu, T. 1975. “A Possible Function of Constitutive Heterochromatin: The Bodyguard Hypothesis.” Genetics 79: 137–150. PubMed
Igea, J. , Miller E. F., Papadopulos A. S. T., and Tanentzap A. J.. 2017. “Seed Size and Its Rate of Evolution Correlate With Species Diversification Across Angiosperms.” PLoS Biology 15: e2002792. PubMed PMC
Irwin, A. J. , Finkel Z. V., Schofield O. M. E., and Falkowski P. G.. 2006. “Scaling‐Up From Nutrient Physiology to the Size‐Structure of Phytoplankton Communities.” Journal of Plankton Research 28: 459–471.
Jadrná, I. , Siver P. A., and Škaloud P.. 2021. “Morphological Evolution of Silica Scales in the Freshwater Genus PubMed
Jeffrey, S. W. , Wright S. W., and Zapata M.. 2011. “Microalgal Classes and Their Signature Pigments.” In Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography, edited by Roy S., Llewellyn C. A., Egeland E. S., and Johnsen G., 3–77. Cambridge University Press.
Jo, B. Y. , Shin W., Boo S. M., Kim H. S., and Siver P. A.. 2011. “Studies on Ultrastructure and Three‐Gene Phylogeny of the Genus PubMed
Katana, A. , Kwiatowski J., Spalik K., Zakrys B., Szalacha E., and Szymanska H.. 2001. “Phylogenetic Position of
LaJeunesse, T. C. , Lambert G., Andersen R. A., Coffroth M. A., and Galbraith D. W.. 2005. “
Lampe, V. , Nöthig E. M., and Schartau M.. 2021. “Spatio‐Temporal Variations in Community Size Structure of Arctic Protist Plankton in the Fram Strait.” Frontiers in Marine Science 7: 1–18.
Leinaas, H. P. , Jalal M., Gabrielsen T. M., and Hessen D. O.. 2016. “Inter‐ and Intraspecific Variation in Body‐ and Genome‐Size in Calanoid Copepods From Temperate and Arctic Waters.” Ecology and Evolution 6: 5585–5595. PubMed PMC
Leitch, I. J. , and Dodsworth S.. 2017. Endopolyploidy in Plants, 1–10. eLS.
Lipnerová, I. , Bureš P., Horová L., and Šmarda P.. 2013. “Evolution of Genome Size in PubMed PMC
Majda, S. , Beisser D., and Boenigk J.. 2021. “Nutrient‐Driven Genome Evolution Revealed by Comparative Genomics of Chrysomonad Flagellates.” Communications Biology 4: 1–11. PubMed PMC
Miller, M. A. , Pfeiffer W., and Pfeiffer W.. 2010. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees, 1–8. Gateway Computing Environments Workshop.
Montagnes, D. , and Franklin D.. 2001. “Effect of Temperature on Diatom Volume, Growth Rate, and Carbon and Nitrogen Content: Reconsidering Some Paradigms.” Limnology and Oceanography 46: 2008–2018.
Montresor, M. , John U., Beran A., and Medlin L. K.. 2004. “
Nardon, C. , Deceliere G., Loevenbruck C., Weiss M., Vieria C., and Biémont C.. 2005. “Is Genome Size Influenced by Colonization of New Environments in Dipteran Species?” Molecular Ecology 14: 869–878. PubMed
Neiman, M. , Beaton M. J., Hessen D. O., Jeyasingh P. D., and Weider L. J.. 2017. “Endopolyploidy as a Potential Driver of Animal Ecology and Evolution.” Biological Reviews 92: 234–247. PubMed
Nemcova, Y. , Neustupa J., Kviderova J., and Rezacova‐Skaloudova M.. 2010. “Morphological Plasticity of Silica Scales of
Nicholls, K. H. , and Gerrath J. F.. 1985. “The Taxonomy of
Olefeld, J. L. , Majda S., Albach D. C., Marks S., and Boenigk J.. 2018. “Genome Size of Chrysophytes Varies With Cell Size and Nutritional Mode.” Organisms Diversity & Evolution 18: 163–173.
Orme, D. , Freckleton R., Thomas G., et al. 2018. “Caper: Comparative Analyses of Phylogenetics and Evolution in R. R Package Version 1.0.1.”
Otto, F. 1990. “DAPI Staining of Fixed Cells for High‐Resolution Flow Cytometry of Nuclear DNA.” Methods in Cell Biology 33: 105–110. PubMed
Pagel, M. 1999. “Inferring the Historical Patterns of Biological Evolution.” Nature 401: 877–884. PubMed
Peng, Y. , Yang J., Leitch I. J., et al. 2022. “Plant Genome Size Modulates Grassland Community Responses to Multi‐Nutrient Additions.” New Phytologist 236: 2091–2102. PubMed
Pichrtová, M. , and Němcová Y.. 2011. “Effect of Temperature on Size and Shape of Silica Scales in
Poggio, L. , De Sousa L. M., Batjes N. H., et al. 2021. “SoilGrids 2.0: Producing Soil Information for the Globe With Quantified Spatial Uncertainty.” Soil 7: 217–240.
Pyšek, P. , Skálová H., Čuda J., et al. 2018. “Small Genome Separates Native and Invasive Populations in an Ecologically Important Cosmopolitan Grass.” Ecology 99: 79–90. PubMed
R Development Core Team . 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
Rambaut, A. 2016. “FigTree Version 1.4.3.”
Rambaut, A. , Drummond A. J., Xie D., Baele G., and Suchard M. A.. 2018. “Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7.” Systematic Biology 67: 901–904. PubMed PMC
Read, B. A. , Kegel J., Klute M. J., et al. 2013. “Pan Genome of the Phytoplankton PubMed
Revell, L. J. 2012. “Phytools: An R Package for Phylogenetic Comparative Biology (and Other Things).” Methods in Ecology and Evolution 3: 217–223.
Reynolds, S. C. , Huszar V., Kruk C., Naselli‐Flores L., and Melo S.. 2002. “Towards a Functional Classification of the Freshwater Phytoplankton.” Journal of Plankton Research 24: 417–428.
Roberts, W. R. , Siepielski A. M., and Alverson A. J.. 2024. “Diatom Abundance in the Polar Oceans Is Predicted by Genome Size.” PLoS Biology 22: 1–22. PubMed PMC
Roddy, A. B. , Théroux‐Rancourt G., Abbo T., et al. 2020. “The Scaling of Genome Size and Cell Size Limits Maximum Rates of Photosynthesis With Implications for Ecological Strategies.” International Journal of Plant Sciences 181: 75–87.
Schneider, C. A. , Rasband W. S., and Eliceiri K. W.. 2012. “NIH Image to ImageJ: 25 Years of Image Analysis.” Nature Methods 9: 671–675. PubMed PMC
Schönswetter, P. , Suda J., Popp M., Weiss‐Schneeweiss H., and Brochmann C.. 2007. “Circumpolar Phylogeography of PubMed
Simonin, K. A. , and Roddy A. B.. 2018. “Genome Downsizing, Physiological Novelty, and the Global Dominance of Flowering Plants.” PLoS Biology 16: 1–15. PubMed PMC
Šímová, I. , and Herben T.. 2012. “Geometrical Constraints in the Scaling Relationships Between Genome Size, Cell Size and Cell Cycle Length in Herbaceous Plants.” Proceedings of the Royal Society B: Biological Sciences 279: 867–875. PubMed PMC
Siver, P. A. 2022. “The Downsizing of Gigantic Scales and Large Cells in the Genus PubMed PMC
Škaloud, P. , Kristiansen J., and Škaloudová M.. 2013. “Developments in the Taxonomy of Silica‐Scaled Chrysophytes—From Morphological and Ultrastructural to Molecular Approaches.” Nordic Journal of Botany 31: 385–402.
Škaloud, P. , Škaloudová M., Jadrná I., Pilátová J., Kopecký J., and Korshikov K.. 2023. “Unravelling the Hidden Complexity in Diversity and Pigment Composition of a Colonial Flagellate
Škaloudová, M. , and Škaloud P.. 2013. “A New Species of
Šmarda, P. , Klem K., Knápek O., Veselá B., Veselá K., and Holub P.. 2023. “Growth, Physiology, and Stomatal Parameters of Plant Polyploids Grown Under Ice Age, Present‐Day, and Future CO PubMed
Šmarda, P. , Bureš P., Horová L., Foggi B., and Rossi G.. 2008. “Genome Size and GC Content Evolution of PubMed PMC
Šmarda, P. , Bureš P., Horová L., Foggi B., and Rossi G.. 2014. “Ecological and Evolutionary Significance of Genomic GC Content Diversity in Monocots.” Proceedings of the National Academy of Sciences of the United States of America 111: E4096–E4102. PubMed PMC
Smetacek, V. , Assmy P., and Henjes J.. 2004. “The Role of Grazing in Structuring Southern Ocean Pelagic Ecosystems and Biogeochemical Cycles.” Antarctic Science 16: 541–558.
Soto Gomez, M. , Brown M. J. M., Pironon S., et al. 2024. “Genome Size Is Positively Correlated With Extinction Risk in Herbaceous Angiosperms.” New Phytologist 243: 2470–2485. PubMed
Stamatakis, A. 2014. “RAxML Version 8: A Tool for Phylogenetic Analysis and Post‐Analysis of Large Phylogenies.” Bioinformatics 30: 1312–1313. PubMed PMC
Suchard, M. A. , Lemey P., Baele G., Ayres D. L., Drummond A. J., and Rambaut A.. 2018. “Bayesian Phylogenetic and Phylodynamic Data Integration Using BEAST 1.10.” Virus Evolution 4, no. 1: vey016. PubMed PMC
Tamura, K. , Peterson D., Peterson N., Stecher G., Nei M., and Kumar S.. 2011. “MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods.” Molecular Biology and Evolution 28: 2731–2739. PubMed PMC
Temsch, E. M. , Greilhuber J., and Krisai R.. 2010. “Genome Size in Liverworts.” Preslia 82: 63–80.
Trávníček, P. , Čertner M., Ponert J., Chumová Z., Jersáková J., and Suda J.. 2019. “Diversity in Genome Size and GC Content Shows Adaptive Potential in Orchids and Is Closely Linked to Partial Endoreplication, Plant Life‐History Traits and Climatic Conditions.” New Phytologist 224: 1642–1656. PubMed
Veldhuis, M. J. W. , Cucci T. L., and Sieracki M. E.. 1997. “Cellular DNA Content of Marine Phytoplankton Using Two New Fluorochromes: Taxonomic and Ecological Implications.” Journal of Phycology 33: 527–541.
Vinogradov, A. E. 2003. “Selfish DNA Is Maladaptive: Evidence From the Plant Red List.” Trends in Genetics 19: 609–614. PubMed
Vinogradov, A. E. , and Anatskaya O. V.. 2006. “Genome Size and Metabolic Intensity in Tetrapods: A Tale of Two Lines.” Proceedings of the Royal Society B: Biological Sciences 273: 27–32. PubMed PMC
von Dassow, P. , Petersen T. W., Chepurnov V. A., and Armbrust E.. 2008. “Inter‐ and Intra‐Specific Relationships Between Nuclear DNA Content and Cell Size in Selected Membersof the Centric Diatom Genus PubMed
Wilson, E. B. 1925. “The Karyoplasmic Ratio.” In The Cell in Development and Heredity, 727–733. Macmillan Company.
Zachos, J. , Pagani H., Sloan L., Thomas E., and Billups K.. 2001. “Trends, Rhythms, and Aberrations in Global Climate 65 ma to Present.” Science 292: 686–693. PubMed