Navigating bacterial motility through chemotaxis: from molecular mechanisms to physiological perspectives
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40781185
DOI
10.1007/s12223-025-01301-4
PII: 10.1007/s12223-025-01301-4
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteria, Chemotaxis, Motility, Run, Tumble,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
A ubiquitous property of bacteria is their ability to move toward more suitable environments, which can also facilitate host-associated activities like colonization and offer the cell several benefits such as bacteria moving towards a favorable gradient or away from a harmful gradient is known as chemotaxis. Bacteria achieve this by rotating flagella in clockwise and anticlockwise directions resulting in "run" and "tumble." This ability of bacteria to sense and respond to any type of change in the environmental factors like pH, osmolarity, redox potential, and temperature is a standard signal transduction system that depends on coupling proteins, which is the bacterial chemotaxis system. There are two architectures for the coupling proteins in the chemotaxis system: CheW and CheV. Typically, a signal transduction system for chemotaxis to form a core signaling complex couples CheA activity to chemoreceptor control: two CheW coupling protein molecules span a histidine kinase CheA dimer and two chemoreceptors (also known as methyl-accepting chemotaxis protein, MCP) trimers of dimers which further transfer the signal to the flagellar motor through CheY. The current review summarizes and highlights the molecular mechanism involved in bacterial chemotaxis, its physiological benefits such as locating suitable nutrients and niches for bacterial growth, and various assay techniques used for the detection of chemotactic motility.
Zobrazit více v PubMed
Abedrabbo S, Castellon J, Collins KD, Johnson KS, Ottemann KM (2017) Cooperation of two distinct coupling proteins creates chemosensory network connections. Proc Natl Acad Sci USA 114:2970–2975. https://doi.org/10.1073/pnas.1618227114 PubMed DOI PMC
Aihara E, Closson C, Matthis AL, Schumacher MA, Engevik AC, Zavros Y, Ottemann KM, Montrose MH (2014) Motility and chemotaxis mediate the preferential colonization of gastric injury sites by Helicobacter pylori. PLoS Pathog 1:e1004275. https://doi.org/10.1371/journal.ppat.1004275 PubMed DOI
Akkaladevi N, Bunyak F, Stalla D, White TA, Hazelbauer G L (2018) Flexible hinges in bacterial chemoreceptors. J. Bacteriol, 200. https://doi.org/10.1128/JB.00593-17
Alexander RP, Lowenthal AC, Harshey RM, Ottemann KM (2010) CheV: CheW-like coupling proteins at the core of the chemotaxis signaling network. Trends Microbiol 18:494–503. https://doi.org/10.1016/j.tim.2010.07.004 PubMed DOI PMC
Alirezaeizanjani Z, Großmann R, Pfeifer V, Hintsche M, Beta C (2020) Chemotaxis strategies of bacteria with multiple run modes. Sci. Adv, 6. https://doi.org/10.1126/sciadv.aaz6153 .
Anderson JK, Huang JY, Wreden C, Sweeney EG, Goers J, Remington SJ, Guillemin K (2015) Chemorepulsion from the Quorum signal Autoinducer-2 promotes Helicobacter pylori biofilm dispersal. Mbio 6:e00379. https://doi.org/10.1128/mBio.00379-15 PubMed DOI PMC
Ardré M, Henry H, Douarche C, Plapp M (2015) An individual-based model for biofilm formation at liquid surfaces. Phys Sci 12:066015. https://doi.org/10.1088/1478-3975/12/6/066015 DOI
Aschtgen MS, Brennan CA, Nikolakakis K, Cohen S, McFall-Ngai M, Ruby EG (2019) Insights into flagellar function and mechanism from the squid-vibrio symbiosis. NPJ Biofilms Microbi 5:32. https://doi.org/10.1038/s41522-019-0106-5 DOI
Be’er A, Ariel G (2019) A statistical physics view of swarming bacteria. Mov Ecol 7:9. https://doi.org/10.1186/s40462-019-0153-9 PubMed DOI PMC
Behrens W, Schweinitzer T, Bal J, Dorsch M, Bleich A, Kops F, Brenneke B, Didelot X, Suerbaum S, Josenhans C (2013) Role of energy sensor TlpD of Helicobacter pylori in gerbil colonization and genome analyses after adaptation in the gerbil. Infect Immun 81:3534–3551. https://doi.org/10.1128/IAI.00750-13 PubMed DOI PMC
Bergstrom KSB, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, Ryz N, Huang T, Velcich A, Finlay BB, Chadee K, Vallance BA (2010) Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 6:e1000902. https://doi.org/10.1371/journal.ppat.1000902 PubMed DOI PMC
Besharova O, Suchanek VM, Hartmann R, Drescher K, Sourjik V (2016) Diversification of gene expression during formation of static submerged biofilms by Escherichia coli. Front Microbiol 7:1568. https://doi.org/10.3389/fmicb.2016.01568 PubMed DOI PMC
Bettenworth V, Steinfeld B, Duin H, Petersen K, Streit WR, Bischofs I, Becker A (2019) Phenotypic heterogeneity in bacterial quorum sensing systems. J Mol Biol 431:4530–4546. https://doi.org/10.1016/j.jmb.2019.04.036 PubMed DOI
Bhattacharjee T, Amchin DB, Ott JA, Kratz F, Datta SS (2021) Chemotactic migration of bacteria in porous media. Biophys J 120:3483–3497. https://doi.org/10.1016/j.bpj.2021.05.012 PubMed DOI PMC
Bi S, Lai L (2015) Bacterial Chemoreceptors and Chemoeffectors CMLS 72:691–708. https://doi.org/10.1007/s00018-014-1770-5 PubMed DOI
Briegel A, Jensen G (2017) Progress and potential of electron cryotomography as illustrated by its application to bacterial chemoreceptor arrays. Annu Rev Biophys 46:1–21. https://doi.org/10.1146/annurev-biophys-070816-033555 PubMed DOI
Briegel A, Li X, Bilwes AM, Hughes KT, Jensen GJ, Crane BR (2012) Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. PNAS USA 109:3766–3771. https://doi.org/10.1073/pnas.1115719109 PubMed DOI PMC
Briegel A, Ames P, Gumbart JC, Oikonomou CM, Parkinson JS, Jensen GJ (2013) The mobility of two kinase domains in the Escherichia coli chemoreceptor array varies with signalling state. Mol Microbiol 89:831–841. https://doi.org/10.1111/mmi.12309 PubMed DOI PMC
Brumley DR, Carrara F, Hein AM, Yawata Y, Levin SA, Stocker R (2019) Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc Natl Acad Sci U S A 116:10792–10797. https://doi.org/10.1073/pnas.1816621116 PubMed DOI PMC
Brumley DR, Carrara F, Hein AM, Hagstrom GI, Levin SA, Stocker R (2020) Cutting through the noise: bacterial chemotaxis in marine microenvironments. Front Mar Sci. https://doi.org/10.3389/fmars.2020.00527 DOI
Burt A, Cassidy CK, Ames P, Bacia-Verloop M, Baulard M, Huard K, Luthey-Schulten Z, Desfosses A, Stansfeld PJ, Margolin W, Parkinson JS, Gutsche I (2020) Complete structure of the chemosensory array core signalling unit in an E. coli minicell strain. Nat Commun 11:743. https://doi.org/10.1038/s41467-020-14350-9 PubMed DOI PMC
Butler SM, Camilli A (2004) Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc Natl Acad Sci USA 101:5018–5023. https://doi.org/10.1073/pnas.0308052101 PubMed DOI PMC
Butler SM, Nelson EJ, Chowdhury N, Faruque SM, Calderwood SB, Camilli A (2006) Cholera stool bacteria repress chemotaxis to increase infectivity. Mol Microbiol 60:417–426. https://doi.org/10.1111/j.1365-2958.2006.05096.x PubMed DOI PMC
Cassidy CK, Himes BA, Sun D, Ma J, Zhao G, Parkinson JS, Stansfeld PJ, Luthey-Schulten Z, Zhang P (2020) Structure and dynamics of the E. coli chemotaxis core signaling complex by cryo-electron tomography and molecular simulations. Commun Biol 3:24. https://doi.org/10.1038/s42003-019-0748-0 PubMed DOI PMC
Cates ME (2012) Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? Rep Prog Phys 75(4):042601. https://doi.org/10.1088/0034-4885/75/4/042601 PubMed DOI
Cerna-Vargas JP, Santamaría-Hernando S, Matilla MA, Rodríguez-Herva JJ, Daddaoua A, Rodríguez-Palenzuela P, Krell T, López-Solanilla E (2019) Chemoperception of specific amino acids controls phytopathogenicity in Pseudomonas syringae pv. tomato. MBio, 10. https://doi.org/10.1128/mBio.01868-19
Chaban B, Hughes HV, Beeby M (2015) The flagellum in bacterial pathogens: for motility and a whole lot more. Semin Cell Dev Biol 46:91–103. https://doi.org/10.1016/j.semcdb.2015.10.032 PubMed DOI
Chandrashekhar K, Kassem II, Rajashekara G (2017) Campylobacter jejuni transducer like proteins: chemotaxis and beyond. Gut Microbes 8:323–334. https://doi.org/10.1080/19490976.2017.1279380 PubMed DOI PMC
Chen C, Liu S, Shi XQ, Chaté H, Wu Y (2017) Weak synchronization and large-scale collective oscillation in dense bacterial suspensions. Nat 542:210–214. https://doi.org/10.1038/nature20817 DOI
Chen L, Painter K, Surulescu C, Zhigun A (2020) Mathematical models for cell migration: a non-local perspective. Philos. Trans. R. Soc. B, Biol. Sci, 375:20190379. https://doi.org/10.1098/rstb.2019.0379
Chen X, Bi S, Ma X, Sourjik V, Lai L (2022) Discovery of a new chemoeffector for Escherichia coli chemoreceptor Tsr and identification of a molecular mechanism of repellent sensing. ACS Bio Med Chem Au 2:386–394. https://doi.org/10.1021/acsbiomedchemau.1c00055 PubMed DOI PMC
Clausznitzer D, Micali G, Neumann S, Sourjik V, Endres RG (2014) Predicting chemical environments of bacteria from receptor signaling. PLoS Comput Biol 10:e1003870. https://doi.org/10.1371/journal.pcbi.1003870 PubMed DOI PMC
Colin R, Zhang R, Wilson LG (2014) Fast, high-throughput measurement of collective behaviour in a bacterial population. J R Soc Interface 11:20140486. https://doi.org/10.1098/rsif.2014.0486 PubMed DOI PMC
Colin R, Rosazza C, Vaknin A, Sourjik V (2017) Multiple sources of slow activity fluctuations in a bacterial chemosensory network. Elife. https://doi.org/10.7554/eLife.26796 PubMed DOI PMC
Colin R, Drescher K, Sourjik V (2019) Chemotactic behaviour of Escherichia coli at high cell density. Nat Commun 10:5329. https://doi.org/10.1038/s41467-019-13179-1 PubMed DOI PMC
Colin R, Ni B, Laganenka L, Sourjik V (2021) Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol 45. https://doi.org/10.1093/femsre/fuab038
Collins KD, Hu S, Grasberger H, Kao JY, Ottemann KM (2018) Chemotaxis allows bacteria to overcome host-generated reactive oxygen species that constrain gland colonization. Infect Immun. https://doi.org/10.1128/IAI.00878-17 PubMed DOI PMC
Compton KK, Hildreth SB, Helm RF, Scharf BE (2020) An Updated perspective on Sinorhizobium meliloti chemotaxis to alfalfa flavonoids. Front Microbiol 11:581482. https://doi.org/10.3389/fmicb.2020.581482 PubMed DOI PMC
Corral J, Sebastià P, Coll NS, Barbé J, Aranda J, Valls M (2020) Twitching and swimming motility play a role in Ralstonia solanacearum pathogenicity. mSphere. https://doi.org/10.1128/mSphere.00740-19 PubMed DOI PMC
Cremer J, Honda T, Tang Y, Wong-Ng J, Vergassola M, Hwa T (2019) Chemotaxis as a navigation strategy to boost range expansion. Nature 575:658–663. https://doi.org/10.1038/s41586-019-1733-y PubMed DOI PMC
Curatolo AI, Zhou N, Zhao Y, Liu C, Daerr A, Tailleur J, Huang J (2020) Cooperative pattern formation in multi-component bacterial systems through reciprocal motility regulation. Nat Phys 16:1152–1157. https://doi.org/10.1038/s41567-020-0964-z DOI
Defoirdt T (2011) Can bacteria actively search to join groups? ISME J 5:569–570. https://doi.org/10.1038/ismej.2010.147 PubMed DOI
Dufour YS, Fu X, Hernandez-Nunez L, Emonet T (2014) Limits of feedback control in bacterial chemotaxis. PLoS Comput Biol 10:e1003694. https://doi.org/10.1371/journal.pcbi.1003694 PubMed DOI PMC
Dufour YS, Gillet S, Frankel NW, Weibel DB, Emonet T (2016) Direct correlation between motile behavior and protein abundance in single cells. PLoS Comput Biol 12:e1005041. https://doi.org/10.1371/journal.pcbi.1005041 PubMed DOI PMC
Dunkel J, Heidenreich S, Drescher K, Wensink HH, Bär M, Goldstein RE (2013) Fluid dynamics of bacterial turbulence. Phys Rev Lett 110:228102. https://doi.org/10.1103/PhysRevLett.110.228102 PubMed DOI
Durgé, R., Ek, J., Fredriksson, J., Logren, E., Melhem, M., & Muijs, R. (2021). Simulate Bacterial Movement through Chemotaxis. url: https://odr.chalmers.se/server/api/core/bitstreams/b5d1523f-631a-4ebb-9c74-3be9cbd06895/content
Echazarreta MA, Klose KE (2019) Vibrio flagellar synthesis. Front Cell Infect Microbiol 9:131. https://doi.org/10.3389/fcimb.2019.00131 PubMed DOI PMC
Elgamoudi BA, Andrianova EP, Shewell LK, Day CJ, King RM, Taha, Rahman H, Hartley-Tassell LE, Zhulin IB, Korolik V (2021) The Campylobacter jejuni chemoreceptor Tlp10 has a bimodal ligand-binding domain and specificity for multiple classes of chemoeffectors. Sci. Signal, 14. https://doi.org/10.1126/scisignal.abc8521
Elgeti J, Gompper G (2013) Wall accumulation of self-propelled spheres. EPL 101:48003. https://doi.org/10.1209/0295-5075/101/48003 DOI
Erhardt M (2016) Strategies to block bacterial pathogenesis by interference with motility and chemotaxis. Curr Top Microbiol Immunol 398:185–205. https://doi.org/10.1007/82_2016_493 PubMed DOI
Espina JA, Cordeiro MH, Barriga EH (2023) Tissue interplay during morphogenesis. Semin Cell Dev Biol 147:12–23. https://doi.org/10.1016/j.semcdb.2023.03.010 PubMed DOI
Falke JJ, Piasta KN (2014) Architecture and signal transduction mechanism of the bacterial chemosensory array: progress, controversies, and challenges. Curr Opin Struct Biol 29:85–94. https://doi.org/10.1016/j.sbi.2014.10.001 PubMed DOI
Fan Y, Pedersen O (2021) Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19:55–71. https://doi.org/10.1038/s41579-020-0433-9 PubMed DOI
Feng H, Zhang N, Du W, Zhang H, Liu Y, Fu R, Shao J, Zhang G, Shen Q, Zhang R (2018) Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. MPMI 31:995–1005. https://doi.org/10.1094/MPMI-01-18-0003-R PubMed DOI
Ferenci T (2016) Trade-off mechanisms shaping the diversity of bacteria. Trends Microbiol 24:209–223. https://doi.org/10.1016/j.tim.2015.11.009 PubMed DOI
Flores M, Shimizu TS, ten Wolde PR, Tostevin F (2012) Signaling noise enhances chemotactic drift of E. coli. Phys Rev Lett 109:148101. https://doi.org/10.1103/PhysRevLett.109.148101 PubMed DOI
Ford KM, Antani JD, Nagarajan A, Johnson MM, Lele PP (2018) Switching and torque generation in swarming E. coli. Front. Microbiol, 9:2197. https://doi.org/10.3389/fmicb.2018.02197
Fraebel DT, Mickalide H, Schnitkey D, Merritt J, Kuhlman TE, Kuehn S (2017) Environment determines evolutionary trajectory in a constrained phenotypic space. Elife. https://doi.org/10.7554/eLife.24669 PubMed DOI PMC
Frankel NW, Pontius W, Dufour YS, Long J, Hernandez-Nunez L, Emonet T (2014) Adaptability of non-genetic diversity in bacterial chemotaxis. Elife. https://doi.org/10.7554/eLife.03526 PubMed DOI PMC
Friedlander RS, Vogel N, Aizenberg J (2015) Role of flagella in adhesion of Escherichia coli to abiotic surfaces. Langmuir 31:6137–6144. https://doi.org/10.1021/acs.langmuir.5b00815 PubMed DOI
Fu X, Kato S, Long J, Mattingly HH, He C, Vural DC, Zucker SW, Emonet T (2018) Spatial self-organization resolves conflicts between individuality and collective migration. Nat Commun 9:2177. https://doi.org/10.1038/s41467-018-04539-4 PubMed DOI PMC
Furter M, Sellin ME, Hansson GC, Hardt WD (2019) Mucus architecture and near-surface swimming affect distinct Salmonella Typhimurium infection patterns along the murine intestinal tract. Cell Rep 27:2665-2678.e3. https://doi.org/10.1016/j.celrep.2019.04.106 PubMed DOI PMC
Garvis S, Munder A, Ball G, de Bentzmann S, Wiehlmann L, Ewbank JJ, Tümmler B, Filloux A (2009) Caenorhabditis elegans semi-automated liquid screen reveals a specialized role for the chemotaxis gene cheB2 in Pseudomonas aeruginosa virulence. PLoS Pathog 5:e1000540. https://doi.org/10.1371/journal.ppat.1000540 PubMed DOI PMC
Govern CC, Ten Wolde PR (2014) Optimal resource allocation in cellular sensing systems. PNAS USA 111:17486–17491. https://doi.org/10.1073/pnas.1411524111 PubMed DOI PMC
Grauer J, Löwen H, Be’er A, Liebchen B (2020) Swarm hunting and cluster ejections in chemically communicating active mixtures. Sci Rep 10:5594. https://doi.org/10.1038/s41598-020-62324-0 PubMed DOI PMC
Grognot M, Taute KM (2021) A multiscale 3D chemotaxis assay reveals bacterial navigation mechanisms. Commun Biol 4:669. https://doi.org/10.1038/s42003-021-02190-2 PubMed DOI PMC
Gude S, Pinçe E, Taute KM, Seinen AB, Shimizu TS, Tans SJ (2020) Bacterial coexistence driven by motility and spatial competition. Nature 578:588–592. https://doi.org/10.1038/s41586-020-2033-2 PubMed DOI
Gumerov VM, Andrianova EP, Zhulin IB (2021) Diversity of bacterial chemosensory systems. Curr Opin Microbiol 61:42–50. https://doi.org/10.1016/j.mib.2021.01.016 PubMed DOI PMC
Guo M, Huang Z, Yang J (2017) Is there any crosstalk between the chemotaxis and virulence induction signaling in Agrobacterium tumefaciens ? Biotechnol. Adv 35:505–511. https://doi.org/10.1016/j.biotechadv.2017.03.008 DOI
Guo X, Shen Q, Chen Z, He Z, Yan X (2023) Harnessing microfluidic technology for bacterial single-cell analysis in mammals. TrAC 166:117168. https://doi.org/10.1016/j.trac.2023.117168 DOI
Hall BA, Armitage JP, Sansom MSP (2011) Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling. PLoS Comput Biol 7:e1002204. https://doi.org/10.1371/journal.pcbi.1002204 PubMed DOI PMC
Hall BA, Armitage JP, Sansom MSP (2012) Mechanism of bacterial signal transduction revealed by molecular dynamics of Tsr dimers and trimers of dimers in lipid vesicles. PLoS Comput Biol 8:e1002685. https://doi.org/10.1371/journal.pcbi.1002685 PubMed DOI PMC
Hanyu H, Engevik KA, Matthis AL, Ottemann KM, Montrose MH, Aihara E (2019) Helicobacter pylori uses the TlpB receptor to sense sites of gastric injury. Infect Immun. https://doi.org/10.1128/IAI.00202-19 PubMed DOI PMC
Hartley-Tassell LE, Shewell LK, Day CJ, Wilson JC, Sandhu R, Ketley JM, Korolik V (2010) Identification and characterization of the aspartate chemosensory receptor of Campylobacter jejuni. Mol Microbiol 75:710–730. https://doi.org/10.1111/j.1365-2958.2009.07010.x PubMed DOI
He K, Bauer CE (2014) Chemosensory signaling systems that control bacterial survival. Trends Microbiol 22:389–398. https://doi.org/10.1016/j.tim.2014.04.004 PubMed DOI PMC
Hegde M, Englert DL, Schrock S, Cohn WB, Vogt C, Wood TK, Manson MD, Jayaraman A (2011) Chemotaxis to the quorum-sensing signal AI-2 requires the Tsr chemoreceptor and the periplasmic LsrB AI-2-binding protein. J Bacteriol 193:768–773. https://doi.org/10.1128/JB.01196-10 PubMed DOI
Hein AM, Brumley DR, Carrara F, Stocker R, Levin SA (2016) Physical limits on bacterial navigation in dynamic environments. J R Soc Interface 13:20150844. https://doi.org/10.1098/rsif.2015.0844 PubMed DOI PMC
Hindré T, Knibbe C, Beslon G, Schneider D (2012) New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nat Rev Microbiol 10:352–365. https://doi.org/10.1038/nrmicro2750 PubMed DOI
Hölscher T, Bartels B, Lin YC, Gallegos-Monterrosa R, Price-Whelan A, Kolter R, Dietrich LEP, Kovács ÁT (2015) Motility, chemotaxis and aerotaxis contribute to competitiveness during bacterial pellicle biofilm development. J Mol Biol 427:3695–3708. https://doi.org/10.1016/j.jmb.2015.06.014 PubMed DOI PMC
Huang JY, Sweeney EG, Sigal M, Zhang HC, Remington SJ, Cantrell MA, Kuo CJ, Guillemin K, Amieva MR (2015) Chemodetection and destruction of host urea allows Helicobacter pylori to locate the epithelium. Cell Host Microbe 18:147–156. https://doi.org/10.1016/j.chom.2015.07.002 PubMed DOI PMC
Huang JY, Goers Sweeney E, Guillemin K, Amieva MR (2017) Multiple acid sensors control Helicobacter pylori colonization of the stomach. PLoS Pathog 13:e1006118. https://doi.org/10.1371/journal.ppat.1006118 PubMed DOI PMC
Huang Z, Pan X, Xu N, Guo M (2019) Bacterial chemotaxis coupling protein: structure, function and diversity. In Microbiol. Res 219:40–48. Elsevier GmbH. https://doi.org/10.1016/j.micres.2018.11.001
Hui S, Silverman JM, Chen SS, Erickson DW, Basan M. Wang J, Hwa T, Williamson JR (2015) Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol 11:784. https://doi.org/10.15252/msb.20145697
Ilkanaiv B, Kearns DB, Ariel G, Be’er A (2017) Effect of cell aspect ratio on swarming bacteria. Phys Rev Lett 118:158002. https://doi.org/10.1103/PhysRevLett.118.158002 PubMed DOI PMC
Jani S, Seely AL, Peabody VGL, Jayaraman A, Manson MD (2017) Chemotaxis to self-generated AI-2 promotes biofilm formation in Escherichia coli. Microbiol (Soc Gen Microbiol) 163:1778–1790. https://doi.org/10.1099/mic.0.000567 DOI
Jeckel H, Jelli E, Hartmann R, Singh PK, Mok R, Totz JF, Drescher K (2019) Learning the space-time phase diagram of bacterial swarm expansion. Proc Natl Acad Sci USA 116:1489–1494. https://doi.org/10.1073/pnas.1811722116 PubMed DOI PMC
Jikeli JF, Alvarez L, Friedrich BM, Wilson LG, Pascal R, Colin R, Pichlo M, Rennhack A, Brenker C, Kaupp UB (2015) Sperm navigation along helical paths in 3D chemoattractant landscapes. Nat Commun 6:7985. https://doi.org/10.1038/ncomms8985 PubMed DOI
Jing G, Zöttl A, Clément É, Lindner A (2020) Chirality-induced bacterial rheotaxis in bulk shear flows. Sci. Adv, 6:eabb2012. https://doi.org/10.1126/sciadv.abb2012
Johnson KS, Ottemann KM (2018) Colonization, localization, and inflammation: the roles of H. pylori chemotaxis in vivo. Curr Opin Microbiol 41:51–57. https://doi.org/10.1016/j.mib.2017.11.019 PubMed DOI
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2 PubMed DOI PMC
Jung K, Brameyer S, Fabiani F, Gasperotti A, Hoyer E (2019) Phenotypic heterogeneity generated by histidine kinase-based signaling networks. J Mol Biol 431:4547–4558. https://doi.org/10.1016/j.jmb.2019.03.032 PubMed DOI
Kamino K, Keegstra JM, Long J, Emonet T, Shimizu TS (2020) Adaptive tuning of cell sensory diversity without changes in gene expression. Sci Adv 6. https://doi.org/10.1126/sciadv.abc1087
Karin O, Alon U (2021) Temporal fluctuations in chemotaxis gain implement a simulated-tempering strategy for efficient navigation in complex environments. iScience 24:102796. https://doi.org/10.1016/j.isci.2021.102796 PubMed DOI PMC
Karmakar R (2021) State of the art of bacterial chemotaxis. J Basic Microbiol 61:366–379. https://doi.org/10.1002/jobm.202000661 PubMed DOI
Karmakar R, Uday Bhaskar RVS, Jesudasan RE, Tirumkudulu MS, Venkatesh KV (2016) Enhancement of swimming speed leads to a more-efficient chemotactic response to repellent. Appl Environ Microbiol 82:1205–1214. https://doi.org/10.1128/AEM.03397-15 PubMed DOI PMC
Kawagishi I, Nishiyama S (2017) Chemotactic behaviors of Vibrio cholerae cells. pp 259–271. https://doi.org/10.1007/978-1-4939-6927-2_21
Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634–644. https://doi.org/10.1038/nrmicro2405 PubMed DOI PMC
Kearns DB, Losick R (2005) Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19:3083–3094. https://doi.org/10.1101/gad.1373905 PubMed DOI PMC
Keilberg D, Ottemann KM (2016) How Helicobacter pylori senses, targets and interacts with the gastric epithelium. Environ Microbiol 18:791–806. https://doi.org/10.1111/1462-2920.13222 PubMed DOI
Kennedy EN, Barr SA, Liu X, Vass LR, Liu Y, Xie Z, Bourret RB (2022) Azorhizobium caulinodans chemotaxis is controlled by an unusual phosphorelay network. J Bacteriol 204:e0052721. https://doi.org/10.1128/JB.00527-21 PubMed DOI
Kessler RW, Weiss A, Kuegler S, Hermes C, Wichard T (2018) Macroalgal-bacterial interactions: role of dimethylsulfoniopropionate in microbial gardening by Ulva (Chlorophyta). Mol Ecol 27:1808–1819. https://doi.org/10.1111/mec.14472 PubMed DOI
Khan MF, Machuca MA, Rahman MM, Koç C, Norton RS, Smith BJ, Roujeinikova A (2020) Structure-activity relationship study reveals the molecular basis for specific sensing of hydrophobic amino acids by the Campylobacter jejuni chemoreceptor Tlp3. Biomolecules. https://doi.org/10.3390/biom10050744 PubMed DOI PMC
Khursigara CM, Wu X, Zhang P, Lefman J, Subramaniam S (2008) Role of HAMP domains in chemotaxis signaling by bacterial chemoreceptors. Proc Natl Acad Sci U S A 105:16555–16560. https://doi.org/10.1073/pnas.0806401105 PubMed DOI PMC
Koch DL, Subramanian G (2011) Collective hydrodynamics of swimming microorganisms: living fluids. Annu Rev Fluid Mech 43:637–659. https://doi.org/10.1146/annurev-fluid-121108-145434 DOI
Koirala S, Mears P, Sim M, Golding I, Chemla YR, Aldridge PD, Rao CV (2014) A nutrient-tunable bistable switch controls motility in Salmonella enterica serovar Typhimurium. mBio 5:e01611–14. https://doi.org/10.1128/mBio.01611-14 PubMed DOI PMC
Korolik V (2019) The role of chemotaxis during Campylobacter jejuni colonisation and pathogenesis. Curr Opin Microbiol 47:32–37. https://doi.org/10.1016/j.mib.2018.11.001 PubMed DOI
Koster DA, Mayo A, Bren A, Alon U (2012) Surface growth of a motile bacterial population resembles growth in a chemostat. J Mol Biol 424:180–191. https://doi.org/10.1016/j.jmb.2012.09.005 PubMed DOI
Laganenka L, Sourjik V (2018) Autoinducer 2-dependent Escherichia coli biofilm formation is enhanced in a dual-species coculture. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02638-17 PubMed DOI PMC
Laganenka L, Colin R, Sourjik V (2016) Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat Commun 7:12984. https://doi.org/10.1038/ncomms12984 PubMed DOI PMC
Laganenka L, López ME, Colin R, Sourjik V (2020) Flagellum-mediated mechanosensing and RflP control motility state of pathogenic Escherichia coli. mBio, 11. https://doi.org/10.1128/mBio.02269-19
Lamb E, Trimble MJ, McCarter LL (2019) Cell-cell communication, chemotaxis and recruitment in Vibrio parahaemolyticus. Mol Microbiol 112:99–113. https://doi.org/10.1111/mmi.14256 PubMed DOI PMC
Lazova MD, Ahmed T, Bellomo D, Stocker R, Shimizu TS (2011) Response rescaling in bacterial chemotaxis. Proc Natl Acad Sci U S A 108:13870–13875. https://doi.org/10.1073/pnas.1108608108 PubMed DOI PMC
Li M, Hazelbauer GL (2011) Core unit of chemotaxis signaling complexes. Proc Natl Acad Sci USA 108:9390–9395. https://doi.org/10.1073/pnas.1104824108 PubMed DOI PMC
Li Y, Hu Y, Fu W, Xia B, Jin C (2007) Solution structure of the bacterial chemotaxis adaptor protein CheW from Escherichia coli. Biochem Biophys Res Commun 360:863–867. https://doi.org/10.1016/j.bbrc.2007.06.146 PubMed DOI
Li X, Fleetwood AD, Bayas C, Bilwes AM, Ortega DR, Falke JJ, Zhulin IB, Crane BR (2013) The 3.2 Å resolution structure of a receptor:CheA:CheW signaling complex defines overlapping binding sites and key residue interactions within bacterial chemosensory arrays. Biochemistry 52:3852–3865. https://doi.org/10.1021/bi400383e PubMed DOI
Li Z, Lou H, Ojcius DM, Sun A, Sun D, Zhao J, Lin X, Yan J (2014) Methyl-accepting chemotaxis proteins 3 and 4 are responsible for Campylobacter jejuni chemotaxis and jejuna colonization in mice in response to sodium deoxycholate. J Med Microbiol 63(3):343–354. https://doi.org/10.1099/jmm.0.068023-0 PubMed DOI
Liu J, Hu B, Morado DR, Jani S, Manson MD, Margolin W (2012) Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc Natl Acad Sci USA 109. https://doi.org/10.1073/pnas.1200781109
Liu W, Cremer J, Li D, Hwa T, Liu C (2019) An evolutionarily stable strategy to colonize spatially extended habitats. Nature 575:664–668. https://doi.org/10.1038/s41586-019-1734-x PubMed DOI PMC
Long J, Zucker SW, Emonet T (2017) Feedback between motion and sensation provides nonlinear boost in run-and-tumble navigation. PLOS Comput Biol 13:e1005429. https://doi.org/10.1371/journal.pcbi.1005429 PubMed DOI PMC
Lopes JG, Sourjik V (2018) Chemotaxis of Escherichia coli to major hormones and polyamines present in human gut. ISME J 12:2736–2747. https://doi.org/10.1038/s41396-018-0227-5 PubMed DOI PMC
López-Farfán D, Reyes-Darias JA, Matilla MA, Krell T (2019) Concentration dependent effect of plant root exudates on the chemosensory systems of Pseudomonas putida KT2440. Front Microbiol 10:78. https://doi.org/10.3389/fmicb.2019.00078 PubMed DOI PMC
Mao X, Egli R, Petersen N, Hanzlik M, Liu X (2014) Magneto-chemotaxis in sediment: first insights. PLoS ONE 9:e102810. https://doi.org/10.1371/journal.pone.0102810 PubMed DOI PMC
Marrink SJ, Corradi V, Souza PCT, Ingólfsson HI, Tieleman DP, Sansom MSP (2019) Computational modeling of realistic cell membranes. Chem Rev 119:6184–6226. https://doi.org/10.1021/acs.chemrev.8b00460 PubMed DOI PMC
Massalha H, Korenblum E, Malitsky S, Shapiro OH, Aharoni A (2017) Live imaging of root-bacteria interactions in a microfluidics setup. Proc Natl Acad Sci U S A 114:4549–4554. https://doi.org/10.1073/pnas.1618584114 PubMed DOI PMC
Matilla MA, Krell T (2018) The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 42. https://doi.org/10.1093/femsre/fux052
McGreevy R, Teo I, Singharoy A, Schulten K (2016) Advances in the molecular dynamics flexible fitting method for cryo-EM modeling. Methods 100:50–60. https://doi.org/10.1016/j.ymeth.2016.01.009 PubMed DOI PMC
Menolascina F, Rusconi R, Fernandez VI, Smriga S, Aminzare Z, Sontag ED, Stocker R (2017) Logarithmic sensing in Bacillus subtilis aerotaxis. NPJ Syst Biol Appl 3:16036. https://doi.org/10.1038/npjsba.2016.36 PubMed DOI PMC
Merritt PM, Danhorn T, Fuqua C (2007) Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation. J Bacteriol 189:8005–8014. https://doi.org/10.1128/JB.00566-07 PubMed DOI PMC
Micali G, Endres RG (2016) Bacterial chemotaxis: information processing, thermodynamics, and behavior. Curr Opin Microbiol 30:8–15. https://doi.org/10.1016/j.mib.2015.12.001 PubMed DOI
Miller LD, Yost CK, Hynes MF, Alexandre G (2007) The major chemotaxis gene cluster of Rhizobium leguminosarum bv. viciae is essential for competitive nodulation. Mol Microbiol 63:348–362. https://doi.org/10.1111/j.1365-2958.2006.05515.x PubMed DOI
Millet YA, Alvarez D, Ringgaard S, von Andrian UH, Davis BM, Waldor MK (2014) Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. PLoS Pathog 10:e1004405. https://doi.org/10.1371/journal.ppat.1004405 PubMed DOI PMC
Min TL, Mears PJ, Chubiz LM, Rao CV, Golding I, Chemla YR (2009) High-resolution, long-term characterization of bacterial motility using optical tweezers. Nat Methods 6:831–835. https://doi.org/10.1038/nmeth.1380 PubMed DOI PMC
Min TL, Mears PJ, Golding I, Chemla YR (2012) Chemotactic adaptation kinetics of individual Escherichia coli cells. Proc Natl Acad Sci USA 109:9869–9874. https://doi.org/10.1073/pnas.1120218109 PubMed DOI PMC
Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold: making protein folding accessible to all. Nat Methods 19:679–682. https://doi.org/10.1038/s41592-022-01488-1 PubMed DOI PMC
Misselwitz B, Barrett N, Kreibich S, Vonaesch P, Andritschke D, Rout S, Weidner K, Sormaz M, Songhet P, Horvath P, Chabria M, Vogel V, Spori DM, Jenny P, Hardt WD (2012) Near surface swimming of Salmonella Typhimurium explains target-site selection and cooperative invasion. PLoS Pathog 8:e1002810. https://doi.org/10.1371/journal.ppat.1002810 PubMed DOI PMC
Motaleb MA, Liu J, Wooten RM (2015) Spirochetal motility and chemotaxis in the natural enzootic cycle and development of Lyme disease. Curr Opin Microbiol 28:106–113. https://doi.org/10.1016/j.mib.2015.09.006 PubMed DOI PMC
Mukherjee S, Kearns DB (2014) The structure and regulation of flagella in Bacillus subtilis. Annu Rev Genet 48:319–340. https://doi.org/10.1146/annurev-genet-120213-092406 PubMed DOI PMC
Muok AR, Briegel A, Crane BR (2020) Regulation of the chemotaxis histidine kinase CheA: a structural perspective. Biochimica et Biophysica Acta (BBA) 1862:183030. https://doi.org/10.1016/j.bbamem.2019.183030 DOI
Neuman H, Debelius JW, Knight R, Koren O (2015) Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev 39:509–521. https://doi.org/10.1093/femsre/fuu010 PubMed DOI
Neumann S, Grosse K, Sourjik V (2012) Chemotactic signaling via carbohydrate phosphotransferase systems in Escherichia coli. Proc Natl Acad Sci U S A 109:12159–12164. https://doi.org/10.1073/pnas.1205307109 PubMed DOI PMC
Ngamkala S, Satchasataporn K, Setthawongsin C, Raksajit W (2020) Histopathological study and intestinal mucous cell responses against Aeromonas hydrophila in Nile tilapia administered with Lactobacillus rhamnosus GG. Vet World 13:967–974. https://doi.org/10.14202/vetworld.2020.967-974
Ni B, Ghosh B, Paldy FS, Colin R, Heimerl T, Sourjik V (2017) Evolutionary remodeling of bacterial motility checkpoint control. Cell Rep 18:866–877. https://doi.org/10.1016/j.celrep.2016.12.088 PubMed DOI PMC
Ni B, Colin R, Link H, Endres RG, Sourjik V (2020) Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc Natl Acad Sci USA 117:595–601. https://doi.org/10.1073/pnas.1910849117 PubMed DOI
O’Neal L, Vo L, Alexandre G (2020) Specific root exudate compounds sensed by dedicated chemoreceptors shape Azospirillum brasilense chemotaxis in the rhizosphere. Appl Environ Microbiol 86(15). https://doi.org/10.1128/AEM.01026-20
Olsen JE, Hoegh-Andersen KH, Casadesús J, Rosenkranzt J, Chadfield MS, Thomsen LE (2013) The role of flagella and chemotaxis genes in host pathogen interaction of the host adapted Salmonella enterica serovar Dublin compared to the broad host range serovar S. Typhimurium. BMC Microbiol 13:67. https://doi.org/10.1186/1471-2180-13-67 PubMed DOI PMC
Ortega DR, Zhulin IB (2016) Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. PLOS Comput Biol 12:e1004723. https://doi.org/10.1371/journal.pcbi.1004723 PubMed DOI PMC
Ortega DR, Yang C, Ames P, Baudry J, Parkinson JS, Zhulin IB (2013) A phenylalanine rotameric switch for signal-state control in bacterial chemoreceptors. Nat Commun 4:2881. https://doi.org/10.1038/ncomms3881 PubMed DOI
Ortega Á, Zhulin IB, Krell T (2017) Sensory repertoire of bacterial chemoreceptors. Microbiol Mol Biol Rev 81. https://doi.org/10.1128/MMBR.00033-17
Pardeshi S, Shede P (2024) A novel device and method for assay of bacterial chemotaxis towards chemoattractants. Indian J Microbiol. https://doi.org/10.1007/s12088-024-01194-w PubMed DOI
Park H, Pontius W, Guet CC, Marko JF, Emonet T, Cluzel P (2010) Interdependence of behavioural variability and response to small stimuli in bacteria. Nature 468:819–823. https://doi.org/10.1038/nature09551 PubMed DOI PMC
Park H, Im W, Seok C (2011) Transmembrane signaling of chemotaxis receptor Tar: insights from molecular dynamics simulation studies. Biophys J 100:2955–2963. https://doi.org/10.1016/j.bpj.2011.05.030 PubMed DOI PMC
Parker DJ, Demetci P, Li G-W (2019) Rapid accumulation of motility-activating mutations in resting liquid culture of Escherichia coli. J Bacteriol 201(19). https://doi.org/10.1128/JB.00259-19
Parkinson JS, Hazelbauer GL, Falke JJ (2015) Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol 23:257–266. https://doi.org/10.1016/j.tim.2015.03.003 PubMed DOI PMC
Partridge JD, Harshey RM (2013) Swarming: flexible roaming plans. J Bacteriol 195:909–918. https://doi.org/10.1128/JB.02063-12 PubMed DOI PMC
Partridge JD, Nhu NTQ, Dufour YS, Harshey RM (2019) Escherichia coli remodels the chemotaxis pathway for swarming. mBio 10:e00316–19. https://doi.org/10.1128/mBio.00316-19 PubMed DOI PMC
Partridge JD, Nhu NTQ, Dufour YS, Harshey RM (2020) Tumble suppression is a conserved feature of swarming motility. mBio 11:e01189–20. https://doi.org/10.1128/mBio.01189-20 PubMed DOI PMC
Paulick A, Jakovljevic V, Zhang S, Erickstad M, Groisman A, Meir Y, Ryu WS, Wingreen NS, Sourjik V (2017) Mechanism of bidirectional thermotaxis in Escherichia coli. eLife 6:e26607. https://doi.org/10.7554/eLife.26607
Pedetta A, Parkinson JS, Studdert CA (2014) Signalling-dependent interactions between the kinase-coupling protein CheW and chemoreceptors in living cells. Mol Microbiol 93:1144–1155. https://doi.org/10.1111/mmi.12727 PubMed DOI PMC
Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 37:156–181. https://doi.org/10.1111/j.1574-6976.2012.00345.x PubMed DOI
Perilla JR, Goh BC, Cassidy CK, Liu B, Bernardi RC, Rudack T, Yu H, Wu Z, Schulten K (2015) Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 31:64–74. https://doi.org/10.1016/j.sbi.2015.03.007 PubMed DOI PMC
Perkins A, Tudorica DA, Amieva MR, Remington SJ, Guillemin K (2019) Helicobacter pylori senses bleach (HOCl) as a chemoattractant using a cytosolic chemoreceptor. PLoS Biol 17:e3000395. https://doi.org/10.1371/journal.pbio.3000395 PubMed DOI PMC
Phan TV, Morris R, Black ME, Do TK, Lin K-C, Nagy K, Sturm JC, Bos J, Austin RH (2020) Bacterial route finding and collective escape in mazes and fractals. Phys Rev X 10(3):031017. https://doi.org/10.1103/PhysRevX.10.031017 DOI
Piñas GE, Parkinson JS (2019) Identification of a kinase-active CheA conformation in Escherichia coli chemoreceptor signaling complexes. J Bacteriol 201:e00543-e619. https://doi.org/10.1128/JB.00543-19 PubMed DOI PMC
Rader BA, Wreden C, Hicks KG, Sweeney EG, Ottemann KM, Guillemin K (2011) Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TlpB. Microbiology 157:2445–2455. https://doi.org/10.1099/mic.0.049353-0 PubMed DOI PMC
Raina J-B, Fernandez V, Lambert B, Stocker R, Seymour JR (2019) The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol 17:284–294. https://doi.org/10.1038/s41579-019-0182-9 PubMed DOI
Reyes-Darias JA, García V, Rico-Jiménez M, Corral-Lugo A, Lesouhaitier O, Juárez-Hernández D, Yang Y, Bi S, Feuilloley M, Muñoz-Rojas J, Sourjik V, Krell T (2015) Specific gamma-aminobutyrate chemotaxis in pseudomonads with different lifestyle. Mol Microbiol 97(3):488–501. https://doi.org/10.1111/mmi.13045 PubMed DOI
Rico-Jiménez M, Reyes-Darias JA, Ortega Á, Díez Peña AI, Morel B, Krell T (2016) Two different mechanisms mediate chemotaxis to inorganic phosphate in Pseudomonas aeruginosa. Sci Rep 6:28967. https://doi.org/10.1038/srep28967 PubMed DOI PMC
Riechmann C, Zhang P (2023) Recent structural advances in bacterial chemotaxis signalling. Curr Opin Struct Biol 79:102565. https://doi.org/10.1016/j.sbi.2023.102565 PubMed DOI PMC
Río-Álvarez I, Muñoz-Gómez C, Navas-Vásquez M, Martínez-García PM, Antúnez-Lamas M, Rodríguez-Palenzuela P, López-Solanilla E (2015) Role of Dickeya dadantii 3937 chemoreceptors in the entry to Arabidopsis leaves through wounds. Mol Plant Pathol 16:685–698. https://doi.org/10.1111/mpp.12227 PubMed DOI PMC
Rivera-Chávez F, Winter SE, Lopez CA, Xavier MN, Winter MG, Nuccio SP, Russell JM, Laughlin RC, Lawhon SD, Sterzenbach T, Bevins CL, Tsolis RM, Harshey R, Adams LG, Bäumler AJ (2013) Salmonella uses energy taxis to benefit from intestinal inflammation. PLoS Pathog 9:e1003267. https://doi.org/10.1371/journal.ppat.1003267 PubMed DOI PMC
Rivera-Chávez F, Lopez CA, Zhang LF, García-Pastor L, Chávez-Arroyo A, Lokken KL, Tsolis RM, Winter SE, Bäumler AJ (2016) Energy taxis toward host-derived nitrate supports a Salmonella pathogenicity island 1-independent mechanism of invasion. mBio 7:e00960–16. https://doi.org/10.1128/mBio.00960-16
Rumbaugh KP, Sauer K (2020) Biofilm dispersion. Nat Rev Microbiol 18:571–586. https://doi.org/10.1038/s41579-020-0385-0 PubMed DOI PMC
Rusconi R, Guasto JS, Stocker R (2014) Bacterial transport suppressed by fluid shear. Nat Phys 10:212–217. https://doi.org/10.1038/nphys2883 DOI
Salah Ud-Din AIM, Roujeinikova A (2017) Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea. Cell Mol Life Sci 74:3293–3303. https://doi.org/10.1007/s00018-017-2514-0 PubMed DOI PMC
Salek MM, Carrara F, Fernandez V, Guasto JS, Stocker R (2019) Bacterial chemotaxis in a microfluidic T-maze reveals strong phenotypic heterogeneity in chemotactic sensitivity. Nat Commun 10:1877. https://doi.org/10.1038/s41467-019-09521-2 PubMed DOI PMC
Sampedro I, Parales RE, Krell T, Hill JE (2015) Pseudomonas chemotaxis. FEMS Microbiol Rev 39:17–46. https://doi.org/10.1111/1574-6976.12081 PubMed DOI
Saragosti J, Calvez V, Bournaveas N, Perthame B, Buguin A, Silberzan P (2011) Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc Natl Acad Sci USA 108:16235–16240. https://doi.org/10.1073/pnas.1101996108 PubMed DOI PMC
Scharf BE, Hynes MF, Alexandre GM (2016) Chemotaxis signaling systems in model beneficial plant-bacteria associations. Plant Mol Biol 90:549–559. https://doi.org/10.1007/s11103-016-0432-4 PubMed DOI
Schauer O, Mostaghaci B, Colin R, Hürtgen D, Kraus D, Sitti M, Sourjik V (2018) Motility and chemotaxis of bacteria-driven microswimmers fabricated using antigen 43-mediated biotin display. Sci Rep 8:9801. https://doi.org/10.1038/s41598-018-28102-9 PubMed DOI PMC
Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U (2012) Multidimensional optimality of microbial metabolism. Science 336:601–604. https://doi.org/10.1126/science.1216882 PubMed DOI
Sena-Vélez M, Ferragud E, Redondo C, Graham JH, Cubero J (2022) Chemotactic responses of Xanthomonas with different host ranges. Microorganisms 11:43. https://doi.org/10.3390/microorganisms11010043 PubMed DOI PMC
Sidortsov M, Morgenstern Y, Be’er A (2017) Role of tumbling in bacterial swarming. Phys Rev E 96:022407. https://doi.org/10.1103/PhysRevE.96.022407
Singharoy A, Maffeo C, Delgado-Magnero KH, Swainsbury DJK, Sener M, Kleinekathöfer U, Vant JW, Nguyen J, Hitchcock A, Isralewitz B et al (2019) Atoms to phenotypes: molecular design principles of cellular energy metabolism. Cell 179:1098-1111.e23. https://doi.org/10.1016/j.cell.2019.10.021 PubMed DOI PMC
Sneddon MW, Pontius W, Emonet T (2012) Stochastic coordination of multiple actuators reduces latency and improves chemotactic response in bacteria. Proc Natl Acad Sci USA 109:805–810. https://doi.org/10.1073/pnas.1113706109 PubMed DOI
Soman V, Malik K S, Nath S, Elangovan R (2020). Effect of cell size and tethering geometry on rotation rate and torque of E. coli cells. bioRxiv 2020:05. https://doi.org/10.1101/2020.05.11.088310
Somavanshi R, Ghosh B, Sourjik V (2016) Sugar influx sensing by the phosphotransferase system of Escherichia coli. PLoS Biol 14:e2000074. https://doi.org/10.1371/journal.pbio.2000074 PubMed DOI PMC
Son K, Menolascina F, Stocker R (2016) Speed-dependent chemotactic precision in marine bacteria. Proc Natl Acad Sci USA 113:8624–8629. https://doi.org/10.1073/pnas.1602307113 PubMed DOI PMC
Song S, Wood TK (2021) The primary physiological roles of autoinducer 2 in Escherichia coli are chemotaxis and biofilm formation. Microorganisms 9:386. https://doi.org/10.3390/microorganisms9020386 PubMed DOI PMC
Souza PCT, Alessandri R, Barnoud J, Thallmair S, Faustino I, Grünewald F et al (2021) Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat Methods 18:382–388. https://doi.org/10.1038/s41592-021-01098-3 PubMed DOI
Spöring I, Felgner S, Preuße M, Eckweiler D, Rohde M, Häussler S, Weiss S, Erhardt M (2018) Regulation of flagellum biosynthesis in response to cell envelope stress in Salmonella enterica serovar Typhimurium. mBio 9:e00736–17. https://doi.org/10.1128/mBio.00736-17 PubMed DOI PMC
Stecher B, Barthel M, Schlumberger MC, Haberli L, Rabsch W, Kremer M, Hardt WD (2008) Motility allows S. Typhimurium to benefit from the mucosal defence. Cell Microbiol 10:1166–1180. https://doi.org/10.1111/j.1462-5822.2008.01118.x PubMed DOI
Suchanek VM, Esteban-López M, Colin R, Besharova O, Fritz K, Sourjik V (2020) Chemotaxis and cyclic-di-GMP signalling control surface attachment of Escherichia coli. Mol Microbiol 113:728–739. https://doi.org/10.1111/mmi.14438 PubMed DOI
Sweeney EG, Nishida A, Weston A, Bañuelos MS, Potter K, Conery J, Guillemin K (2019) Agent-based modeling demonstrates how local chemotactic behavior can shape biofilm architecture. mSphere. https://doi.org/10.1128/mSphere.00285-19 PubMed DOI PMC
Szabady RL, Yanta JH, Halladin DK, Schofield MJ, Welch RA (2011) TagA is a secreted protease of Vibrio cholerae that specifically cleaves mucin glycoproteins. Microbiology 157:516–525. https://doi.org/10.1099/mic.0.044529-0 PubMed DOI PMC
Tamar E, Koler M, Vaknin A (2016) The role of motility and chemotaxis in the bacterial colonization of protected surfaces. Sci Rep 6:19616. https://doi.org/10.1038/srep19616 PubMed DOI PMC
Taylor JR, Stocker R (2012) Trade-offs of chemotactic foraging in turbulent water. Science 338:675–679. https://doi.org/10.1126/science.1219417 PubMed DOI
Tian M, Zhang C, Zhang R, Yuan J (2021) Collective motion enhances chemotaxis in a two-dimensional bacterial swarm. Biophys J 120:1615–1624. https://doi.org/10.1016/j.bpj.2021.02.021 PubMed DOI PMC
Tohidifar P, Bodhankar GA, Pei S, Cassidy CK, Walukiewicz HE, Ordal GW, Stansfeld PJ, Rao CV (2020) The unconventional cytoplasmic sensing mechanism for ethanol chemotaxis in Bacillus subtilis. mBio 11. https://doi.org/10.1128/mBio.02177-20
Tout J, Astudillo-García C, Taylor MW, Tyson GW, Stocker R, Ralph PJ, Seymour JR, Webster NS (2017) Redefining the sponge-symbiont acquisition paradigm: sponge microbes exhibit chemotaxis towards host-derived compounds. Environ Microbiol Rep 9:750–755. https://doi.org/10.1111/1758-2229.12591 PubMed DOI
Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16:673–683. https://doi.org/10.1016/j.str.2008.03.005 PubMed DOI PMC
Vladimirov N, Løvdok L, Lebiedz D, Sourjik V (2008) Dependence of bacterial chemotaxis on gradient shape and adaptation rate. PLoS Comput Biol 4:e1000242. https://doi.org/10.1371/journal.pcbi.1000242 PubMed DOI PMC
Waite AJ, Frankel NW, Dufour YS, Johnston JF, Long J, Emonet T (2016) Non-genetic diversity modulates population performance. Mol Syst Biol 12:895. https://doi.org/10.15252/msb.20167044 PubMed DOI PMC
Walukiewicz HE, Tohidifar P, Ordal GW, Rao CV (2014) Interactions among the three adaptation systems of Bacillus subtilis chemotaxis as revealed by an in vitro receptor-kinase assay. Mol Microbiol 93:1104–1118. https://doi.org/10.1111/mmi.12721 PubMed DOI
Wang X, Wu C, Vu A, Shea J-E, Dahlquist FW (2012) Computational and experimental analyses reveal the essential roles of interdomain linkers in the biological function of chemotaxis histidine kinase CheA. J Am Chem Soc 134:16107–16110. https://doi.org/10.1021/ja3056694 PubMed DOI PMC
Wang X, Koirala S, Aldridge PD, Rao CV (2020) Two tandem mechanisms control bimodal expression of the flagellar genes in Salmonella enterica. J Bacteriol 202. https://doi.org/10.1128/JB.00787-19
Watteaux R, Stocker R, Taylor JR (2015) Sensitivity of the rate of nutrient uptake by chemotactic bacteria to physical and biological parameters in a turbulent environment. J Theor Biol 387:120–135. https://doi.org/10.1016/j.jtbi.2015.08.006 PubMed DOI
Weigel WA, Dersch P (2018) Phenotypic heterogeneity: a bacterial virulence strategy. Microbes Infect 20:570–577. https://doi.org/10.1016/j.micinf.2018.01.008 PubMed DOI
Wensink HH, Dunkel J, Heidenreich S, Drescher K, Goldstein RE, Löwen H, Yeomans JM (2012) Meso-scale turbulence in living fluids. Proc Natl Acad Sci U S A 109:14308–14313. https://doi.org/10.1073/pnas.1202032109 PubMed DOI PMC
Wong-Ng J, Melbinger A, Celani A, Vergassola M (2016) The role of adaptation in bacterial speed races. PLoS Comput Biol 12:e1004974. https://doi.org/10.1371/journal.pcbi.1004974 PubMed DOI PMC
Wong-Ng J, Celani A, Vergassola M (2018) Exploring the function of bacterial chemotaxis. Curr Opin Microbiol 45:16–21. https://doi.org/10.1016/j.mib.2018.01.010 PubMed DOI
Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3:ra50. https://doi.org/10.1126/scisignal.2000724 PubMed DOI PMC
Xu W, Cerna-Vargas JP, Tajuelo A, Lozano-Montoya A, Kivoloka M, Krink N, Monteagudo-Cascales E, Matilla MA, Krell T, Sourjik V (2023) Systematic mapping of chemoreceptor specificities for Pseudomonas aeruginosa. Mbio 14:e0209923. https://doi.org/10.1128/mbio.02099-23 PubMed DOI
Yang Y, Sourjik V (2012) Opposite responses by different chemoreceptors set a tunable preference point in Escherichia coli pH taxis. Mol Microbiol 86:1482–1489. https://doi.org/10.1111/mmi.12070 PubMed DOI
Yang L, Wang Y, Guo H, Guo M (2015a) Synergistic anti-cancer effects of icariin and temozolomide in glioblastoma. Cell Biochem Biophys 71:1379–1385. https://doi.org/10.1007/s12013-014-0360-3 PubMed DOI
Yang Y, Pollard AM, Höfler C, Poschet G, Wirtz M, Hell R, Sourjik V (2015b) Relation between chemotaxis and consumption of amino acids in bacteria. Mol Microbiol 96:1272–1282. https://doi.org/10.1111/mmi.13006 PubMed DOI PMC
Yang W, Cassidy CK, Ames P, Diebolder CA, Schulten K, Luthey-Schulten Z, Parkinson JS, Briegel A (2019) In situ conformational changes of the Escherichia coli serine chemoreceptor in different signaling states. Mbio 10:e00973-e1019. https://doi.org/10.1128/mBio.00973-19 PubMed DOI PMC
Yang J, Chawla R, Rhee KY, Gupta R, Manson MD, Jayaraman A, Lele PP (2020) Biphasic chemotaxis of Escherichia coli to the microbiota metabolite indole. Proc Natl Acad Sci U S A 117:6114–6120. https://doi.org/10.1073/pnas.1916974117 PubMed DOI PMC
Yazi RS, Nosrati R, Stevens CA, Vogel D, Escobedo C (2018) Migration of magnetotactic bacteria in porous media. Biomicrofluidics 12:011101. https://doi.org/10.1063/1.5024508 PubMed DOI PMC
Yi X, Dean AM (2016) Phenotypic plasticity as an adaptation to a functional trade-off. eLife 5:e19307. https://doi.org/10.7554/eLife.19307 PubMed DOI PMC
Yoney A, Salman H (2015) Precision and variability in bacterial temperature sensing. Biophys J 108:2427–2436. https://doi.org/10.1016/j.bpj.2015.04.016 PubMed DOI PMC
Zarepour M, Bhullar K, Montero M, Ma C, Huang T, Velcich A, Xia L, Vallance BA (2013) The mucin Muc2 limits pathogen burdens and epithelial barrier dysfunction during Salmonella enterica serovar Typhimurium colitis. Infect Immun 81:3672–3683. https://doi.org/10.1128/IAI.00854-13 PubMed DOI PMC
Zhang K, Liu J, Tu Y, Xu H, Charon NW, Li C (2012) Two chew coupling proteins are essential in a chemosensory pathway of Borrelia burgdorferi. Mol Microbiol 85:782–794. https://doi.org/10.1111/j.1365-2958.2012.08139.x PubMed DOI PMC
Zhang X, Si G, Dong Y, Chen K, Ouyang Q, Luo C, Tu Y (2019) Escape band in Escherichia coli chemotaxis in opposing attractant and nutrient gradients. Proc Natl Acad Sci USA 116:2253–2258. https://doi.org/10.1073/pnas.1808200116 PubMed DOI PMC
Zhang L, Li S, Liu X, Wang Z, Jiang M, Wang R, Xie L, Liu Q, Xie X, Shang D, Li M, Wei Z, Wang Y, Fan C, Luo Z-Q, Shen X (2020) Sensing of autoinducer-2 by functionally distinct receptors in prokaryotes. Nat Commun 11:5371. https://doi.org/10.1038/s41467-020-19243-5 PubMed DOI PMC
Zhou B, Szymanski CM, Baylink A (2023) Bacterial chemotaxis in human diseases. Trends Microbiol 31:453–467. https://doi.org/10.1016/j.tim.2022.10.007 PubMed DOI