The trypanosome vault particle is composed of multiple major vault protein paralogs and harbors vault RNA

. 2025 Oct ; 301 (10) : 110706. [epub] 20250911

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40945728
Odkazy

PubMed 40945728
PubMed Central PMC12547018
DOI 10.1016/j.jbc.2025.110706
PII: S0021-9258(25)02558-X
Knihovny.cz E-zdroje

Many but not all Eukaryotes have protein-enclosed compartments called vaults. Vaults are composed of multiple copies of the major vault protein, symmetrically assembled into a basket-like shell. A human cell contains approximately 100,000 vault particles, the vast majority localized to the cytosol but also observed in the nucleus and at the nuclear pore complex. Whilst there is intriguing structural information of the vault shell, the function of vaults remains largely elusive, apart from a potential contribution to mRNA maturation. We set out to explore the vault interactome in the early branching eukaryote Trypanosoma brucei employing a combination of affinity capture and TurboID proximity labelling. T. brucei encodes three major vault protein (MVP) paralogs, which exhibit a considerable degree of divergence. Unexpectedly, affinity capture proteomics with one MVP as a bait precipitated the other two paralogs, detected with similar intensities, indicating the possibility that all three are incorporated into the same particle. Dual color fluorescence microscopy of MVP pairs fused with different GFP-variants confirmed that all three paralogs are incorporated into a single vault shell. Our combined interactome data, including immune-isolations with varying stringencies, suggest a vault particle core composition of three MVPs homologs and the telomerase-associated protein 1 (TEP1), which has been described as a vault component in various organisms. Further, we demonstrate the association of vtRNA with the particle and suggest a cohort of potential transient vault interactors, dominated by RNA-binding proteins and splicing factors, which were found enriched in both orthogonal interactome approaches.

Zobrazit více v PubMed

Tanaka H., Kato K., Yamashita E., Sumizawa T., Zhou Y., Yao M., et al. The structure of rat liver vault at 3.5 angstrom resolution. Science. 2009;323:384–388. PubMed

Kedersha N.L., Rome L.H. Isolation and characterization of a novel ribonucleoprotein particle: large structures contain a single species of small RNA. J. Cell Biol. 1986 Sep;103:699–709. PubMed PMC

Hamill D.R., Suprenant K.A. Characterization of the sea urchin major vault protein: a possible role for vault ribonucleoprotein particles in nucleocytoplasmic transport. Dev. Biol. 1997;190:117–128. PubMed

Vasu S.K., Kedersha N.L., Rome L.H. cDNA cloning and disruption of the major vault protein alpha gene (mvpA) in Dictyostelium discoideum. J. Biol. Chem. 1993;268:15356–15360. PubMed

Herrmann C., Zimmermann H., Volknandt W. Analysis of a cDNA encoding the major vault protein from the electric ray discopyge ommata. Gene. 1997;188:85–90. PubMed

Berger W., Steiner E., Grusch M., Elbling L., Micksche M. Vaults and the major vault protein: novel roles in signal pathway regulation and immunity. Cell Mol. Life Sci. 2009 Jan;66:43–61. PubMed PMC

Daly T.K., Sutherland-Smith A.J., Penny D. In silico resurrection of the major vault protein suggests it is ancestral in modern eukaryotes. Genome Biol. Evol. 2013;5:1567–1583. PubMed PMC

Kedersha N.L., Miquel M.C., Bittner D., Rome L.H. Vaults. II. Ribonucleoprotein structures are highly conserved among higher and lower eukaryotes. J. Cell Biol. 1990 Apr;110:895–901. PubMed PMC

Kickhoefer V.A., Siva A.C., Kedersha N.L., Inman E.M., Ruland C., Streuli M., et al. The 193-kD vault protein, VPARP, is a novel poly(ADP-ribose) polymerase. J. Cell Biol. 1999;146:917–928. PubMed PMC

Kickhoefer V.A., Stephen A.G., Harrington L., Robinson M.O., Rome L.H. Vaults and telomerase share a common subunit, TEP1. J. Biol. Chem. 1999;274:32712–32717. PubMed

Poderycki M.J., Rome L.H., Harrington L., Kickhoefer V.A. The p80 homology region of TEP1 is sufficient for its association with the telomerase and vault RNAs, and the vault particle. Nucleic Acids Res. 2005;33:893–902. PubMed PMC

Kickhoefer V.A., Liu Y., Kong L.B., Snow B.E., Stewart P.L., Harrington L., et al. The Telomerase/vault-associated protein TEP1 is required for vault RNA stability and its association with the vault particle. J. Cell Biol. 2001;152:157–164. PubMed PMC

Kolev N.G., Rajan K.S., Tycowski K.T., Toh J.Y., Shi H., Lei Y., et al. The vault RNA of Trypanosoma brucei plays a role in the production of trans-spliced mRNA. J. Biol. Chem. 2019;294:15559–15574. PubMed PMC

Harrington L., McPhail T., Mar V., Zhou W., Oulton R., Bass M.B., et al. A Mammalian telomerase-associated protein. Science. 1997;275:973–977. PubMed

Liu Y., Snow B.E., Hande M.P., Baerlocher G., Kickhoefer V.A., Yeung D., et al. Telomerase-associated protein TEP1 is not essential for telomerase activity or telomere length maintenance in vivo. Mol. Cell Biol. 2000 Nov;20:8178–8184. PubMed PMC

Kong L.B., Siva A.C., Kickhoefer V.A., Rome L.H., Stewart P.L. RNA location and modeling of a WD40 repeat domain within the vault. RNA. 2000 Jun;6:890–900. PubMed PMC

Woodward C.L., Mendonça L.M., Jensen G.J. Direct visualization of vaults within intact cells by electron cryo-tomography. Cell Mol. Life Sci. 2015 Sep;72:3401–3409. PubMed PMC

Mossink M.H., van Zon A., Fränzel-Luiten E., Schoester M., Kickhoefer V.A., Scheffer G.L., et al. Disruption of the murine major vault protein (MVP/LRP) gene does not induce hypersensitivity to cytostatics. Cancer Res. 2002;62:7298–7304. PubMed

Mossink M.H., de Groot J., van Zon A., Fränzel-Luiten E., Schoester M., Scheffer G.L., et al. Unimpaired dendritic cell functions in MVP/LRP knockout mice. Immunology. 2003 Sep;110:58–65. PubMed PMC

Kowalski M.P., Dubouix-Bourandy A., Bajmoczi M., Golan D.E., Zaidi T., Coutinho-Sledge Y.S., et al. Host resistance to lung infection mediated by major vault protein in epithelial cells. Science. 2007;317:130–132. PubMed PMC

Mrázek J., Kreutmayer S.B., Grässer F.A., Polacek N., Hüttenhofer A. Subtractive hybridization identifies novel differentially expressed ncRNA species in EBV-infected human B cells. Nucleic Acids Res. 2007;35 PubMed PMC

Horos R., Büscher M., Sachse C., Hentze M.W. Vault RNA emerges as a regulator of selective autophagy. Autophagy. 2019 Aug;15:1463–1464. PubMed PMC

Prajapat M., Sala L., Vidigal J.A. The small noncoding RNA Vaultrc5 is dispensable to mouse development. RNA. 2024;30:1465–1476. PubMed PMC

Preußer C., Jaé N., Bindereif A. In: RNA Metabolism in Trypanosomes. Nucleic Acids and Molecular Biology. Bindereif A., editor. Springer; Berlin, Heidelberg: 2012. Pre-mRNA splicing in Trypanosoma brucei: factors, mechanisms, and regulation; pp. 49–70.

Zoltner M., Del Pino R.C., Field M.C. Sorting the muck from the brass: analysis of protein complexes and cell lysates. Methods Mol. Biol. 2020;2116:645–653. PubMed

Zoltner M., Krienitz N., Field M.C., Kramer S. Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA. Plos Negl. Trop. Dis. 2018;12 PubMed PMC

Hananya N., Ye X., Koren S., Muir T.W. A genetically encoded photoproximity labeling approach for mapping protein territories. Proc. Natl. Acad. Sci. U. S. A. 2023;120 PubMed PMC

Billington K., Halliday C., Madden R., Dyer P., Barker A.R., Moreira-Leite F.F., et al. Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat. Microbiol. 2023 Mar;8:533–547. PubMed PMC

Obado S.O., Field M.C., Chait B.T., Rout M.P. High-Efficiency isolation of nuclear envelope protein complexes from trypanosomes. Methods Mol. Biol. 2016;1411:67–80. PubMed

Vellmer T., Hartleb L., Fradera Sola A., Kramer S., Meyer-Natus E., Butter F., et al. A novel SNF2 ATPase complex in Trypanosoma brucei with a role in H2A.Z-mediated chromatin remodelling. Plos Pathog. 2022;18 PubMed PMC

Callejo A., Sedó-Cabezón L., Juan I.D., Llorens J. Cisplatin-Induced ototoxicity: effects, mechanisms and protection strategies. Toxics. 2015;3:268–293. PubMed PMC

Vieira-da-Rocha J.P., Passos-Silva D.G., Mendes I.C., Rocha E.A., Gomes D.A., Machado C.R., et al. The DNA damage response is developmentally regulated in the African trypanosome. DNA Repair (Amst) 2019 Jan;73:78–90. PubMed PMC

Branon T.C., Bosch J.A., Sanchez A.D., Udeshi N.D., Svinkina T., Carr S.A., et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 2018 Oct;36:880–887. PubMed PMC

Moreira C.M.D.N., Kelemen C.D., Obado S.O., Zahedifard F., Zhang N., Holetz F.B., et al. Impact of inherent biases built into proteomic techniques: proximity labeling and affinity capture compared. J. Biol. Chem. 2023 Jan;299 PubMed PMC

Gabiatti B.P., Krenzer J., Braune S., Krüger T., Zoltner M., Kramer S. Detailed characterisation of the trypanosome nuclear pore architecture reveals conserved asymmetrical functional hubs that drive mRNA export. Plos Biol. 2025;23 PubMed PMC

Gabiatti B.P., Freire E.R., Odenwald J., de Freitas Nascimento J., Holetz F., Carrington M., et al. Trypanosomes lack a canonical EJC but possess an UPF1 dependent NMD-like pathway. PLoS One. 2025;20 PubMed PMC

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016 Sep;13:731–740. PubMed

Waithaka A., Maiakovska O., Grimm D., do Nascimento L.M., Clayton C. Sequences and proteins that influence mRNA processing in Trypanosoma brucei: evolutionary conservation of SR-domain and PTB protein functions. Plos Negl. Trop. Dis. 2022;16 PubMed PMC

Klebanov-Akopyan O., Mishra A., Glousker G., Tzfati Y., Shlomai J. Trypanosoma brucei UMSBP2 is a single-stranded telomeric DNA binding protein essential for chromosome end protection. Nucleic Acids Res. 2018;46:7757–7771. PubMed PMC

Soni A., Klebanov-Akopyan O., Erben E., Plaschkes I., Benyamini H., Mitesser V., et al. UMSBP2 is chromatin remodeler that functions in regulation of gene expression and suppression of antigenic variation in trypanosomes. Nucleic Acids Res. 2023;51:5678–5698. PubMed PMC

Milman N., Motyka S.A., Englund P.T., Robinson D., Shlomai J. Mitochondrial origin-binding protein UMSBP mediates DNA replication and segregation in trypanosomes. Proc. Natl. Acad. Sci. U. S. A. 2007;104:19250–19255. PubMed PMC

Alsford S., Kawahara T., Isamah C., Horn D. A sirtuin in the African trypanosome is involved in both DNA repair and telomeric gene silencing but is not required for antigenic variation. Mol. Microbiol. 2007 Feb;63:724–736. PubMed

Günzl A. The pre-mRNA splicing machinery of trypanosomes: complex or simplified? Eukaryot. Cell. 2010 Aug;9:1159–1170. PubMed PMC

Gupta S.K., Chikne V., Eliaz D., Tkacz I.D., Naboishchikov I., Carmi S., et al. Two splicing factors carrying serine-arginine motifs, TSR1 and TSR1IP, regulate splicing, mRNA stability, and rRNA processing in Trypanosoma brucei. RNA Biol. 2014;11:715–731. PubMed PMC

Ismaïli N., Pérez-Morga D., Walsh P., Mayeda A., Pays A., Tebabi P., et al. Characterization of a SR protein from Trypanosoma brucei with homology to RNA-binding cis-splicing proteins. Mol. Biochem. Parasitol. 1999;102:103–115. PubMed

Ismaïli N., Pérez-Morga D., Walsh P., Cadogan M., Pays A., Tebabi P., et al. Characterization of a Trypanosoma brucei SR domain-containing protein bearing homology to cis-spliceosomal U1 70 kDa proteins. Mol. Biochem. Parasitol. 2000;106:109–120. PubMed

Vyas S., Matic I., Uchima L., Rood J., Zaja R., Hay R.T., et al. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat. Commun. 2014;5:4426. PubMed PMC

Genois M.M., Paquet E.R., Laffitte M.C., Maity R., Rodrigue A., Ouellette M., et al. DNA repair pathways in trypanosomatids: from DNA repair to drug resistance. Microbiol. Mol. Biol. Rev. 2014 Mar;78:40–73. PubMed PMC

Rajan K.S., Adler K., Doniger T., Cohen-Chalamish S., Aharon-Hefetz N., Aryal S., et al. Identification and functional implications of pseudouridine RNA modification on small noncoding RNAs in the mammalian pathogen Trypanosoma brucei. J. Biol. Chem. 2022 Jul;298 PubMed PMC

Urdea M.S. Branched DNA signal amplification. Biotechnology. 1994;12:926–928. PubMed

Kramer S., Meyer-Natus E., Stigloher C., Thoma H., Schnaufer A., Engstler M. Parallel monitoring of RNA abundance, localization and compactness with correlative single molecule FISH on LR White embedded samples. Nucleic Acids Res. 2021;49:e14. PubMed PMC

Kolev N.G., Franklin J.B., Carmi S., Shi H., Michaeli S., Tschudi C. The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. Plos Pathog. 2010;6 PubMed PMC

Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024 Jun;630:493–500. PubMed PMC

Vasu S.K., Rome L.H. Dictyostelium vaults: disruption of the major proteins reveals growth and morphological defects and uncovers a new associated protein. J. Biol. Chem. 1995;270:16588–16594. PubMed

Tanifuji G., Cenci U., Moog D., Dean S., Nakayama T., David V., et al. Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis. Sci. Rep. 2017;7 PubMed PMC

Ebenezer T.E., Zoltner M., Burrell A., Nenarokova A., Novák Vanclová A.M.G., Prasad B., et al. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 2019;17:11. PubMed PMC

Valach M., Moreira S., Petitjean C., Benz C., Butenko A., Flegontova O., et al. Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol. 2023;21:99. PubMed PMC

Stairs C.W., Táborský P., Salomaki E.D., Kolisko M., Pánek T., Eme L., et al. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr. Biol. 2021;31:5605–5612.e5. PubMed

Oberholzer M., Morand S., Kunz S., Seebeck T. A vector series for rapid PCR-mediated C-terminal in situ tagging of Trypanosoma brucei genes. Mol. Biochem. Parasitol. 2006 Jan;145:117–120. PubMed

Kelly S., Reed J., Kramer S., Ellis L., Webb H., Sunter J., et al. Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol. Biochem. Parasitol. 2007 Jul;154:103–109. PubMed PMC

Alsford S., Horn D. Single-locus targeting constructs for reliable regulated RNAi and transgene expression in Trypanosoma brucei. Mol. Biochem. Parasitol. 2008 Sep;161:76–79. PubMed PMC

Sunter J., Wickstead B., Gull K., Carrington M. A new generation of T7 RNA polymerase-independent inducible expression plasmids for Trypanosoma brucei. PLoS One. 2012;7 PubMed PMC

Redmond S., Vadivelu J., Field M.C. RNAit: an automated web-based tool for the selection of RNAi targets in Trypanosoma brucei. Mol. Biochem. Parasitol. 2003;128:115–118. PubMed

Kramer S., Karolak N.K., Odenwald J., Gabiatti B., Castañeda Londoño P.A., Zavřelová A., et al. A unique mRNA decapping complex in trypanosomes. Nucleic Acids Res. 2023;51:7520–7540. PubMed PMC

Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008 Dec;26:1367–1372. PubMed

Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteomics. 2014 Sep;13:2513–2526. PubMed PMC

Shanmugasundram A., Starns D., Böhme U., Amos B., Wilkinson P.A., Harb O.S., et al. TriTrypDB: an integrated functional genomics resource for kinetoplastida. Plos Negl. Trop. Dis. 2023;17 PubMed PMC

Odenwald J., Gabiatti B., Braune S., Shen S., Zoltner M., Kramer S. Detection of TurboID fusion proteins by fluorescent streptavidin outcompetes antibody signals and visualises targets not accessible to antibodies. Elife. 2024;13 PubMed PMC

Kramer S. Simultaneous detection of mRNA transcription and decay intermediates by dual colour single mRNA FISH on subcellular resolution. Nucleic Acids Res. 2017;45:e49. PubMed PMC

Goos C., Dejung M., Wehman A.M., M-Natus E., Schmidt J., Sunter J., et al. Trypanosomes can initiate nuclear export co-transcriptionally. Nucleic Acids Res. 2019;47:266–282. PubMed PMC

Markert S.M., Bauer V., Muenz T.S., Jones N.G., Helmprobst F., Britz S., et al. 3D subcellular localization with superresolution array tomography on ultrathin sections of various species. Methods Cell Biol. 2017;140:21–47. PubMed

Zahedifard F., Bansal M., Sharma N., Kumar S., Shen S., Singh P., et al. Phenotypic screening reveals a highly selective phthalimide-based compound with antileishmanial activity. Plos Negl. Trop. Dis. 2024;18 PubMed PMC

Warrenfeltz S., Basenko E.Y., Crouch K., Harb O.S., Kissinger J.C., Roos D.S., et al. EuPathDB: the eukaryotic pathogen genomics database resource. Methods Mol. Biol. 2018;1757:69–113. PubMed PMC

Sievers F., Higgins D.G. The clustal omega multiple alignment package. Methods Mol. Biol. 2021;2231:3–16. PubMed

Procter J.B., Carstairs G.M., Soares B., Mourão K., Ofoegbu T.C., Barton D., et al. Alignment of biological sequences with jalview. Methods Mol. Biol. 2021;2231:203–224. PubMed PMC

Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010 May;59:307–321. PubMed

Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36:W465–W469. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...