Aboveground living plant-based methane production does not dominate methane emissions in terrestrial ecosystems

. 2025 Nov 18 ; 263 (1) : 9. [epub] 20251118

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41251824

Grantová podpora
32271669 National Natural Science Foundation of China
42430702 National Natural Science Foundation of China
U21A20188 National Natural Science Foundation of China
DE240100338 Australian Research Council
LM2023048 Ministry of Scientific and Technological Development, Higher Education and Information Society

Odkazy

PubMed 41251824
DOI 10.1007/s00425-025-04838-3
PII: 10.1007/s00425-025-04838-3
Knihovny.cz E-zdroje

This review highlights aboveground living plant-based methane production and evaluates its quantities in terrestrial ecosystems globally. The estimated quantities collectively explain only ~ 2% of aboveground living plant-based methane emissions. Aboveground living plant-based methane (CH4) processes and fluxes have gained increasing attention over the last decades. However, aboveground living plant-based CH4 production and its quantities in terrestrial ecosystems are not well known. For profoundly understanding the CH4 processes and fluxes, we need to clarify aboveground living plant-based CH4 production and evaluate its quantities in terrestrial ecosystems. The vertical pattern (from rhizosphere to canopy of plants, and vice versa) of the CH4 production shows prominent variability across the various types of vegetated ecosystems, with especially large uncertainties in forests, and may moderately influence the vertical patterns of living plant-based CH4 oxidation and emissions. Aboveground living plant-based CH4 can be produced by microbial and non-microbial mechanisms. Microbial CH4 is primarily produced in wet vegetation niche, while non-microbial CH4 is typically produced in plant foliage under environmental stressors. The global aboveground living plant-based CH4 production is summarized at the quantities of about 2.26 (1.11-3.87) Tg CH4 yr-1, and their uncertainties and complexities are further discussed. We suggest that aboveground living plant-based CH4 production and its relationships with aboveground living plant-based CH4 transport and emissions require more research, particularly within forest ecosystems.

Zobrazit více v PubMed

Agethen S, Sander M, Waldemer C, Knorr KH (2018) Plant rhizosphere oxidation reduces methane production and emission in rewetted peatlands. Soil Biol Biochem 125:125–135 DOI

Andresen CG, Lara MJ, Tweedie CE, Lougheed VL (2017) Rising plant mediated methane emissions from arctic wetlands. Glob Change Biol 23:1128–1139 DOI

Barba J, Bradford MA, Brewer PE et al (2019) Methane emissions from tree stems: a new frontier in the global carbon cycle. New Phytol 222:18–28 PubMed DOI

Barba J, Poyatos R, Capooci M, Vargas R (2021) Spatiotemporal variability and origin of CO DOI

Barba J, Brewer PE, Pangala SR, Machacova K (2024) Methane emissions from tree stems – current knowledge and challenges: an introduction to a virtual issue. New Phytol 241:1377–1380 PubMed DOI

Beerling DJ, Gardiner T, Leggett G, Mcleod A, Quick WP (2008) Missing methane emissions from leaves of terrestrial plants. Glob Change Biol 14:1–6 DOI

Bloom AA et al (2010) Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage. New Phytol 187:417–425 PubMed DOI

Bowling DR et al (2009) Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance. Biogeosciences 6:1311–1324 DOI

Bréchet LM, Daniel W, Stahl C, Burban B, Goret J-Y, Salomόn RL, Janssens IA (2021) Simultaneous tree stem and soil greenhouse gas (CO PubMed DOI

Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang QL (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Change Biol 19:1325–1346 DOI

Bruhn D, Møller IM, Mikkelsen TN, Ambus P (2012) Terrestrial plant methane production and emission. Physiol Plant 144:201–209 PubMed DOI

Bruhn D, Mikkelsen TN, Rolsted MMM, Egsgaard H, Ambus P (2014) Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen. Plant Biol 16:512–516 PubMed DOI

Canadell JG, Monteiro PMS, Costa MH et al (2021) Global carbon and other biogeochemical cycles and feedbacks. In: Masson-Delmotte V et al (eds) Climate change 2021: the physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 673–816

Carmichael MJ, Bernhardt ES, Bräuer SL, Smith WK (2014) The role of vegetation in methane flux to the atmosphere: should vegetation be included as a distinct category in the global methane budget? Biogeochemistry 119:1–24 DOI

Chanton JP, Martens CS (1988) Seasonal variations in ebullitive flux and carbon isotopic composition of methane in a tidal freshwater estuary. Glob Biogeochem Cycles 2:289–298 DOI

Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H PubMed DOI PMC

Covey KR, Megonigal JP (2019) Methane production and emissions in trees and forests. New Phytol 222:35–51 PubMed DOI

Covey KR, Wood SA, Warren RJ II, Lee X, Bradford MA (2012) Elevated methane concentrations in trees of an upland forest. Geophys Res Lett 39:L15705. https://doi.org/10.1029/2012GL052361 DOI

Crowther TW, Glick HB, Covey KR et al (2015) Mapping tree density at a global scale. Nature 525:201–205 PubMed DOI

Crutzen P, Sanhueza E, Brenninkmeijer CAM (2006) Methane production from mixed tropical savanna and forest vegetation in Venezuela. Atmos Chem Phys Disc 6:3093–3097

Dacey JWH (1980) Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210:1017–1019 PubMed DOI

Dacey JWH (1981) Pressurized ventilation in the yellow water lily. Ecology 62:1137–1147 DOI

Dacey JWH, Klug MJ (1979) Methane efflux from lake sediments through water lilies. Science 203:1253–1255 PubMed DOI

Davidson EA, Ishida FY, Nepstad DC (2004) Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Glob Change Biol 10:718–730 DOI

Doronina NV, Ivanova EG, Suzina NE, Trotsenko YA (2004) Methanotrophs and methylobacteria are found in woody plant tissues within the winter period. Microbiology 73:702–709 DOI

Dueck TA, de Visser R, Poorter H, Persijn S, Gorissen A, de Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJM, Ngai AKY, Verstappen F, Bouwmeester H, Voesenek LACJ, van der Werf A (2007) No evidence for substantial aerobic methane emission by terrestrial plants: a PubMed DOI

Dušek J, Faußer A, Stellner S, Kazda M (2023) Stems of Phragmites australis are buffering methane and carbon dioxide emissions. Sci Total Environ 882:163493 PubMed DOI

Dutaur L, Verchot LV (2007) A global inventory of the soil CH DOI

Elbert W, Weber B, Burrows S, Steinkamp J, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462 DOI

Epron D, Mochidome T, Tanabe T, Dannoura M, Sakabe A (2023) Variability in stem methane emissions and wood methane production of tree different species in a cold temperate mountain forest. Ecosystems 26:784–799 DOI

Ernst L, Steinfeld B, Barayeu U, Klintzsch T, Kurth M, Grimm D, Dick TP, Rebelein JG, Bischofs IB, Keppler F (2022) Methane formation driven by reactive oxygen species across all living organisms. Nature 603:482–487 PubMed DOI

FAO (2020) Global forest resources assessment 2020: main report. Rome. https://doi.org/10.4060/ca9825en DOI

Feng HL, Guo JH, Ma XH, Han MH, Kneeshaw D, Sun H, Malghani S, Chen H, Wang WF (2022) Methane emissions may be driven by hydrogenotrophic methanogens inhabiting the stem tissues of poplar. New Phytol 233:182–193 PubMed DOI

Flanagan LB, Nikkel DJ, Scherloski LM, Tkach RE, Smits KM, Selinger LB, Rood SB (2021) Multiple processes contribute to methane emission in a riparian cottonwood forest ecosystem. New Phytol 229:1970–1982 PubMed DOI

Frankenberg C, Meirink JF, van Weele M, Platt U, Wagner T (2005) Assessing methane emissions from global space-borne observations. Science 308:1010–1014 PubMed DOI

Fritz C, Pancotto VA, Elzenga JTM, Visser EJW, AbP G, Pol A, Iturraspe R, Roelofs JGM, Smolders AJP (2011) Zero methane emission bogs: extreme rhizosphere oxygenation by cushion plants in Patagonia. New Phytol 190:398–408 PubMed DOI

Gatti RC, Reich PB, Gamarra JGP et al (2022) The number of tree species on earth. Proc Natl Acad Sci U S A 119:e2115329119. https://doi.org/10.1073/pnas.2115329119 DOI

Gauci V, Gowing DJ, Hornibrook ER, Davis JM, Dise NB (2010) Woody stem methane emission in mature wetland alder trees. Atmos Environ 44:2157–2160 DOI

Gauci V, Figueiredo V, Gedney N, Pangala SR, Stauffer T, Weedon GP, Enrich-Prast A (2021) Non-flooded riparian amazon trees are a regionally significant methane source. Phil Trans R Soc A 380:20200446. https://doi.org/10.1098/rsta.2020.0446 PubMed DOI PMC

Gauci V, Pangala SR, Shenkin A, Barba J, Bastviken D, Figueiredo V, Gomez C, Enrich-Prast A, Sayer E, Stauffer T, Welch B, Elias D, McNamara N, Allen M, Malhi Y (2024) Global atmospheric methane uptake by upland tree woody surfaces. Nature 631:796–800. https://doi.org/10.1038/s41586-024-07592-w PubMed DOI PMC

Goffredi SK, Jang GE, Woodside WT, Ill WU (2011) Bromeliad catchments as habitats for methanogenesis in tropical rainforest canopies. Front Microbiol 2:1–14 DOI

Gorgolewski AS, Caspersen JP, Vantellingen J, Thomas SC (2023) Tree foliage is a methane sink in upland temperate forests. Ecosystems 26:174–186. https://doi.org/10.1007/s10021-022-00751-y DOI

Grosse W (1997) Gas transport of trees. In: Escrich RH, Ziegler H (eds) Trees: contribution to modern tree physiology. Backhuys, Leiden, the Netherlands, pp 57–74

Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471 PubMed DOI PMC

Hou LY, Wang ZP, Wang JM, Wang B, Zhou SB, Li LH (2012) Growing season in situ uptake of atmospheric methane by desert soils in a semiarid region of northern China. Geoderma 189–190:415–422 DOI

Iguchi H, Sato I, Sakakibara M, Yurimoto H, Sakai Y (2012) Distribution of methanotrophs in the phyllosphere. Biosci Biotech Biochem 76:1580–1583 DOI

Iio A, Hikosaka K, Anten NPR, Nakagawa Y, Ito A (2014) Global dependence of field-observed leaf area index in woody species on climate: a systematic review. Global Ecol Biogeogr 23:274–285. https://doi.org/10.1111/geb.12133.ISSN1466-8238 DOI

Jeffrey LC, Maher DT, Johnston SG, Kelaher BP, Steven A, Tait DR (2019a) Wetland methane emissions dominated by plant-mediated fluxes: contrasting emissions pathways and seasons within a shallow freshwater subtropical wetland. Limnol Oceanogr 64:1895–1912 DOI

Jeffrey LC, Reithmaier G, Sippo JZ, Johnston SG, Tait DR, Harada Y, Maher DT (2019b) Are methane emissions from mangrove stems a cryptic carbon loss pathway? insights from a catastrophic forest mortality. New Phytol 224:146–154 PubMed DOI

Jeffrey LC, Maher DT, Tait DR, Johnston SG (2020) A small nimble in situ fine scale flux method for measuring tree stem greenhouse gas emissions and processes (S.N.I.F.F). Ecosystems 23:1676–1689 DOI

Jeffrey LC, Maher DT, Chiri E, Leung PM, Nauer PA, Arndt SK, Tait DR, Greening C, Johnston SG (2021a) Bark-dwelling methanotrophic bacteria decrease methane emissions from trees. Nat Commun 12:2127 PubMed DOI PMC

Jeffrey LC, Maher DT, Tait DR, Reading MJ, Chiri E, Greening C, Johnston SG (2021b) Isotopic evidence for vertical tree stem methane oxidation within subtropical lowland forests. New Phytol 230:2200–2212 PubMed DOI

Jeffrey LC, Johnston SG, Tait DR, Dittmann J, Maher DT (2024) Rapid bark-mediated tree stem methane transport occurs independently of the transpiration stream in Melaleuca quinquenervia. New Phytol 242:49–60 PubMed DOI

Joabsson A, Christensen TR, Wallén B (1999) Vascular plant controls on methane emissions from northern peatforming wetlands. Trends Ecol Evol 14:385–388 PubMed DOI

Kanaparthi D, Reim A, Martinson GO, Pommerenke B, Conrad R (2017) Methane emission from feather moss stands. Glob Change Biol 23:4884–4895 DOI

Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191 PubMed DOI

Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Braß M, Röckmann T (2008) Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. New Phytol 178:808–814 PubMed DOI

Keppler F, Boros M, Frankenberg C, Lelieveld J, McLeod A, Pirttilä AM, Röckmann T, Schnitzler J-P (2009) Methane formation in aerobic environments. Environ Chem 6:459–465 DOI

King GM (1990) Regulation by light of methane emissions from a wetland. Nature 345:513–515 DOI

Kirschbaum MUF, Walcroft A (2008) No detectable aerobic methane efflux from plant material, nor from adsorption/desorption processes. Biogeosciences 5:1551–1558 DOI

Kirschke S, Bousquet P, Ciais P et al (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823 DOI

Kohl L, Koskinen M, Rissanen K, Haikarainen I, Polvinen T, Hellén H, Pihlatie M (2019) Technical note: Interferences of volatile organic compounds (VOCs) on methane concentration measurements. Biogeosciences 16:3319–3332 DOI

Kohl L, Koskinen M, Pihlatie M (2021b) Towards reliable measurements of trace gas fluxes at plant surfaces. New Phytol 230:2097–2099 PubMed DOI

Kohl L, Koskinen M, Polvinen T, Tenhovirta S, Rissanen K, Patama M, Zanetti A, Pihlatie M (2021a) An automated system for trace gas flux measurements from plant foliage and other plant compartments. Atmos Mea Tech 14:4445–4460 DOI

Kohl L, Tenhovirta SAM, Koskinen M, Putkinen A, Haikarainen I, Polvinen T, Galeotti L, Mammarella I, Siljanen HMP, Robson TM, Adamczyk B, Pihlatie M (2023) Radiation and temperature drive diurnal variation of aerobic methane emissions from Scots pine canopy. Proc Natl Acad Sci U S A 120:e2308516120 PubMed DOI PMC

Laanbroek HJ (2010) Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes - a mini-review. Ann Bot 105:141–153 PubMed DOI

LaFond-Hudson S, Sulman B (2023) Modeling strategies and data needs for representing coastal wetland vegetation in land surface models. New Phytol 238:938–951 PubMed DOI

Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the earth system. New Phytol 183:27–51 PubMed DOI

Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50 DOI

Lenhart K, Bunge M, Ratering S, Neu TR, Schüttmann I, Greule M, Kammann C, Schnell S, Müller C, Zorn H, Keppler F (2012) Evidence for methane production by saprotrophic fungi. Nat Comm 3:1046 DOI

Lenhart K, Weber B, Elbert W, Steinkamp J, Clough T, Crutzen P, Pöschl U, Keppler F (2015) Nitrous oxide and methane emissions from cryptogamic covers. Glob Change Biol 21:3889–3900 DOI

Li HL, Zhang XM, Deng FD, Han XG, Xiao CW, Han SJ, Wang ZP (2020) Microbial methane production is affected by secondary metabolites in the heartwood of living trees in upland forests. Trees 34:243–254 DOI

Machacova K, Bäck J, Vanhatalo A, Halmeenmäki E, Kolari P, Mammarella I, Pumpanen J, Acosta M, Urban O, Pihlatie M (2016) Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest. Sci Rep 6:23410 PubMed DOI PMC

Machacova K, Borak L, Agyei T, Schindler T, Soosaar K, Mander Ü, Ah-Peng C (2021) Trees as net sinks for methane (CH PubMed DOI

Machacova K, Warlo H, Svobodová K, Agyei T, Uchytilová T, Horácek P, Lang F (2023) Methane emission from stems of European beech (Fagus sylvatica) offsets as much as half of methane oxidation in soil. New Phytol 238:584–597. https://doi.org/10.1111/nph.18726 PubMed DOI

Mander Ü, Krasnova A, Schindler T, Megonigal JP, Escuer-Gatius J, Espenberg M, Machacova K, Maddison M, Pärn J, Ranniku R, Pihlatie M, Kasak K, Niinemets Ü, Soosaar K (2022) Long-term dynamics of soil, tree stem and ecosystem methane fluxes in a riparian forest. Sci Total Environ 809:151723 PubMed DOI

Martel AB, Qaderi MM (2017) Light quality and quantity regulate aerobic methane emissions from plants. Physiol Plant 159:313–328 PubMed DOI

Martínez-Girón R, Pantanowitz L, Martínez-Torre C (2020) Plant material (aeriferous parenchyma and sclereid cells) mimicking mucormycosis in sputum cytology. Diagn Cytopathol 48:1309–1312 PubMed DOI

Martinson GO, Werner FA, Scherber C, Conrad R, Corre MD, Flessa H, Wolf K, Klose M, Gradstein SR, Veldkamp E (2010) Methane emissions from tank bromeliads in neotropical forests. Nat Geosci 3:766–769 DOI

McLeod AR, Fry SC, Loake GJ, Messenger DJ, Reay DS, Smith KA, Yun B-W (2008) Ultraviolet radiation drives methane emissions from terrestrial plant pectins. New Phytol 180:124–132 PubMed DOI

Megonigal JP, Guenther AB (2008) Methane emissions from upland forest soils and vegetation. Tree Physiol 28:491–498 PubMed DOI

Megonigal JP, Schlesinger WH (2002) Methane-limited methanotrophy in tidal freshwater swamps. Glob Biogeochem Cycles 16:1088. https://doi.org/10.1029/2001GB001594 DOI

Megonigal JP, Hines ME, Visscher PT (2004) Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Schlesinger WH (ed) Biogeochemistry. Elsevier-Pergamon, Oxford, UK, pp 317–424

Miller JB, Gatti LV, d’Amelio MTS, Crotwell AM, Dlugokencky EJ, Bakwin P, Artaxo P, Tans PP (2007) Airborne measurements indicate large methane emissions from the eastern amazon basin. Geophys Res Lett 34:L10809. https://doi.org/10.1029/2006GL029213 DOI

Mochidome T, Epron D (2024) Drivers of intra-individual spatial variability in methane emissions from tree trunks in upland forest. Trees 38:625–636 DOI

Moisan M-A, Lajoie G, Constant P, Martineau C, Maire V (2024) How tree traits modulate tree methane fluxes: a review. Sci Total Environ 940:173730 PubMed DOI

Moldaschl E, Kitzler B, Machacova K, Schindler T, Schindlbacher A (2021) Stem CH DOI

Mosier A, Schimel D, Valentine D, Bronson K, Parton W (1991) Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature 350:330–332 DOI

Moya R, Munoz F, Jeremic D, Berrocal A (2009) Visual identification, physical properties, ash composition, and water diffusion of wetwood in Gmelina arborea. Can J for Res 39:537–545 DOI

Mukhin V, Voronin P (2008) A new source of methane in boreal forests. Appl Biochem Microbiol 44:297–299 DOI

Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15:2395–2417 PubMed DOI

Ndanga ÉM, Lopera CB, Bradley RL, Cabral AR (2016) Effects of preconditioning the rhizosphere of different plant species on biotic methane oxidation kinetics. Waste Mana 55:313–320 DOI

Ni XY, Groffman PM (2018) Declines in methane uptake in forest soils. PNAS 115:8587–8590 PubMed DOI PMC

Nisbet RER, Fisher R, Nimmo RH, Bendall DS, Crill PM, Gallego-Sala AV, Hornibrook ERC, López-Juez E, Lowry D, Nisbet PBR, Shuckburgh EF, Sriskantharajah S, Howe CJ, Nisbet EG (2009) Emission of methane from plants. Pro Roy Soc b: Biol Sci 276:1347–1354 DOI

Oremland RS, Culbertson CW (1992) Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature 356:421–423 DOI

Pangala SR, Moore S, Hornibrook ERC, Gauci V (2013) Trees are major conduits for methane egress from tropical wetland forests. New Phytol 197:524–531 PubMed DOI

Pangala SR, Gowing DJ, Hornibrook ERC, Gauci V (2014) Controls on methane emissions from Alnus glutinosa saplings. New Phytol 201:887–896 PubMed DOI

Pangala SR, Hornibrook ERC, Gowing DJ, Gauci V (2015) The contribution of trees to ecosystem methane emissions in a temperate forested wetland. Glob Change Biol 21:2642–2654 DOI

Pangala SR, Enrich-Prast A, Basso LS, Peixoto RB, Bastviken D, Hornibrook ERC, Gatti LV, Marotta H, Calazans LSB, Sakuragui CM, Bastos WR, Malm O, Gloor E, Miller JB, Gauci V (2017) Large emissions from floodplain trees close the amazon methane budget. Nature 552:230–234 PubMed DOI

Pitz SL, Megonigal JP (2017) Temperate forest methane sink diminished by tree emissions. New Phytol 214:1432–1439 PubMed DOI

Pitz SL, Megonigal JP, Chang CH, Szlavecz K (2018) Methane fluxes from tree stems and soils along a habitat gradient. Biogeochemistry 137:307–320 DOI

Priemé A, Christensen S (1997) Seasonal and spatial variation of methane oxidation in a Danish spruce forest. Soil Biol Biochem 29:1165–1172 DOI

Putkinen A, Siljanen HMP, Laihonen A, Paasisalo I, Porkka K, Tiirola M, Haikarainen I, Tenhovirta S, Pihlatie M (2021) New insight to the role of microbes in the methane exchange in trees: evidence from metagenomic sequencing. New Phytol 231:524–536 PubMed DOI

Qaderi MM, Reid DM (2009) Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress. Physiol Plant 137:139–147 PubMed DOI

Querino CAS, Smeets CJPP, Vigano I, Holzinger R, Moura V, Gatti LV, Martinewski A, Manzi AO, de Araújo AC, Röckmann T (2011) Methane flux, vertical gradient and mixing ratio measurements in a tropical forest. Atmos Chem Phys 11:7943–7953 DOI

Rafalska A, Walkiewicz A, Osborne B, Klumpp K, Bieganowski A (2023) Variation in methane uptake by grassland soils in the context of climate change – a review of effects and mechanisms. Sci Total Environ 871:162127 PubMed DOI

Reay DS, Smith P, Christensen TR, James RH, Clark H (2018) Methane and global environmental change. Annu Rev Environ Resour 43:165–192 DOI

Rosentreter JA, Borges AV, Deemer BR, Holgerson MA, Liu S, Song C, Melack J, Raymond PA, Duarte CM, Allen GH, Olefeldt D, Poulter B, Battin TI, Eyre BD (2021) Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat Geosci 14:225–230 DOI

Saari A, Martikainen PJ, Ferm A, Ruuskanen J, de Boer W, Troelstra SR, Laanbroek HJ (1997) Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition. Soil Biol Biochem 29:1625–1632 DOI

Sakabe A, Takahashi K, Azuma W, Itoh M, Tateishi M, Kosugi Y (2021) Controlling factors of seasonal variation of stem methane emissions from Alnus japonica in a riparian wetland of a temperate forest. J Geophys Res Biogeosci 126:e2021JG006326 DOI

Saunois M, Bousquet P, Poulter B et al (2016) The global methane budget 2000–2012. Earth Syst Sci Data 8:697–751 DOI

Saunois M, Stavert AR, Poulter B et al (2020) The global methane budget 2000–2017. Earth Syst Sci Data 12:1561–1623 DOI

Schäfer CM, Elsgaard L, Hoffmann CC, Petersen SO (2012) Seasonal methane dynamics in three temperate grasslands on peat. Plant Soil 357:339–353 DOI

Schroll M, Keppler F, Greule M, Eckhardt C, Zorn H, Lenhart K (2020) The stable carbon isotope signature of methane produced by saprotrophic fungi. Biogeosciences 17:3891–3901 DOI

Segarra KEA, Schubotz F, Samarkin V, Yoshinaga MY, Hinrichs KU, Joye SB (2015) High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nat Commun 6:7477 PubMed DOI

Shoemaker JK, Keenan TF, Hollinger DY, Richardson AD (2014) Forest ecosystem changes from annual methane source to sink depending on late summer water balance. Geophys Res Lett 41:673–679 DOI

Shukla PN, Pandey KD, Mishra VK (2013) Environmental determinants of soil methane oxidation and methanotrophs. Crit Rev Environ Sci Technol 43:1945–2011 DOI

Siegenthaler A, Welch B, Pangala SR, Peacock M, Gauci V (2016) Semi-rigid chambers for methane gas flux measurements on tree stems. Biogeosciences 13:1197–1207 DOI

Silver WL, Lugo AE, Keller M (1999) Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44:301–328 DOI

Sinha V, Williams J, Crutzen PJ, Lelieveld J (2007) Methane emissions from boreal and tropical forest ecosystems derived from in-situ measurements. Atmos Chem Phys Discuss 7:14011–14039

Sjögersten S, Wookey PA (2002) Spatio-temporal variability and environmental controls of methane fluxes at the forest–tundra ecotone in the Fennoscandian mountains. Glob Change Biol 8:885–894 DOI

Sjögersten S, Siegenthaler A, Lopez OR, Aplin P, Turner B, Gauci V (2020) Methane emissions from tree stems in neotropical peatlands. New Phytol 225:769–781 PubMed DOI

Smeets CJPP, Holzinger R, Vigano I, Goldstein AH, Röckmann T (2009) Eddy covariance methane measurements at a Ponderosa pine plantation in California. Atmos Chem Phys 9:8365–8375 DOI

Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Change Biol 9:1185–1192 DOI

Sundqvist E, Crill P, Mölder M, Vestin P, Lindroth A (2012) Atmospheric methane removal by boreal plants. Geophys Res Lett 39:L21806. https://doi.org/10.1029/2012GL053592 DOI

Takahashi K, Kosugi Y, Kanazawa A, Sakabe A (2012) Automated closed-chamber measurements of methane fluxes from intact leaves and trunk of Japanese cypress. Atmos Environ 51:329–332 DOI

Tenhovirta SAM, Kohl L, Koskinen M, Patama MR, Lintunen A, Zanetti A, Lilja RAI, Pihlatie M (2022) Solar radiation drives methane emissions from the shoots of Scots pine. New Phytol 235:66–77 PubMed DOI PMC

Tenhovirta SAM, Kohl L, Koskinen M, Polvinen T, Salmon Y, Paljakka T, Pihlatie M (2024) Aerobic methane production in scots pine shoots is independent of drought or photosynthesis. New Phytol 242:2440–2452 PubMed DOI

Terazawa K, Ishizuka S, Sakata T, Yamada K, Takahashi M (2007) Methane emissions from stems of Fraxinus mandshurica var. japonica trees in a floodplain forest. Soil Biol Biochem 39:2689–2692 DOI

Vainio E, Haikarainen IP, Machacova K, Putkinen A, Santalahti M, Koskinen M, Fritze H, Tuomivirta T, Pihlatie M (2022) Soil-tree-atmosphere CH DOI

Vigano I, van Weelden H, Holzinger R, Keppler F, McLeod A, R¨ockmann T (2008) Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5:937–947 DOI

Vigano I, Röckmann T, Holzinger R, van Dijk A, Keppler F, Greule M, Brand WA, Geilmann H, van Weelden H (2009) The stable isotope signature of methane emitted from plant material under UV irradiation. Atmos Environ 43:5637–5646 DOI

Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840 PubMed DOI

Vroom RJE, van den Berg M, Pangala SR, van der Scheer OE, Sorrell BK (2022) Physiological processes affecting methane transport by wetland vegetation – a review. Aquatic Bot 182:103547 DOI

Waldo NB, Hunt BK, Fadely EC, Moran JJ, Neumann RB (2019) Plant root exudates increase methane emissions through direct and indirect pathways. Biogeochemistry 145:213–234. https://doi.org/10.1007/s10533-019-00600-6 DOI

Wang ZP, Ineson P (2003) Methane oxidation in a temperate coniferous forest soil: effects of inorganic N. Soil Biol Biochem 35:427–433 DOI

Wang ZP, Han XG, Wang GG, Song Y, Gulledge J (2008) Aerobic methane emission from plants in the inner Mongolia steppe. Environ Sci Technol 42:62–68 PubMed DOI

Wang ZP, Gulledge J, Zheng JQ, Liu W, Li LH, Han XG (2009) Physical injury stimulates aerobic methane emissions from terrestrial plants. Biogeosciences 6:615–621 DOI

Wang ZP, Keppler F, Greule M, Hamilton JTG (2011) Non-microbial methane emissions from fresh leaves: effects of physical wounding and anoxia. Atmos Environ 45:4915–4921 DOI

Wang ZP, Chang SX, Chen H, Han XG (2013) Widespread non-microbial methane production by organic compounds and the impact of environmental stressors. Earth-Sci Rev 127:193–202 DOI

Wang YF, Chen H, Zhu QA, Peng CH, Wu N, Yang G, Zhu D, Tian JQ, Tian LX, Kang XM, He YX, Gao YH, Zhao XQ (2014) Soil methane uptake by grasslands and forests in China. Soil Biol Biochem 74:70–81 DOI

Wang ZP, Gu Q, Deng FD, Huang JH, Megonigal JP, Yu Q, Lü XT, Li LH, Chang S, Zhang YH, Feng JC, Han XG (2016) Methane emissions from the trunks of living trees on upland soils. New Phytol 211:429–439 PubMed DOI

Wang ZP, Han SJ, Li HL, Deng FD, Zheng YH, Liu HF, Han XG (2017) Methane production explained largely by water content in the heartwood of living trees in upland forests. J Geophys Res: Biogeosci 122:2479–2489 DOI

Wang ZP, Li HL, Wu HH, Han SJ, Huang JH, Zhang XM, Han XG (2021) Methane concentration in the heartwood of living trees and estimated methane emission on stems in upland forests. Ecosystems 24:1485–1499 DOI

Whalen SC, Reeburgh WS, Kizer KS (1991) Methane consumption and emission by taiga. Glob Biogeochem Cycles 5:261–273 DOI

Whiting GJ, Chanton JP (1992) Plant-dependent CH DOI

Whiting GJ, Chanton JP (1993) Primary production control of methane emission from wetlands. Nature 364:794–795 DOI

Wu JJ, Zhang H, Cheng XL, Liu GH (2024) Tree stem methane emissions: global patterns and controlling factors. Agri Forest Meteorol 350:109976 DOI

Yavitt JB, Fahey TJ, Simmons JA (1995) Methane and carbon dioxide dynamics in a northern hardwood ecosystem. Soil Sci Soc Am J 59:796–804 DOI

Yee MO, Kim P, Li YF, Singh AK, Northen TR, Chakraborty R (2021) Specialized plant growth chamber designs to study complex rhizosphere interactions. Front Microbiol 12:625752. https://doi.org/10.3389/fmicb.2021.625752 PubMed DOI PMC

Yip DZ, Veach AM, Yang ZK, Cregger MA, Schadt CW (2019) Methanogenic Archaea dominate mature heartwood habitats of eastern Cottonwood (Populus deltoides). New Phytol 222:115–121 PubMed DOI

Yu L, Huang Y, Zhang W, Li T, Sun W (2017) Methane uptake in global forest and grassland soils from 1981 to 2010. Sci Total Environ 607–608:1163–1172 PubMed DOI

Zeikus JG, Ward JC (1974) Methane formation in living trees: a microbial origin. Science 184:1181–1183 PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...