Tree stem
Dotaz
Zobrazit nápovědu
Stem respiration is an important component of an ecosystem's carbon budget. Beside environmental factors, it depends highly on tree energy demands for stem growth. Determination of the relationship between stem growth and stem respiration would help to reveal the response of stem respiration to changing climate, which is expected to substantially affect tree growth. Common measurement of stem radial increment does not record all aspects of stem growth processes, especially those connected with cell wall thickening; therefore, the relationship between stem respiration and stem radial increment may vary depending on the wood cell growth differentiation phase. This study presents results from measurements of stem respiration and increment carried out for seven growing seasons in a young Norway spruce forest. Moreover, rates of carbon allocation to stems were modeled for these years. Stem respiration was divided into maintenance (Rm) and growth respiration (Rg) based upon the mature tissue method. There was a close relationship between Rg and daily stem radial increment (dSRI), and this relationship differed before and after dSRI seasonal maximum, which was around 19 June. Before this date, Rg increased exponentially with dSRI, while after this date logarithmically. This is a result of later maxima of Rg and its slower decrease when compared with dSRI, which is connected with energy demands for cell wall thickening. Rg reached a maxima at the end of June or in July. The maximum of carbon allocation to stem peaked in late summer, when Rg mostly tended to decrease. The overall contribution of Rg to stem CO2 efflux amounted to 46.9% for the growing period from May to September and 38.2% for the year as a whole. This study shows that further deeper analysis of in situ stem growth and stem respiration dynamics is greatly needed, especially with a focus on wood formation on a cell level.
- MeSH
- alokace zdrojů MeSH
- ekosystém MeSH
- oxid uhličitý MeSH
- roční období MeSH
- smrk * MeSH
- stonky rostlin MeSH
- stromy MeSH
- uhlík MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Norsko MeSH
This study presents results from continuous measurements of stem CO2 efflux carried out for seven experimental seasons (from May to October) in a young Norway spruce forest. The objectives of the study were to determine variability in the response of stem CO2 efflux to stem temperature over the season and to observe differences in the calculated relationship between stem temperature and CO2 efflux based on full growing season data or on data divided into periods according to stem growth rate. Temperature sensitivity of stem CO2 efflux (Q10) calculated for the established periods ranged between 1.61 and 3.46 and varied over the season, with the lowest values occurring in July and August. Q10 calculated using data from the full growing seasons ranged between 2.30 and 2.94 and was often significantly higher than Q10 calculated for the individual periods. Temperature-normalized stem CO2 efflux (R10) determined using Q10 from growing season data was overestimated when the temperature was below 10 °C and underestimated when the temperature was above 10 °C, compared with R10 calculated using Q10 established for the individual periods. The differences in daily mean R10 calculated by these two approaches ranged between -0.9 and 0.2 μmol CO2 m-2 s-1. The results of this study confirm that long periods for determining the temperature dependence of stem CO2 efflux encompass different statuses of the wood (especially in relation to stem growth). This may cause bias in models using this relationship for estimating stem CO2 efflux as a function of temperature.
- MeSH
- biologické modely MeSH
- lesy MeSH
- meteorologické pojmy MeSH
- oxid uhličitý metabolismus MeSH
- roční období MeSH
- smrk fyziologie MeSH
- stonky rostlin růst a vývoj metabolismus MeSH
- stromy fyziologie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
The role of trees in the nitrous oxide (N2O) balance of boreal forests has been neglected despite evidence suggesting their substantial contribution. We measured seasonal changes in N2O fluxes from soil and stems of boreal trees in Finland, showing clear seasonality in stem N2O flux following tree physiological activity, particularly processes of CO2 uptake and release. Stem N2O emissions peak during the vegetation season, decrease rapidly in October, and remain low but significant to the annual totals during winter dormancy. Trees growing on dry soils even turn to consumption of N2O from the atmosphere during dormancy, thereby reducing their overall N2O emissions. At an annual scale, pine, spruce and birch are net N2O sources, with spruce being the strongest emitter. Boreal trees thus markedly contribute to the seasonal dynamics of ecosystem N2O exchange, and their species-specific contribution should be included into forest emission inventories.
- MeSH
- atmosféra chemie MeSH
- ekosystém * MeSH
- methan metabolismus MeSH
- oxid dusný metabolismus MeSH
- oxid uhličitý metabolismus MeSH
- půda chemie MeSH
- roční období * MeSH
- stonky rostlin metabolismus MeSH
- stromy fyziologie MeSH
- tajga * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Finsko MeSH
This study presents results from continuous measurements of stem CO2 efflux carried out for seven growing seasons in a young Norway spruce forest. The objective of the study was to determine differences in temperature sensitivity of stem CO2 efflux (Q10) during night (when sap flow is zero or nearly zero), during early afternoon (when the maximum rate of sap flow occurs) and during two transition periods between the aforementioned periods. The highest Q10 was recorded during the period of zero sap flow, while the lowest Q10 was observed in period of the highest sap flow. Calculating Q10 using only data from the period of zero sap flow resulted in a Q10 that was higher by as much as 19% compared with Q10 calculated using 24 h data. On the other hand, basing the calculation on data from the period of the highest sap flow yielded 5.6% lower Q10 than if 24 h data were used. Considering that change in CO2 efflux lagged in time behind changing stem temperature, there was only a small effect on calculated Q10 for periods with zero and the highest sap flow. A larger effect of the time lag (by as much as 15%) was observed for the two transition periods. Stem CO2 efflux was modelled based on the night CO2 efflux response to temperature. This model had a tendency to overestimate CO2 efflux during daytime, thus indicating potential daytime depression of stem CO2 efflux compared with the values predicated on the basis of temperature caused by CO2 transport upward in the sap flow. This view was supported by our results inasmuch as the overestimation grew with sap flow that was modelled on the basis of photosynthetically active radiation and vapour pressure deficit.
- MeSH
- cirkadiánní rytmus MeSH
- lesy MeSH
- oxid uhličitý metabolismus MeSH
- smrk fyziologie MeSH
- stonky rostlin fyziologie MeSH
- teplota MeSH
- transpirace rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
*Increasing evidence about hydraulic redistribution and its ecological consequences is emerging. Hydraulic redistribution results from an interplay between competing plant and soil water potential gradients. In this work, stem-mediated hydraulic redistribution was studied in a 53-year-old Douglas-fir tree during a period of drought. *Sap flux density measurements using the heat field deformation method were performed at four locations: in two large opposing roots and on two sides of the tree stem. Hydraulic redistribution was induced by localized irrigation on one of the measured roots, creating heterogeneous soil water conditions. *Stem-mediated hydraulic redistribution was detected during night-time conditions when water was redistributed from the wet side of the tree to the nonirrigated dry side. In addition to stem-mediated hydraulic redistribution, bidirectional flow in the dry root was observed, indicating radial sectoring in the xylem. *It was observed that, through stem-mediated hydraulic redistribution, Douglas-fir was unable to increase its transpiration despite the fact that sufficient water was available to one part of the root system. This resulted from the strong water potential gradient created by the dry soil in contact with the nonirrigated part of the root system. A mechanism of stem-mediated hydraulic redistribution is proposed and its possible implications are discussed.
- MeSH
- fyziologická adaptace fyziologie MeSH
- kořeny rostlin fyziologie MeSH
- období sucha MeSH
- Pseudotsuga fyziologie MeSH
- půda MeSH
- stonky rostlin fyziologie MeSH
- stromy fyziologie MeSH
- transpirace rostlin fyziologie MeSH
- voda fyziologie MeSH
- xylém MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Coppicing was one of the most important forest management systems in Europe documented in prehistory as well as in the Middle Ages. However, coppicing was gradually abandoned by the mid-20(th) century, which has altered the ecosystem structure, diversity and function of coppice woods. METHODOLOGY/PRINCIPAL FINDINGS: Our aim was to disentangle factors shaping the historical growth dynamics of oak standards (i.e. mature trees growing through several coppice cycles) in a former coppice-with-standards in Central Europe. Specifically, we tried to detect historical coppicing events from tree-rings of oak standards, to link coppicing events with the recruitment of mature oaks, and to determine the effects of neighbouring trees on the stem increment of oak standards. Large peaks in radial growth found for the periods 1895-1899 and 1935-1939 matched with historical records of coppice harvests. After coppicing, the number of newly recruited oak standards markedly grew in comparison with the preceding or following periods. The last significant recruitment of oak standards was after the 1930s following the last regular coppicing event. The diameter increment of oak standards from 1953 to 2003 was negatively correlated with competition indices, suggesting that neighbouring trees (mainly resprouting coppiced Tilia platyphyllos) partly suppressed the growth of oak standards. Our results showed that improved light conditions following historical coppicing events caused significant increase in pulses of radial growth and most probably maintained oak recruitment. CONCLUSIONS/SIGNIFICANCE: Our historical perspective carries important implications for oak management in Central Europe and elsewhere. Relatively intense cutting creating open canopy woodlands, either as in the coppicing system or in the form of selective cutting, is needed to achieve significant radial growth in mature oaks. It is also critical for the successful regeneration and long-term maintenance of oak populations.
- MeSH
- dub (rod) fyziologie MeSH
- ekosystém * MeSH
- stromy chemie růst a vývoj MeSH
- zachování přírodních zdrojů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
During the growing season, trees allocate photoassimilates to increase their aboveground woody biomass in the stem (ABIstem). This 'carbon allocation' to structural growth is a dynamic process influenced by internal and external (e.g., climatic) drivers. While radial variability in wood formation and its resulting structure have been intensively studied, their variability along tree stems and subsequent impacts on ABIstem remain poorly understood. We collected wood cores from mature trees within a fixed plot in a well-studied temperate Fagus sylvatica L. forest. For a subset of trees, we performed regular interval sampling along the stem to elucidate axial variability in ring width (RW) and wood density (ρ), and the resulting effects on tree- and plot-level ABIstem. Moreover, we measured wood anatomical traits to understand the anatomical basis of ρ and the coupling between changes in RW and ρ during drought. We found no significant axial variability in ρ because an increase in the vessel-to-fiber ratio with smaller RW compensated for vessel tapering towards the apex. By contrast, temporal variability in RW varied significantly along the stem axis, depending on the growing conditions. Drought caused a more severe growth decrease, and wetter summers caused a disproportionate growth increase at the stem base compared with the top. Discarding this axial variability resulted in a significant overestimation of tree-level ABIstem in wetter and cooler summers, but this bias was reduced to ~2% when scaling ABIstem to the plot level. These results suggest that F. sylvatica prioritizes structural carbon sinks close to the canopy when conditions are unfavorable. The different axial variability in RW and ρ thereby indicates some independence of the processes that drive volume growth and wood structure along the stem. This refines our knowledge of carbon allocation dynamics in temperate diffuse-porous species and contributes to reducing uncertainties in determining forest carbon fixation.
- MeSH
- biomasa MeSH
- buk (rod) * MeSH
- dřevo MeSH
- lesy MeSH
- stromy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Peripheral blood stem cells (PBSCs) are preferred source of hematopoietic stem cells for autologous transplantation. Mobilization of PBSCs using chemotherapy and/or granulocyte colony-stimulating factor (G-CSF) however fails in around 20%. Combining G-CSF with plerixafor increases the mobilizations success. We compared cost-effectiveness of following schemes: the use of plerixafor "on demand" (POD) during the first mobilization in all patients with inadequate response, the remobilization with plerixafor following failure of the first standard mobilization (SSP), and the standard (re)mobilization scheme without plerixafor (SSNP). Decision tree models populated with data from a first-of-a-kind patient registry in six Czech centers (n = 93) were built to compare clinical benefits and direct costs from the payer's perspective. The success rates and costs for POD, SSP and SSNP mobilizations were; 94.9%, $7,197; 94.7%, $8,049; 84.7%, $5,991, respectively. The direct cost per successfully treated patient was $7,586, $8,501, and $7,077, respectively. The cost of re-mobilization of a poor mobilizer was $5,808 with G-CSF only and $16,755 if plerixafor was added. The total cost of plerixafor "on-demand" in the sub-cohort of poor mobilizers was $17,120. Generally, plerixafor improves the mobilization success by 10% and allows an additional patient to be successfully mobilized for incremental $11,803. Plerixafor is better and cheaper if used "on demand" than within a subsequent remobilization.
- MeSH
- analýza nákladů a výnosů MeSH
- cytaferéza statistika a číselné údaje MeSH
- délka pobytu statistika a číselné údaje MeSH
- dítě MeSH
- dospělí MeSH
- ekonomické modely MeSH
- faktor stimulující kolonie granulocytů ekonomika terapeutické užití MeSH
- heterocyklické sloučeniny ekonomika terapeutické užití MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- lymfom ekonomika chirurgie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mnohočetný myelom ekonomika chirurgie MeSH
- mobilizace hematopoetických kmenových buněk ekonomika metody MeSH
- předškolní dítě MeSH
- rozhodovací stromy MeSH
- senioři MeSH
- transplantace periferních kmenových buněk ekonomika MeSH
- výdaje na zdravotnictví MeSH
- výsledek terapie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Československo MeSH
Naturally produced by microbial processes in soil, nitrous oxide (N2O) is an important greenhouse gas contributing to climate change. Accordingly, there is a need to accurately quantify the capability of forest ecosystems to exchange N2O with the atmosphere. While N2O emissions from soils have been well studied, trees have so far been overlooked in N2O inventories. Here, we show that stems of mature beech trees (Fagus sylvatica) may act as a substantial sink of N2O from the atmosphere under conditions of soils consuming N2O. Consistent consumption of N2O by all stems investigated (ranging between -2.4 and -3.8 µg m-2 h-1) is a novel finding in contrast to current studies presenting trees as N2O emitters. To understand these fluxes, N2O exchange of photoautotrophic organisms associated with beech bark (lichens, mosses and algae) was quantified under laboratory conditions. All these organisms were net N2O sinks at full rehydration and temperature of 25 °C. The consumption rates were comparable to stem consumption rates measured under field conditions. Cryptogamic stem covers could be a relevant sink of N2O in European beech forests.
- MeSH
- autotrofní procesy MeSH
- buk (rod) metabolismus MeSH
- oxid dusný metabolismus MeSH
- oxid uhličitý metabolismus MeSH
- půda MeSH
- půdní mikrobiologie * MeSH
- skleníkové plyny metabolismus MeSH
- stromy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH