Suprachiasmatic Nuclei Possess Glucocorticoid Receptors That Activate Downstream Signaling Pathways but Do Not Entrain Their Circadian Clock
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
23-05070S
Grantová Agentura České Republiky
67985823
Research Project RVO
PubMed
41314247
PubMed Central
PMC12662659
DOI
10.1111/apha.70138
Knihovny.cz E-zdroje
- Klíčová slova
- circadian clock, entrainment, fetus, glucocorticoids, ontogenesis, suprachiasmatic nuclei,
- MeSH
- cirkadiánní hodiny * fyziologie účinky léků MeSH
- cirkadiánní rytmus fyziologie MeSH
- dexamethason farmakologie MeSH
- glukokortikoidy farmakologie MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- nucleus suprachiasmaticus * metabolismus účinky léků fyziologie MeSH
- receptory glukokortikoidů * metabolismus genetika MeSH
- signální transdukce * fyziologie účinky léků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dexamethason MeSH
- glukokortikoidy MeSH
- NR3C1 protein, mouse MeSH Prohlížeč
- receptory glukokortikoidů * MeSH
AIM: The circadian clock in the suprachiasmatic nuclei of the hypothalamus (SCN) is resistant to glucocorticoids (GC) in adults but responds to dexamethasone (DEX) during the fetal stage. Previously, this resistance of the adult SCN clock was attributed to a developmental loss of the glucocorticoid receptor (GR). The aim of our study was to re-examine the mechanism underlying SCN clock resistance. METHODS: We detected GR in the adult SCN at the mRNA level (Nr3c1) using RT-qPCR and at the protein level by immunohistochemistry, and examined the effects of DEX on the SCN clock of mPer2Luc mice ex vivo at embryonic day E17, postnatal days P1-2, P3, P5, P10, and adulthood. RESULTS: Surprisingly, we found that Nr3c1 expression gradually increases from the fetal stage to postnatal day (P)28. In the adult SCN, GR immunoreactivity is present in both neurons and glia. The effect of DEX on the SCN clock disappears shortly after birth. Although DEX does not entrain the adult SCN clock, it acutely increases the expression of Gilz and Sgk1, indicating that GRs in the adult SCN can activate downstream signaling pathways. Inhibition of glial metabolism by fluorocitrate had no effect on resistance to DEX, but treatment with tetrodotoxin sensitized the clock to DEX and induced phase shifts similar to those observed at the fetal stage. CONCLUSION: These results indicate that the adult SCN possesses GRs capable of activating GC-signaling pathways, but the clock is resistant to GC in part due to coupling between individual cellular oscillators.
Zobrazit více v PubMed
Moore R. Y. and Eichler V. B., “Loss of a Circadian Adrenal Corticosterone Rhythm Following Suprachiasmatic Lesions in the Rat,” Brain Research 42, no. 1 (1972): 201–206. PubMed
Cheifetz P. N., “The Daily Rhythm of the Secretion of Corticotrophin and Corticosterone in Rats and Mice,” Journal of Endocrinology 49, no. 3 (1971): xi–xii. PubMed
de Kloet E. R., Joels M., and Holsboer F., “Stress and the Brain: From Adaptation to Disease,” Nature Reviews. Neuroscience 6, no. 6 (2005): 463–475. PubMed
Vrang N., Larsen P. J., and Mikkelsen J. D., “Direct Projection From the Suprachiasmatic Nucleus to Hypophysiotrophic Corticotropin‐Releasing Factor Immunoreactive Cells in the Paraventricular Nucleus of the Hypothalamus Demonstrated by Means of PubMed
Jones J. R., Chaturvedi S., Granados‐Fuentes D., and Herzog E. D., “Circadian Neurons in the Paraventricular Nucleus Entrain and Sustain Daily Rhythms in Glucocorticoids,” Nature Communications 12, no. 1 (2021): 5763. PubMed PMC
Ishida A., Mutoh T., Ueyama T., et al., “Light Activates the Adrenal Gland: Timing of Gene Expression and Glucocorticoid Release,” Cell Metabolism 2, no. 5 (2005): 297–307. PubMed
Oster H., Damerow S., Kiessling S., et al., “The Circadian Rhythm of Glucocorticoids Is Regulated by a Gating Mechanism Residing in the Adrenal Cortical Clock,” Cell Metabolism 4, no. 2 (2006): 163–173. PubMed
Son G. H., Chung S., Choe H. K., et al., “Adrenal Peripheral Clock Controls the Autonomous Circadian Rhythm of Glucocorticoid by Causing Rhythmic Steroid Production,” Proceedings of the National Academy of Sciences of the United States of America 105, no. 52 (2008): 20970–20975. PubMed PMC
Balsalobre A., Brown S. A., Marcacci L., et al., “Resetting of Circadian Time in Peripheral Tissues by Glucocorticoid Signaling,” Science 289, no. 5488 (2000): 2344–2347. PubMed
Reddy A. B., Maywood E. S., Karp N. A., et al., “Glucocorticoid Signaling Synchronizes the Liver Circadian Transcriptome,” Hepatology 45, no. 6 (2007): 1478–1488. PubMed
Lightman S. L., Birnie M. T., and Conway‐Campbell B. L., “Dynamics of ACTH and Cortisol Secretion and Implications for Disease,” Endocrine Reviews 41, no. 3 (2020): bnaa002. PubMed PMC
Waite E. J., McKenna M., Kershaw Y., et al., “Ultradian Corticosterone Secretion Is Maintained in the Absence of Circadian Cues,” European Journal of Neuroscience 36, no. 8 (2012): 3142–3150. PubMed
So A. Y., Bernal T. U., Pillsbury M. L., Yamamoto K. R., and Feldman B. J., “Glucocorticoid Regulation of the Circadian Clock Modulates Glucose Homeostasis,” Proceedings of the National Academy of Sciences of the United States of America 106, no. 41 (2009): 17582–17587. PubMed PMC
Zheng G., Pang S., Wang J., et al., “Glucocorticoid Receptor‐Mediated Nr1d1 Chromatin Circadian Misalignment in Stress‐Induced Irritable Bowel Syndrome,” iScience 26, no. 7 (2023): 107137. PubMed PMC
Tsuchiya S., Sugiyama K., and Van Gelder R. N., “Adrenal and Glucocorticoid Effects on the Circadian Rhythm of Murine Intraocular Pressure,” Investigative Ophthalmology & Visual Science 59, no. 13 (2018): 5641–5647. PubMed PMC
Reddy T. E., Pauli F., Sprouse R. O., et al., “Genomic Determination of the Glucocorticoid Response Reveals Unexpected Mechanisms of Gene Regulation,” Genome Research 19, no. 12 (2009): 2163–2171. PubMed PMC
Charmandari E., Chrousos G. P., Lambrou G. I., et al., “Peripheral CLOCK Regulates Target‐Tissue Glucocorticoid Receptor Transcriptional Activity in a Circadian Fashion in Man,” PLoS One 6, no. 9 (2011): e25612. PubMed PMC
Murayama Y., Yahagi N., Takeuchi Y., et al., “Glucocorticoid Receptor Suppresses Gene Expression of Rev‐Erbalpha (Nr1d1) Through Interaction With the CLOCK Complex,” FEBS Letters 593, no. 4 (2019): 423–432. PubMed
Liska K., Sladek M., Cecmanova V., and Sumova A., “Glucocorticoids Reset Circadian Clock in Choroid Plexus via Period Genes,” Journal of Endocrinology 248, no. 2 (2021): 155–166. PubMed
Oster H., Challet E., Ott V., et al., “The Functional and Clinical Significance of the 24‐Hour Rhythm of Circulating Glucocorticoids,” Endocrine Reviews 38, no. 1 (2017): 3–45. PubMed PMC
Polidarova L., Houdek P., Sladek M., Novosadova Z., Pacha J., and Sumova A., “Mechanisms of Hormonal Regulation of the Peripheral Circadian Clock in the Colon,” Chronobiology International 34, no. 1 (2017): 1–16. PubMed
Liska K., Sladek M., Houdek P., et al., “High Sensitivity of Circadian Clock in the Hippocampal Dentate Gyrus to Glucocorticoid‐ and GSK3beta‐Dependent Signals,” Neuroendocrinology 112, no. 4 (2022): 384–398. PubMed
Rosenfeld P., Van Eekelen J. A., Levine S., and De Kloet E. R., “Ontogeny of the Type 2 Glucocorticoid Receptor in Discrete Rat Brain Regions: An Immunocytochemical Study,” Brain Research 470, no. 1 (1988): 119–127. PubMed
Rosenfeld P., van Eekelen J. A., Levine S., and de Kloet E. R., “Ontogeny of Corticosteroid Receptors in the Brain,” Cellular and Molecular Neurobiology 13, no. 4 (1993): 295–319. PubMed PMC
Tahara Y., Shiraishi T., Kikuchi Y., et al., “Entrainment of the Mouse Circadian Clock by Sub‐Acute Physical and Psychological Stress,” Scientific Reports 5 (2015): 11417. PubMed PMC
Cecmanova V., Houdek P., Suchmanova K., Sladek M., and Sumova A., “Development and Entrainment of the Fetal Clock in the Suprachiasmatic Nuclei: The Role of Glucocorticoids,” Journal of Biological Rhythms 34, no. 3 (2019): 307–322. PubMed
Olejnikova L., Polidarova L., and Sumova A., “Stress Affects Expression of the Clock Gene Bmal1 in the Suprachiasmatic Nucleus of Neonatal Rats via Glucocorticoid‐Dependent Mechanism,” Acta Physiologica (Oxford) 223, no. 1 (2018): e13020. PubMed
Yoo S. H., Yamazaki S., Lowrey P. L., et al., “PERIOD2::LUCIFERASE Real‐Time Reporting of Circadian Dynamics Reveals Persistent Circadian Oscillations in Mouse Peripheral Tissues,” Proceedings of the National Academy of Sciences of the United States of America 101, no. 15 (2004): 5339–5346. PubMed PMC
Mohawk J. A., Pargament J. M., and Lee T. M., “Circadian Dependence of Corticosterone Release to Light Exposure in the Rat,” Physiology & Behavior 92, no. 5 (2007): 800–806. PubMed PMC
Houdek P. and Sumova A., “In Vivo Initiation of Clock Gene Expression Rhythmicity in Fetal Rat Suprachiasmatic Nuclei,” PLoS One 9, no. 9 (2014): e107360. PubMed PMC
Paulsen R. E., Contestabile A., Villani L., and Fonnum F., “An In Vivo Model for Studying Function of Brain Tissue Temporarily Devoid of Glial Cell Metabolism: The Use of Fluorocitrate,” Journal of Neurochemistry 48, no. 5 (1987): 1377–1385. PubMed
GitHub , “GitHub Repository Per2Py,” https://github.com/johnabel/per2py.
Sumova A., Sladek M., Jac M., and Illnerova H., “The Circadian Rhythm of Per1 Gene Product in the Rat Suprachiasmatic Nucleus and Its Modulation by Seasonal Changes in Daylength,” Brain Research 947, no. 2 (2002): 260–270. PubMed
Shi Y., Yee‐Chang M., and Shi S. R., “Application of Immunohistochemistry in Cytology,” Applied Immunohistochemistry & Molecular Morphology 31, no. 7 (2023): 459–466. PubMed
Welsh D. K., Takahashi J. S., and Kay S. A., “Suprachiasmatic Nucleus: Cell Autonomy and Network Properties,” Annual Review of Physiology 72 (2010): 551–577. PubMed PMC
Hastings M. H., Maywood E. S., and Brancaccio M., “Generation of Circadian Rhythms in the Suprachiasmatic Nucleus,” Nature Reviews. Neuroscience 19, no. 8 (2018): 453–469. PubMed
Takahashi S., Yokota S., Hara R., et al., “Physical and Inflammatory Stressors Elevate Circadian Clock Gene mPer1 mRNA Levels in the Paraventricular Nucleus of the Mouse,” Endocrinology 142, no. 11 (2001): 4910–4917. PubMed
Chun L. E., Christensen J., Woodruff E. R., Morton S. J., Hinds L. R., and Spencer R. L., “Adrenal‐Dependent and ‐Independent Stress‐Induced Per1 mRNA in Hypothalamic Paraventricular Nucleus and Prefrontal Cortex of Male and Female Rats,” Stress 21, no. 1 (2018): 69–83. PubMed
Ota S. M., Hut R. A., Riede S. J., Crosby P., Suchecki D., and Meerlo P., “Social Stress and Glucocorticoids Alter PERIOD2 Rhythmicity in the Liver, but Not in the Suprachiasmatic Nucleus,” Hormones and Behavior 120 (2020): 104683. PubMed PMC
Mukherji A., Kobiita A., Damara M., et al., “Shifting Eating to the Circadian Rest Phase Misaligns the Peripheral Clocks With the Master SCN Clock and Leads to a Metabolic Syndrome,” Proceedings of the National Academy of Sciences of the United States of America 112, no. 48 (2015): E6691–E6698. PubMed PMC
Chinenov Y., Coppo M., Gupte R., Sacta M. A., and Rogatsky I., “Glucocorticoid Receptor Coordinates Transcription Factor‐Dominated Regulatory Network in Macrophages,” BMC Genomics 15, no. 1 (2014): 656. PubMed PMC
Hu J., Mao Z., He S., et al., “Icariin Protects Against Glucocorticoid Induced Osteoporosis, Increases the Expression of the Bone Enhancer DEC1 and Modulates the PI3K/Akt/GSK3beta/Beta‐Catenin Integrated Signaling Pathway,” Biochemical Pharmacology 136 (2017): 109–121. PubMed PMC
Piechota M., Zieba M., Borczyk M., et al., “A Cross‐Tissue Transcriptomic Approach Decodes Glucocorticoid Receptor‐Dependent Links to Human Metabolic Phenotypes,” BMC Genomics 26, no. 1 (2025): 462. PubMed PMC
Choi S. M., Cho H. J., Cho H., Kim K. H., Kim J. B., and Park H., “Stra13/DEC1 and DEC2 Inhibit Sterol Regulatory Element Binding Protein‐1c in a Hypoxia‐Inducible Factor‐Dependent Mechanism,” Nucleic Acids Research 36, no. 20 (2008): 6372–6385. PubMed PMC
Seuter S., Pehkonen P., Heikkinen S., and Carlberg C., “The Gene for the Transcription Factor BHLHE40/DEC1/stra13 Is a Dynamically Regulated Primary Target of the Vitamin D Receptor,” Journal of Steroid Biochemistry and Molecular Biology 136 (2013): 62–67. PubMed
Honma S., Kawamoto T., Takagi Y., et al., “Dec1 and Dec2 Are Regulators of the Mammalian Molecular Clock,” Nature 419 (2002): 841–844. PubMed
Sato T. K., Panda S., Miraglia L. J., et al., “A Functional Genomics Strategy Reveals Rora as a Component of the Mammalian Circadian Clock,” Neuron 43, no. 4 (2004): 527–537. PubMed
Quagliarini F., Mir A. A., Balazs K., et al., “Cistromic Reprogramming of the Diurnal Glucocorticoid Hormone Response by High‐Fat Diet,” Molecular Cell 76, no. 4 (2019): 531–545. PubMed PMC
Pezuk P., Mohawk J. A., Wang L. A., and Menaker M., “Glucocorticoids as Entraining Signals for Peripheral Circadian Oscillators,” Endocrinology 153, no. 10 (2012): 4775–4783. PubMed PMC
Mifsud K. R. and Reul J. M., “Acute Stress Enhances Heterodimerization and Binding of Corticosteroid Receptors at Glucocorticoid Target Genes in the Hippocampus,” Proceedings of the National Academy of Sciences of the United States of America 113, no. 40 (2016): 11336–11341. PubMed PMC
Conway‐Campbell B. L., Sarabdjitsingh R. A., McKenna M. A., et al., “Glucocorticoid Ultradian Rhythmicity Directs Cyclical Gene Pulsing of the Clock Gene Period 1 in Rat Hippocampus,” Journal of Neuroendocrinology 22, no. 10 (2010): 1093–1100. PubMed PMC
Moore R. Y. and Bernstein M. E., “Synaptogenesis in the Rat Suprachiasmatic Nucleus Demonstrated by Electron Microscopy and Synapsin I Immunoreactivity,” Journal of Neuroscience 9, no. 6 (1989): 2151–2162. PubMed PMC
Yamaguchi S., Isejima H., Matsuo T., et al., “Synchronization of Cellular Clocks in the Suprachiasmatic Nucleus,” Science 302, no. 5649 (2003): 1408–1412. PubMed
Enoki R., Kuroda S., Ono D., et al., “Topological Specificity and Hierarchical Network of the Circadian Calcium Rhythm in the Suprachiasmatic Nucleus,” Proceedings of the National Academy of Sciences of the United States of America 109, no. 52 (2012): 21498–21503. PubMed PMC
Colwell C. S., “Rhythmic Coupling Among Cells in the Suprachiasmatic Nucleus,” Journal of Neurobiology 43, no. 4 (2000): 379–388. PubMed PMC
Maywood E. S., Reddy A. B., Wong G. K., et al., “Synchronization and Maintenance of Timekeeping in Suprachiasmatic Circadian Clock Cells by Neuropeptidergic Signaling,” Current Biology 16, no. 6 (2006): 599–605. PubMed
Tu H. Q., Li S., Xu Y. L., et al., “Rhythmic Cilia Changes Support SCN Neuron Coherence in Circadian Clock,” Science 380, no. 6648 (2023): 972–979. PubMed
Landgraf D., McCarthy M. J., and Welsh D. K., “Circadian Clock and Stress Interactions in the Molecular Biology of Psychiatric Disorders,” Current Psychiatry Reports 16, no. 10 (2014): 483. PubMed