Unravelling the evolution of wood-feeding in termites with 47 high-resolution genome assemblies
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MC 436/5-1; MC 436/7-1; HA 8997/1-1
Deutsche Forschungsgemeinschaft (German Research Foundation)
PubMed
41365869
PubMed Central
PMC12708661
DOI
10.1038/s41467-025-65969-5
PII: 10.1038/s41467-025-65969-5
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- dřevo * MeSH
- fylogeneze MeSH
- genom hmyzu * genetika MeSH
- Isoptera * genetika klasifikace fyziologie MeSH
- molekulární evoluce MeSH
- stravovací zvyklosti * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Termites are a lineage of social cockroaches abundant in tropical ecosystems where they are key decomposers of organic matter. Despite their ecological significance, only a handful of reference-quality termite genomes have been sequenced, which is insufficient to unravel the genetic mechanisms that have contributed to their ecological success. Here, we perform sequencing and hybrid assembly of 45 taxonomically and ecologically diverse termites and two cockroaches, resulting in haplotype-merged genome assemblies of 47 species, 22 of which were near-chromosome level. Next, we examine the link between termite dietary evolution and major genomic events. We find that Termitidae, which include ~80% of described termite species, have larger genomes with more genes and a higher proportion of transposons than other termites. Our analyses identify a gene number expansion early in the evolution of Termitidae, including an expansion of the repertoire of CAZymes, the genes involved in lignocellulose degradation. Notably, this expansion of genomes and gene repertoires coincided with the origin of soil-feeding in Termitidae and remained unchanged in lineages that secondarily reverted to a wood-based diet. Overall, our sequencing effort multiplies the number of available termite genomes by six and provides insights into the genome evolution of an ancient lineage of social insects.
Centre for Health and Life Sciences Coventry University Coventry UK
College of Life Sciences Chongqing Normal University Chongqing People's Republic of China
College of Plant Protection Southwest University Chongqing China
Faculty of Tropical AgriSciences Czech University of Life Sciences Kamýcká 129 Prague Czech Republic
Institute for Evolution and Biodiversity University of Münster Hüfferstraße 1 Münster Germany
Institute of Biology Freie Universität Berlin Berlin Germany
Okinawa Institute of Science and Technology Graduate University 1919 1 Tancha Onna son Okinawa Japan
Tropical Biosphere Research Center University of the Ryukyus 1 Senbaru Nishihara Okinawa Japan
Universidade Federal do ABC Avenida dos Estados 5001 Santo André SP Brazil
Zobrazit více v PubMed
Roisin, Y. (2000).
Roisin, Y. & Korb, J. Social organisation and the status of workers in termites. in
Eggleton, P. et al. The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon.
Evans, T. A., Dawes, T. Z., Ward, P. R. & Lo, N. Ants and termites increase crop yield in a dry climate. PubMed DOI PMC
Jouquet, P., Traoré, S., Choosai, C., Hartmann, C. & Bignell, D. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. DOI
Ashton, L. A. et al. Termites mitigate the effects of drought in tropical rainforest. PubMed DOI
Elizalde, L. et al. The ecosystem services provided by social insects: traits, management tools and knowledge gaps. PubMed DOI
Lo, N. et al. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. PubMed DOI
Thorne, B. L., Grimaldi, D. A. & Krishna, K.
Engel, M. S., Barden, P., Riccio, M. L. & Grimaldi, D. A. Morphologically specialized termite castes and advanced sociality in the Early Cretaceous. PubMed DOI
Engel, M. S., Grimaldi, D. A., Nascimbene, P. C. & Singh, H. The termites of Early Eocene Cambay amber, with the earliest record of the Termitidae (Isoptera). PubMed DOI PMC
Bucek, A. et al. Evolution of termite symbiosis informed by transcriptome-based phylogenies. PubMed DOI
Bourguignon, T. et al. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. PubMed
Wang, M. et al. Phylogeny, biogeography and classification of Teletisoptera (Blattaria: Isoptera). DOI
Hellemans, S. et al. Termites became the dominant decomposers of the tropics following two diversification pulses. Preprint at 10.1101/2025.03.25.645184 (2025).
Donovan, S. E., Eggleton, P. & Bignell, D. E. Gut content analysis and a new feeding group classification of termites. DOI
Bourguignon, T. et al. Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. DOI
Gerozisis, J., Hadlington, P. W. & Staunton, I.
Dhang, P. Insecticides as urban pollutants. in
Rust, M. K. & Su, N. Y. Managing social insects of urban importance. PubMed DOI
Terrapon, N. et al. Molecular traces of alternative social organization in a termite genome. PubMed DOI
Koshikawa, S., Miyazaki, S., Cornette, R., Matsumoto, T. & Miura, T. Genome size of termites (Insecta, Dictyoptera, Isoptera) and wood roaches (Insecta, Dictyoptera, Cryptocercidae). PubMed DOI
Poulsen, M. et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. PubMed DOI PMC
Harrison, M. C. et al. Hemimetabolous genomes reveal molecular basis of termite eusociality. PubMed DOI PMC
Itakura, S., Yoshikawa, Y., Togami, Y. & Umezawa, K. Draft genome sequence of the termite, DOI
Shigenobu, S. et al. Genomic and transcriptomic analyses of the subterranean termite PubMed DOI PMC
Martelossi, J. et al. Wood feeding and social living: Draft genome of the subterranean termite PubMed DOI
Qiu, B., Elsner, D. & Korb, J. High-quality long-read genome assemblies reveal evolutionary patterns of transposable elements and DNA methylation in termites. Preprint at 10.1101/2023.10.31.564968 (2023).
Dudchenko, O. et al. De novo assembly of the PubMed DOI PMC
Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. PubMed DOI PMC
Hellemans, S. et al. Genomic data provide insights into the classification of extant termites. PubMed DOI PMC
Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. PubMed DOI PMC
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. PubMed DOI PMC
Li, S. et al. The genomic and functional landscapes of developmental plasticity in the American cockroach. PubMed DOI PMC
Hellemans, S. et al. Using ultraconserved elements to reconstruct the termite tree of life. PubMed DOI
Cleveland, L. R., Hall, S. R., Sanders, E. P. & Collier, J. The wood-feeding roach
Nalepa, C. A. & Jones, S. C. Evolution of monogamy in termites. DOI
Chouvenc, T., Šobotník, J., Engel, M. S. & Bourguignon, T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. PubMed DOI PMC
Canapa, A., Barucca, M., Biscotti, M. A., Forconi, M. & Olmo, E. Transposons, genome size, and evolutionary insights in animals. PubMed DOI
Elliott, T. A. & Gregory, T. R. What’s in a genome? The C-value enigma and the evolution of eukaryotic genome content. PubMed DOI PMC
Guigó, R. Genome annotation: From human genetics to biodiversity genomics. PubMed PMC
Tørresen, O. K. et al. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. PubMed DOI PMC
Hellemans, S. et al. Termite dispersal is influenced by their diet. PubMed DOI PMC
Brune, A. Symbiotic digestion of lignocellulose in termite guts. PubMed DOI
Tokuda, G. et al. Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. PubMed DOI
Watanabe, H., Noda, H., Tokuda, G. & Lo, N. A cellulase gene of termite origin. PubMed DOI
Lynd, L. R., Weimer, P. J., Van Zyl, W. H. & Pretorius, I. S. Microbial cellulose utilization: fundamentals and biotechnology. PubMed DOI PMC
Coutinho, P. M., Deleury, E., Davies, G. J. & Henrissat, B. An evolving hierarchical family classification for glycosyltransferases. PubMed DOI
He, S. et al. Genome-wide identification reveals conserved carbohydrate-active enzyme repertoire in termites. DOI
Zhang, D. et al. Carbohydrate-active enzymes revealed in PubMed DOI
Fujita, A. et al. Details of the digestive system in the midgut of DOI
Morales-Ramos, J. A., Rojas, M. G. & Sittertz-Bhatkar, H. Peritrophic matrix of the Formosan subterranean termite (Isoptera: Rhinotermitidae). DOI
Sandoval-Mojica, A. F. & Scharf, M. E. Gut genes associated with the peritrophic matrix in PubMed DOI
Rabadiya, D. & Behr, M. The biology of insect chitinase and their roles at chitinous cuticles. PubMed DOI
Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5 models variation in evolutionary rates among gene families. PubMed DOI
Krishna, K., Grimaldi, D. A., Krishna, V. & Engel, M. S.
Ji, R. & Brune, A. Transformation and mineralization of 14C-labeled cellulose, peptidoglycan, and protein by the soil-feeding termite DOI
Ji, R. & Brune, A. Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites. DOI
De Coster, W., D’hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack: visualizing and processing long-read sequencing data. PubMed DOI PMC
Hackl, T. et al. Proovframe: frameshift-correction for long-read (meta) genomics. Preprint at 10.1101/2021.08.23.457338 (2021).
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. PubMed DOI
Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. PubMed DOI
Chen, Z. et al. Ultralow-input single-tube linked-read library method enables short-read second-generation sequencing systems to routinely generate highly accurate and economical long-range sequencing information. PubMed DOI PMC
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. PubMed DOI PMC
Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. https://sourceforge.net/projects/bbmap/ (2014).
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. PubMed DOI PMC
Allio, R. et al. MitoFinder: Efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. PubMed DOI PMC
Camacho, C. et al. BLAST + : architecture and applications. PubMed DOI PMC
Li, H. Minimap2: pairwise alignment for nucleotide sequences. PubMed DOI PMC
Kundu, R., Casey, J. & Sung, W. K. HyPo: super fast & accurate polisher for long read genome assemblies. 10.1101/2019.12.19.882506 (2019).
Roach, M. J., Schmidt, S. A. & Borneman, A. R. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. PubMed DOI PMC
Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at 10.48550/arXiv.1303.3997.
Open2C et al. Pairtools: from sequencing data to chromosome contacts. PubMed DOI PMC
Zhou, C., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. PubMed DOI PMC
Xu, G. C. et al. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly. PubMed DOI PMC
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. PubMed DOI PMC
Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. PubMed
Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. PubMed DOI PMC
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. http://www.repeatmasker.org (2015).
Mei, Y. et al. InsectBase 2.0: a comprehensive gene resource for insects. PubMed DOI PMC
Li, H. Protein-to-genome alignment with miniprot. PubMed DOI PMC
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. PubMed DOI PMC
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. PubMed DOI PMC
Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. PubMed DOI
Haas, B. J. TransDecoder (Find Coding Regions Within Transcripts). https://github.com/TransDecoder/TransDecoder (2013).
Hoff, K. J., Lomsadze, A., Borodovsky, M. & Stanke, M. Whole-genome annotation with BRAKER. PubMed PMC
Brůna, T. et al. Galba: genome annotation with miniprot and AUGUSTUS. PubMed DOI PMC
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. PubMed DOI PMC
Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. PubMed DOI PMC
Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. PubMed DOI PMC
Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. PubMed DOI PMC
Ou, S. & Jiang, N. LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long terminal repeat retrotransposons. PubMed DOI PMC
Ou, S. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. PubMed DOI PMC
Shi, J. & Liang, C. Generic repeat finder: a high-sensitivity tool for genome-wide de novo repeat detection. PubMed DOI PMC
Su, W., Gu, X. & Peterson, T. TIR-Learner, a new ensemble method for TIR transposable element annotation, provides evidence for abundant new transposable elements in the maize genome. PubMed DOI
Xiong, W., He, L., Lai, J., Dooner, H. K. & Du, C. HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. PubMed DOI PMC
Li, Y., Jiang, N. & Sun, Y. AnnoSINE: a short interspersed nuclear elements annotation tool for plant genomes. PubMed DOI PMC
Zheng, J. et al. dbCAN3: automated carbohydrate-active enzyme and substrate annotation. PubMed DOI PMC
Faircloth, B. C. Phylogenetics PHYLUCE is a software package for the analysis of conserved genomic loci. PubMed DOI
Harris, R. S.
Katoh, K., Misawa, K., Kuma, K. I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. PubMed DOI PMC
Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. PubMed DOI
Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. PubMed DOI
Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. PubMed DOI PMC
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. PubMed DOI PMC
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. PubMed DOI PMC
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. PubMed DOI
Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. PubMed DOI PMC
Kück, P. & Meusemann, K. FASconCAT: convenient handling of data matrices. PubMed DOI
Buček, A. et al. Molecular phylogeny reveals the past transoceanic voyages of drywood termites (Isoptera, Kalotermitidae). PubMed DOI PMC
Durden, C. J. Pennsylvanian correlation using blattoid insects. DOI
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. PubMed DOI PMC
Revell, L. J. & Harmon, L. J.
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). in
Beaulieu, J. M. & O’Meara, B. OUwie: Analysis of evolutionary rates in an OU framework.https://github.com/thej022214/OUwie (2023).
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. PubMed DOI
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. PubMed DOI
Pinheiro, J., Bates D. & R Core Team nlme: Linear and nonlinear mixed effects models. https://svn.r-project.org/R-packages/trunk/nlme/ (2024).
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: cluster analysis basics and extensions. https://CRAN.R-project.org/package=cluster (2024).
Kassambara, A. & Mundt, F. factoextra: Extract and visualize the results of multivariate data analyses.https://github.com/kassambara/factoextra (2017).
Bennett L., Melchers B., Proppe B. Curta: A general-purpose high-performance computer at ZEDAT, Freie Universität Berlin. 10.17169/refubium-26754 (2020).