The Kink-Turn 7 Motif: An Additional Test for RNA Force Field Performance
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41358869
PubMed Central
PMC12746442
DOI
10.1021/acs.jctc.5c00776
Knihovny.cz E-zdroje
- MeSH
- konformace nukleové kyseliny MeSH
- RNA * chemie MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA * MeSH
The kink-turn is a recurrent RNA structural motif that induces a sharp bend (kink) in the A-form RNA helix. It is defined by key structural features, including consecutive sheared AG base pairs, an A-minor interaction, and multiple base-sugar interactions. An accurate representation of these densely packed noncanonical interactions by molecular dynamics simulations poses a significant challenge for contemporary force fields (FFs). Here, we present extended simulations of the ribosomal kink-turn 7 (Kt-7) from H.m., the so-called "consensual" kink-turn, using a broad spectrum of pair-additive and polarizable RNA FFs. None of the tested FFs manage to flawlessly describe all of the structural features of the Kt-7 although several FFs provide rather acceptable results and should not cause problems in simulations of larger RNAs containing a kink-turn. On aggregate, the widely used OL3 (ff99bsc0χOL3) and polarizable AMOEBA FFs achieve the best performance for this motif. Interestingly, some more recently parametrized FF variants struggle to describe the Kt-7's tertiary A-minor interaction - a ubiquitous tertiary contact in RNA. This raises some concerns about the broader applicability of these FFs and suggests that they may be overfitted to small model systems, such as RNA tetranucleotides. In some cases, irreversible unkinking of the entire kink-turn motif can also be observed. The kink-turn motif is highly sensitive to variations in RNA FFs, and we strongly recommend its inclusion in training and benchmarking data sets as an important regression test to improve the robustness and accuracy of RNA FF parametrization.
Zobrazit více v PubMed
Huang L., Lilley D. M. J.. The Kink Turn, a Key Architectural Element in RNA Structure. J. Mol. Biol. 2016;428(5):790–801. doi: 10.1016/j.jmb.2015.09.026. PubMed DOI PMC
Huang L., Lilley D. M. J.. The kink-turn in the structural biology of RNA. Q. Rev. Biophys. 2018;51:e5. doi: 10.1017/S0033583518000033. PubMed DOI
Klein D. J., Schmeing T. M., Moore P. B., Steitz T. A.. The kink-turn: a new RNA secondary structure motif. EMBO J. 2001;20:4214. doi: 10.1093/emboj/20.15.4214. PubMed DOI PMC
Montange R. K., Batey R. T.. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature. 2006;441(7097):1172–1175. doi: 10.1038/nature04819. PubMed DOI
Smith K. D., Shanahan C. A., Moore E. L., Simon A. C., Strobel S. A.. Structural basis of differential ligand recognition by two classes of bis-(3′-5′)-cyclic dimeric guanosine monophosphate-binding riboswitches. Proc. Natl. Acad. Sci. U. S. A. 2011;108(19):7757–7762. doi: 10.1073/pnas.1018857108. PubMed DOI PMC
Zhang J., Ferré-D’Amaré A. R.. Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA. Nature. 2013;500(7462):363–366. doi: 10.1038/nature12440. PubMed DOI PMC
Woźniak A. K., Nottrott S., Kühn-Hölsken E., Schröder G. F., Grubmüller H., Lührmann R., Seidel C. A., Oesterhelt F.. Detecting protein-induced folding of the U4 snRNA kink-turn by single-molecule multiparameter FRET measurements. RNA. 2005;11(10):1545–1554. doi: 10.1261/rna.2950605. PubMed DOI PMC
Vidovic I., Nottrott S., Hartmuth K., Lührmann R., Ficner R.. Crystal structure of the spliceosomal 15.5 kD protein bound to a U4 snRNA fragment. Mol. Cell. 2000;6(6):1331–1342. doi: 10.1016/S1097-2765(00)00131-3. PubMed DOI
Grabow W. W., Jaeger L.. RNA Self-Assembly and RNA Nanotechnology. Acc. Chem. Res. 2014;47(6):1871–1880. doi: 10.1021/ar500076k. PubMed DOI
Lescoute A., Leontis N. B., Massire C., Westhof E.. Recurrent structural RNA motifs, Isostericity Matrices and sequence alignments. Nucleic Acids Res. 2005;33(8):2395–2409. doi: 10.1093/nar/gki535. PubMed DOI PMC
Moore T., Zhang Y., Fenley M. O., Li H.. Molecular basis of box C/D RNA-protein interactions: cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure. 2004;12(5):807–818. doi: 10.1016/S0969-2126(04)00116-9. PubMed DOI
Hamma T., Ferré-D’Amaré A. R.. Structure of protein L7Ae bound to a K-turn derived from an archaeal box H/ACA sRNA at 1.8 Å resolution. Structure. 2004;12(5):893–903. doi: 10.1016/S0969-2126(04)00096-6. PubMed DOI
Szewczak L. B. W., Gabrielsen J. S., Degregorio S. J., Strobel S. A., Steitz J. A.. Molecular basis for RNA kink-turn recognition by the h15. 5K small RNP protein. RNA. 2005;11(9):1407–1419. doi: 10.1261/rna.2830905. PubMed DOI PMC
Youssef O. A., Terns R. M., Terns M. P.. Dynamic interactions within sub-complexes of the H/ACA pseudouridylation guide RNP. Nucleic Acids Res. 2007;35(18):6196–6206. doi: 10.1093/nar/gkm673. PubMed DOI PMC
Huang L., Lilley D. M. J.. The molecular recognition of kink-turn structure by the L7Ae class of proteins. RNA. 2013;19(12):1703–1710. doi: 10.1261/rna.041517.113. PubMed DOI PMC
McPhee S. A., Huang L., Lilley D. M. J.. A critical base pair in k-turns that confers folding characteristics and correlates with biological function. Nat. Commun. 2014;5(1):5127. doi: 10.1038/ncomms6127. PubMed DOI PMC
Huang L., Wang J., Lilley D. M. J.. A critical base pair in k-turns determines the conformational class adopted, and correlates with biological function. Nucleic Acids Res. 2016;44(11):5390–5398. doi: 10.1093/nar/gkw201. PubMed DOI PMC
Leontis N. B., Westhof E.. Geometric nomenclature and classification of RNA base pairs. RNA. 2001;7(4):499–512. doi: 10.1017/S1355838201002515. PubMed DOI PMC
Xin Y., Laing C., Leontis N. B., Schlick T.. Annotation of tertiary interactions in RNA structures reveals variations and correlations. RNA. 2008;14(12):2465–2477. doi: 10.1261/rna.1249208. PubMed DOI PMC
Ban N., Nissen P., Hansen J., Moore P. B., Steitz T. A.. The Complete Atomic Structure of the Large Ribosomal Subunit at 2.4 Å Resolution. Science. 2000;289(5481):905–920. doi: 10.1126/science.289.5481.905. PubMed DOI
Nissen P., Ippolito J. A., Ban N., Moore P. B., Steitz T. A.. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. U. S. A. 2001;98(9):4899–4903. doi: 10.1073/pnas.081082398. PubMed DOI PMC
Chagot M.-E., Quinternet M., Rothé B., Charpentier B., Coutant J., Manival X., Lebars I.. The yeast C/D box snoRNA U14 adopts a “weak” K-turn like conformation recognized by the Snu13 core protein in solution. Biochimie. 2019;164:70–82. doi: 10.1016/j.biochi.2019.03.014. PubMed DOI
Falb M., Amata I., Gabel F., Simon B., Carlomagno T.. Structure of the K-turn U4 RNA: a combined NMR and SANS study. Nucleic Acids Res. 2010;38(18):6274–6285. doi: 10.1093/nar/gkq380. PubMed DOI PMC
Goody T. A., Melcher S. E., Norman D. G., Lilley D. M.. The kink-turn motif in RNA is dimorphic, and metal ion-dependent. RNA. 2004;10(2):254–264. doi: 10.1261/rna.5176604. PubMed DOI PMC
Zirbel C. L., Šponer J. E., Šponer J., Stombaugh J., Leontis N. B.. Classification and energetics of the base-phosphate interactions in RNA. Nucleic Acids Res. 2009;37(15):4898–4918. doi: 10.1093/nar/gkp468. PubMed DOI PMC
Liu J., Lilley D. M. J.. The role of specific 2′-hydroxyl groups in the stabilization of the folded conformation of kink-turn RNA. RNA. 2007;13(2):200–210. doi: 10.1261/rna.285707. PubMed DOI PMC
Černý J., Božíková P., Svoboda J., Schneider B.. A unified dinucleotide alphabet describing both RNA and DNA structures. Nucleic Acids Res. 2020;48(11):6367–6381. doi: 10.1093/nar/gkaa383. PubMed DOI PMC
Richardson J. S., Schneider B., Murray L. W., Kapral G. J., Immormino R. M., Headd J. J., Richardson D. C., Ham D., Hershkovits E., Williams L. D.. et al. RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution) RNA. 2008;14(3):465–481. doi: 10.1261/rna.657708. PubMed DOI PMC
Hollingsworth S. A., Dror R. O.. Molecular dynamics simulation for all. Neuron. 2018;99(6):1129–1143. doi: 10.1016/j.neuron.2018.08.011. PubMed DOI PMC
Šponer J., Bussi G., Krepl M., Banáš P., Bottaro S., Cunha R. A., Gil-Ley A., Pinamonti G., Poblete S., Jurečka P., Walter N. G., Otyepka M.. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 2018;118(8):4177–4338. doi: 10.1021/acs.chemrev.7b00427. PubMed DOI PMC
Yildirim I., Stern H. A., Tubbs J. D., Kennedy S. D., Turner D. H.. Benchmarking AMBER force fields for RNA: comparisons to NMR spectra for single-stranded r(GACC) are improved by revised χ torsions. J. Phys. Chem. B. 2011;115(29):9261–9270. doi: 10.1021/jp2016006. PubMed DOI PMC
Tubbs J. D., Condon D. E., Kennedy S. D., Hauser M., Bevilacqua P. C., Turner D. H.. The nuclear magnetic resonance of CCCC RNA reveals a right-handed helix, and revised parameters for AMBER force field torsions improve structural predictions from molecular dynamics. Biochemistry. 2013;52(6):996–1010. doi: 10.1021/bi3010347. PubMed DOI PMC
Bergonzo C., Henriksen N. M., Roe D. R., Cheatham T. E. III. Highly sampled tetranucleotide and tetraloop motifs enable evaluation of common RNA force fields. RNA. 2015;21(9):1578–1590. doi: 10.1261/rna.051102.115. PubMed DOI PMC
Cheatham T. E., Bergonzo C. III. Improved Force Field Parameters Lead to a Better Description of RNA Structure. J. Chem. Theory Comput. 2015;11(9):3969–3972. doi: 10.1021/acs.jctc.5b00444. PubMed DOI
Condon D. E., Kennedy S. D., Mort B. C., Kierzek R., Yildirim I., Turner D. H.. Stacking in RNA: NMR of Four Tetramers Benchmark Molecular Dynamics. J. Chem. Theory Comput. 2015;11(6):2729–2742. doi: 10.1021/ct501025q. PubMed DOI PMC
Bottaro S., Banáš P., Šponer J., Bussi G.. Free Energy Landscape of GAGA and UUCG RNA Tetraloops. J. Phys. Chem. Lett. 2016;7(20):4032–4038. doi: 10.1021/acs.jpclett.6b01905. PubMed DOI
Cesari A., Gil-Ley A., Bussi G.. Combining Simulations and Solution Experiments as a Paradigm for RNA Force Field Refinement. J. Chem. Theory Comput. 2016;12(12):6192–6200. doi: 10.1021/acs.jctc.6b00944. PubMed DOI
Kührová P., Best R. B., Bottaro S., Bussi G., Šponer J., Otyepka M., Banáš P.. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies. J. Chem. Theory Comput. 2016;12(9):4534–4548. doi: 10.1021/acs.jctc.6b00300. PubMed DOI PMC
Bottaro S., Bussi G., Kennedy S. D., Turner D. H., Lindorff-Larsen K.. Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations. Sci. Adv. 2018;4(5):eaar8521. doi: 10.1126/sciadv.aar8521. PubMed DOI PMC
Tan D., Piana S., Dirks R. M., Shaw D. E.. RNA force field with accuracy comparable to state-of-the-art protein force fields. Proc. Natl. Acad. Sci. U. S. A. 2018;115(7):E1346–e1355. doi: 10.1073/pnas.1713027115. PubMed DOI PMC
Cesari A., Bottaro S., Lindorff-Larsen K., Banáš P., Šponer J., Bussi G.. Fitting Corrections to an RNA Force Field Using Experimental Data. J. Chem. Theory Comput. 2019;15(6):3425–3431. doi: 10.1021/acs.jctc.9b00206. PubMed DOI
Kührová P., Mlýnský V., Zgarbová M., Krepl M., Bussi G., Best R. B., Otyepka M., Šponer J., Banáš P.. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J. Chem. Theory Comput. 2019;15(5):3288–3305. doi: 10.1021/acs.jctc.8b00955. PubMed DOI PMC
Mlýnský V., Kührová P., Kühr T., Otyepka M., Bussi G., Banáš P., Šponer J.. Fine-Tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides. J. Chem. Theory Comput. 2020;16(6):3936–3946. doi: 10.1021/acs.jctc.0c00228. PubMed DOI
Mráziková K., Mlýnský V., Kührová P., Pokorná P., Kruse H., Krepl M., Otyepka M., Banáš P., Šponer J.. UUCG RNA Tetraloop as a Formidable Force-Field Challenge for MD Simulations. J. Chem. Theory Comput. 2020;16(12):7601–7617. doi: 10.1021/acs.jctc.0c00801. PubMed DOI
Zhao J., Kennedy S. D., Berger K. D., Turner D. H.. Nuclear Magnetic Resonance of Single-Stranded RNAs and DNAs of CAAU and UCAAUC as Benchmarks for Molecular Dynamics Simulations. J. Chem. Theory Comput. 2020;16(3):1968–1984. doi: 10.1021/acs.jctc.9b00912. PubMed DOI
Bergonzo C., Grishaev A., Bottaro S.. Conformational heterogeneity of UCAAUC RNA oligonucleotide from molecular dynamics simulations, SAXS, and NMR experiments. RNA. 2022;28(7):937–946. doi: 10.1261/rna.078888.121. PubMed DOI PMC
Fröhlking T., Mlýnský V., Janeček M., Kührová P., Krepl M., Banáš P., Šponer J., Bussi G.. Automatic Learning of Hydrogen-Bond Fixes in the AMBER RNA Force Field. J. Chem. Theory Comput. 2022;18(7):4490–4502. doi: 10.1021/acs.jctc.2c00200. PubMed DOI PMC
Zhao J., Kennedy S. D., Turner D. H.. Nuclear Magnetic Resonance Spectra and AMBER OL3 and ROC-RNA Simulations of UCUCGU Reveal Force Field Strengths and Weaknesses for Single-Stranded RNA. J. Chem. Theory Comput. 2022;18(2):1241–1254. doi: 10.1021/acs.jctc.1c00643. PubMed DOI
Mlýnský V., Kührová P., Stadlbauer P., Krepl M., Otyepka M., Banáš P., Šponer J.. Simple Adjustment of Intranucleotide Base-Phosphate Interaction in the OL3 AMBER Force Field Improves RNA Simulations. J. Chem. Theory Comput. 2023;19(22):8423–8433. doi: 10.1021/acs.jctc.3c00990. PubMed DOI PMC
Krepl M., Pokorná P., Mlýnský V., Stadlbauer P., Šponer J.. Spontaneous binding of single-stranded RNAs to RRM proteins visualized by unbiased atomistic simulations with a rescaled RNA force field. Nucleic Acids Res. 2022;50(21):12480–12496. doi: 10.1093/nar/gkac1106. PubMed DOI PMC
Muscat S., Martino G., Manigrasso J., Marcia M., De Vivo M.. On the Power and Challenges of Atomistic Molecular Dynamics to Investigate RNA Molecules. J. Chem. Theory Comput. 2024;20(16):6992–7008. doi: 10.1021/acs.jctc.4c00773. PubMed DOI
Kührová P., Mlýnský V., Zgarbová M., Krepl M., Bussi G., Best R. B., Otyepka M., Šponer J., Banáš P.. Correction to “Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions”. J. Chem. Theory Comput. 2020;16(1):818–819. doi: 10.1021/acs.jctc.9b01189. PubMed DOI PMC
Tucker M. R., Piana S., Tan D., LeVine M. V., Shaw D. E.. Development of force field parameters for the simulation of single-and double-stranded DNA molecules and DNA–protein complexes. J. Phys. Chem. B. 2022;126(24):4442–4457. doi: 10.1021/acs.jpcb.1c10971. PubMed DOI PMC
Zgarbová M., Otyepka M., Sponer J., Mladek A., Banas P., Cheatham T. E. III, Jurecka P.. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 2011;7(9):2886–2902. doi: 10.1021/ct200162x. PubMed DOI PMC
Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T. E., Laughton C. A., Orozco M.. Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys. J. 2007;92(11):3817–3829. doi: 10.1529/biophysj.106.097782. PubMed DOI PMC
Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A.. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1996;118(9):2309. doi: 10.1021/ja955032e. DOI
Aytenfisu A. H., Spasic A., Grossfield A., Stern H. A., Mathews D. H.. Revised RNA dihedral parameters for the amber force field improve RNA molecular dynamics. J. Chem. Theory Comput. 2017;13(2):900–915. doi: 10.1021/acs.jctc.6b00870. PubMed DOI PMC
Yang C., Lim M., Kim E., Pak Y.. Predicting RNA structures via a simple van der Waals correction to an all-atom force field. J. Chem. Theory Comput. 2017;13(2):395–399. doi: 10.1021/acs.jctc.6b00808. PubMed DOI
Li Z., Mu J., Chen J., Chen H.-F.. Base-specific RNA force field improving the dynamics conformation of nucleotide. Int. J. Biol. Macromol. 2022;222:680–690. doi: 10.1016/j.ijbiomac.2022.09.183. PubMed DOI
Chen A. A., García A. E.. High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations. Proc. Natl. Acad. Sci. U. S. A. 2013;110(42):16820–16825. doi: 10.1073/pnas.1309392110. PubMed DOI PMC
Denning E. J., Priyakumar U. D., Nilsson L., Mackerell A. D. Jr.. Impact of 2′-hydroxyl sampling on the conformational properties of RNA: update of the CHARMM all-atom additive force field for RNA. J. Comput. Chem. 2011;32(9):1929–1943. doi: 10.1002/jcc.21777. PubMed DOI PMC
Lemkul J. A., MacKerell A. D. Jr.. Polarizable force field for RNA based on the classical drude oscillator. J. Comput. Chem. 2018;39(32):2624–2646. doi: 10.1002/jcc.25709. PubMed DOI PMC
MacKerell A. D. Jr., Lemkul J. A.. Polarizable force field for DNA based on the classical Drude oscillator: II. Microsecond molecular dynamics simulations of duplex DNA. J. Chem. Theory Comput. 2017;13(5):2072–2085. doi: 10.1021/acs.jctc.7b00068. PubMed DOI PMC
Lemkul J. A., MacKerell A. D. Jr.. Polarizable force field for DNA based on the classical Drude oscillator: I. Refinement using quantum mechanical base stacking and conformational energetics. J. Chem. Theory Comput. 2017;13(5):2053–2071. doi: 10.1021/acs.jctc.7b00067. PubMed DOI PMC
Savelyev A., MacKerell A. D. Jr.. All-atom polarizable force field for DNA based on the classical drude oscillator model. J. Comput. Chem. 2014;35(16):1219–1239. doi: 10.1002/jcc.23611. PubMed DOI PMC
Zhang C., Lu C., Jing Z., Wu C., Piquemal J.-P., Ponder J. W., Ren P.. AMOEBA polarizable atomic multipole force field for nucleic acids. J. Chem. Theory Comput. 2018;14(4):2084–2108. doi: 10.1021/acs.jctc.7b01169. PubMed DOI PMC
Zhang C., Bell D., Harger M., Ren P.. Polarizable multipole-based force field for aromatic molecules and nucleobases. J. Chem. Theory Comput. 2017;13(2):666–678. doi: 10.1021/acs.jctc.6b00918. PubMed DOI PMC
Frohlking T., Mlýnský V. c., Janeček M., Kührová P., Krepl M., Banáš P., Šponer J. í., Bussi G.. Automatic learning of hydrogen-bond fixes in the AMBER RNA force field. J. Chem. Theory Comput. 2022;18(7):4490–4502. doi: 10.1021/acs.jctc.2c00200. PubMed DOI PMC
Kuhrova P., Mlynsky V., Zgarbová M., Krepl M., Bussi G., Best R. B., Otyepka M., Sponer J., Banas P.. Improving the performance of the amber RNA force field by tuning the hydrogen-bonding interactions. J. Chem. Theory Comput. 2019;15(5):3288–3305. doi: 10.1021/acs.jctc.8b00955. PubMed DOI PMC
Grotz K. K., Schwierz N.. Magnesium force fields for OPC water with accurate solvation, ion-binding, and water-exchange properties: Successful transfer from SPC/E. J. Chem. Phys. 2022;156(11):114501. doi: 10.1063/5.0087292. PubMed DOI
Steinbrecher T., Latzer J., Case D. A.. Revised AMBER Parameters for Bioorganic Phosphates. J. Chem. Theory Comput. 2012;8(11):4405–4412. doi: 10.1021/ct300613v. PubMed DOI PMC
Mlýnský V., Kührová P., Zgarbová M., Jurečka P., Walter N. G., Otyepka M., Šponer J., Banáš P.. Reactive conformation of the active site in the hairpin ribozyme achieved by molecular dynamics simulations with ε/ζ force field reparametrizations. J. Phys. Chem. B. 2015;119(11):4220–4229. doi: 10.1021/jp512069n. PubMed DOI
Raguette L. E., Gunasekera S. S., Diaz Ventura R. I., Aminov E., Linzer J. T., Parwana D., Wu Q., Simmerling C., Nagan M. C.. Adjusting the Energy Profile for CH–O Interactions Leads to Improved Stability of RNA Stem-Loop Structures in MD Simulations. J. Phys. Chem. B. 2024;128(33):7921–7933. doi: 10.1021/acs.jpcb.4c01910. PubMed DOI
Mlýnský V., Kührová P., Pykal M., Krepl M., Stadlbauer P., Otyepka M., Banáš P., Šponer J.. Can We Ever Develop an Ideal RNA Force Field? Lessons Learned from Simulations of the UUCG RNA Tetraloop and Other Systems. J. Chem. Theory Comput. 2025;21(8):4183–4202. doi: 10.1021/acs.jctc.4c01357. PubMed DOI PMC
Klein D. J., Moore P. B., Steitz T. A.. The Roles of Ribosomal Proteins in the Structure Assembly, and Evolution of the Large Ribosomal Subunit. J. Mol. Biol. 2004;340(1):141–177. doi: 10.1016/j.jmb.2004.03.076. PubMed DOI
Izadi S., Anandakrishnan R., Onufriev A. V.. Building water models: a different approach. J. Phys. Chem. Lett. 2014;5(21):3863–3871. doi: 10.1021/jz501780a. PubMed DOI PMC
Piana S., Donchev A. G., Robustelli P., Shaw D. E.. Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J. Phys. Chem. B. 2015;119(16):5113–5123. doi: 10.1021/jp508971m. PubMed DOI
Berendsen H. J. C., Grigera J. R., Straatsma T. P.. The missing term in effective pair potentials. J. Phys. Chem. 1987;91(24):6269–6271. doi: 10.1021/j100308a038. DOI
Lamoureux G., Harder E., Vorobyov I. V., Roux B., MacKerell A. D. Jr. A polarizable model of water for molecular dynamics simulations of biomolecules. Chem. Phys. Lett. 2006;418(1–3):245–249. doi: 10.1016/j.cplett.2005.10.135. DOI
Joung I. S., Cheatham T. E. III. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112(30):9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC
Sengupta A., Li Z., Song L. F., Li P., Merz K. M. Jr.. Parameterization of Monovalent Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. J. Chem. Inf. Model. 2021;61(2):869–880. doi: 10.1021/acs.jcim.0c01390. PubMed DOI PMC
MacKerell A. D. Jr., Bashford D., Bellott M., Dunbrack R. L. Jr., Evanseck J. D., Field M. J., Fischer S., Gao J., Guo H., Ha S.. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998;102(18):3586–3616. doi: 10.1021/jp973084f. PubMed DOI
Chen A. A., Pappu R. V.. Parameters of monovalent ions in the AMBER-99 forcefield: Assessment of inaccuracies and proposed improvements. J. Phys. Chem. B. 2007;111(41):11884–11887. doi: 10.1021/jp0765392. PubMed DOI
Brooks B. R., Brooks C. L. III, Mackerell A. D. Jr., Nilsson L., Petrella R. J., Roux B., Won Y., Archontis G., Bartels C., Boresch S.. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 2009;30(10):1545–1614. doi: 10.1002/jcc.21287. PubMed DOI PMC
Case, D. A. ; Walker, R. C. ; Cheatham, T. E., III ; Simmerling, C. ; Roitberg, A. ; Merz, K. M. ; Li, P. ; Luo, R. ; Darden, T. ; Sagui, C. . et al. Amber 2020; University of California: San Francisco: San Francisco, 2020. (accessed.
Le Grand S., Götz A. W., Walker R. C.. SPFP: Speed without compromiseA mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 2013;184(2):374–380. doi: 10.1016/j.cpc.2012.09.022. DOI
Hopkins C. W., Le Grand S., Walker R. C., Roitberg A. E.. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 2015;11(4):1864–1874. doi: 10.1021/ct5010406. PubMed DOI
Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., Pedersen L. G.. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103(19):8577–8593. doi: 10.1063/1.470117. DOI
Parisi G.. Correlation functions and computer simulations. Nucl. Phys. B. 1981;180(3):378–384. doi: 10.1016/0550-3213(81)90056-0. DOI
Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E.. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M.. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18(12):1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Bussi G., Donadio D., Parrinello M.. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126(1):014101. doi: 10.1063/1.2408420. PubMed DOI
Phillips J. C., Hardy D. J., Maia J. D., Stone J. E., Ribeiro J. V., Bernardi R. C., Buch R., Fiorin G., Hénin J., Jiang W.. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020;153(4):044130. doi: 10.1063/5.0014475. PubMed DOI PMC
Knappeová B., Mlýnský V., Pykal M., Šponer J., Banáš P., Otyepka M., Krepl M.. Comprehensive Assessment of Force-Field Performance in Molecular Dynamics Simulations of DNA/RNA Hybrid Duplexes. J. Chem. Theory Comput. 2024;20(15):6917–6929. doi: 10.1021/acs.jctc.4c00601. PubMed DOI PMC
Eastman P., Swails J., Chodera J. D., McGibbon R. T., Zhao Y., Beauchamp K. A., Wang L.-P., Simmonett A. C., Harrigan M. P., Stern C. D.. et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. Plos Comput. Biol. 2017;13(7):e1005659. doi: 10.1371/journal.pcbi.1005659. PubMed DOI PMC
Jiang W., Hardy D. J., Phillips J. C., MacKerell A. D. Jr., Schulten K., Roux B.. High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. J. Phys. Chem. Lett. 2011;2(2):87–92. doi: 10.1021/jz101461d. PubMed DOI PMC
Huang, J. ; Lemkul, J. A. ; Eastman, P. K. ; MacKerell, A. D., Jr. . Molecular dynamics simulations using the drude polarizable force field on GPUs with OpenMM: Implementation, validation, and benchmarks. Wiley Online Library: 2018. PubMed PMC
Ferguson D. M., Chow K.-H.. Isothermal-isobaric molecular dynamics simulations with Monte Carlo volume sampling. Comput. Phys. Commun. 1995;91(1–3):283–289. doi: 10.1016/0010-4655(95)00059-O. DOI
Ryckaert J. P., Ciccotti G., Berendsen H. J. C.. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23(3):327–341. doi: 10.1016/0021-9991(77)90098-5. DOI
Miyamoto S., Kollman P. A.. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992;13(8):952–962. doi: 10.1002/jcc.540130805. DOI
Åqvist J., Wennerström P., Nervall M., Bjelic S., Brandsdal B. O.. Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm. Chem. Phys. Lett. 2004;384(4–6):288–294. doi: 10.1016/j.cplett.2003.12.039. DOI
Tuckerman M., Berne B. J., Martyna G. J.. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 1992;97(3):1990–2001. doi: 10.1063/1.463137. DOI
Adjoua O., Lagardère L., Jolly L. H., Durocher A., Very T., Dupays I., Wang Z., Inizan T. J., Célerse F., Ren P., Ponder J. W., Piquemal J. P.. Tinker-HP: Accelerating Molecular Dynamics Simulations of Large Complex Systems with Advanced Point Dipole Polarizable Force Fields Using GPUs and Multi-GPU Systems. J. Chem. Theory Comput. 2021;17(4):2034–2053. doi: 10.1021/acs.jctc.0c01164. PubMed DOI PMC
Maier J. A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K. E., Simmerling C.. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015;11(8):3696–3713. doi: 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Rázga F., Zacharias M., Réblová K., Koča J., Šponer J.. RNA kink-turns as molecular elbows: hydration, cation binding, and large-scale dynamics. Structure. 2006;14(5):825–835. doi: 10.1016/j.str.2006.02.012. PubMed DOI
Rázga F., Koca J., Sponer J., Leontis N. B.. Hinge-like motions in RNA kink-turns: the role of the second a-minor motif and nominally unpaired bases. Biophys. J. 2005;88(5):3466–3485. doi: 10.1529/biophysj.104.054916. PubMed DOI PMC
Altona C., Sundaralingam M.. Conformational analysis of the sugar ring in nucleosides and nucleotides. New description using the concept of pseudorotation. J. Am. Chem. Soc. 1972;94(23):8205–8212. doi: 10.1021/ja00778a043. PubMed DOI
Wlodawer A., Minor W., Dauter Z., Jaskolski M.. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J. 2008;275(1):1–21. doi: 10.1111/j.1742-4658.2007.06178.x. PubMed DOI PMC
Krepl M., Réblová K., Koca J., Sponer J.. Bioinformatics and molecular dynamics simulation study of L1 stalk non-canonical rRNA elements: kink-turns, loops, and tetraloops. J. Phys. Chem. B. 2013;117(18):5540–5555. doi: 10.1021/jp401482m. PubMed DOI
Réblová K., Sponer J. E., Špačková N., Beššeová I., Sponer J.. A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis. J. Phys. Chem. B. 2011;115(47):13897–13910. doi: 10.1021/jp2065584. PubMed DOI
Lilley D. M. J.. The structure and folding of kink turns in RNA. Wiley Interdiscip. Rev.: RNA. 2012;3(6):797–805. doi: 10.1002/wrna.1136. PubMed DOI
Zgarbová M., Jurečka P., Banáš P., Havrila M., Šponer J., Otyepka M.. Noncanonical α/γ Backbone Conformations in RNA and the Accuracy of Their Description by the AMBER Force Field. J. Phys. Chem. B. 2017;121(11):2420–2433. doi: 10.1021/acs.jpcb.7b00262. PubMed DOI
Matoušková E., Dršata T., Pfeifferová L., Šponer J., Réblová K., Lankaš F.. RNA kink-turns are highly anisotropic with respect to lateral displacement of the flanking stems. Biophys. J. 2022;121(5):705–714. doi: 10.1016/j.bpj.2022.01.025. PubMed DOI PMC
Winkler L., Galindo-Murillo R., Cheatham T. E. III. Assessment of A- to B- DNA Transitions Utilizing the Drude Polarizable Force Field. J. Chem. Theory Comput. 2023;19(23):8955–8966. doi: 10.1021/acs.jctc.3c01002. PubMed DOI PMC
Winkler L., Cheatham T. E. III. Benchmarking the Drude Polarizable Force Field Using the r(GACC) Tetranucleotide. J. Chem. Inf. Model. 2023;63(8):2505–2511. doi: 10.1021/acs.jcim.3c00250. PubMed DOI PMC