Architecture and regulatory functions of c-di-GMP signaling in classical Bordetella species
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
24-11053S
Czech Science Foundation
CZ.02.01.01/00/22_008/0004597
Ministry of Education, Youth and Sports
PICT-2019-00680
Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación
PICT-2021-00937
Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación
PubMed
41452322
PubMed Central
PMC12805831
DOI
10.1093/femsre/fuaf065
PII: 8405287
Knihovny.cz E-zdroje
- Klíčová slova
- B. pertussis, Bordetella, biofilm, c-di-GMP, motility, type III secretion system,
- MeSH
- bakteriální proteiny metabolismus genetika MeSH
- Bordetella * metabolismus genetika patogenita fyziologie MeSH
- guanosinmonofosfát cyklický * analogy a deriváty metabolismus MeSH
- regulace genové exprese u bakterií MeSH
- signální transdukce * MeSH
- virulence MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- bakteriální proteiny MeSH
- bis(3',5')-cyclic diguanylic acid MeSH Prohlížeč
- guanosinmonofosfát cyklický * MeSH
Cyclic di-GMP (c-di-GMP) is a highly conserved bacterial second messenger that regulates important processes such as motility, biofilm formation and virulence. In this review, we investigate the architecture and regulatory functions of c-di-GMP signaling in classical Bordetella species, including B. bronchiseptica, B. parapertussis and B. pertussis. We examine how the c-di-GMP signaling pathway interacts with the BvgAS two-component system and other signaling pathways to coordinate virulence gene expression and surface-associated behaviors in these respiratory pathogens. In particular, we highlight the functions of characterized diguanylate cyclases (DGCs), phosphodiesterases (PDEs) and dual-domain proteins, focusing on regulatory modules such as the BdcA-DdpA scaffold complex, the oxygen-sensing DGC BpeGReg and the LapD-LapG proteolytic switch that controls BrtA adhesin. We also propose a model for the function of BvgR, a PDE-like protein lacking catalytic residues, and discuss how c-di-GMP suppresses the type III secretion system. Importantly, we highlight the diversity of the c-di-GMP network in classical Bordetella species, likely reflecting their evolutionary specialization. To conclude, we outline important open questions and suggest future research directions, including the identification of sensory ligands and c-di-GMP effectors. Overall, our review illustrates the importance of c-di-GMP as a critical, but still incompletely understood, regulatory hub in Bordetella pathogenesis.
Zobrazit více v PubMed
Abe A, Nishimura R, Kuwae A. Bordetella effector BopN is translocated into host cells via its N-terminal residues. Microbiol Immunol. 2017;61:206–14. 10.1111/1348-0421.12489. PubMed DOI
Ahuja U, Shokeen B, Cheng N et al. Differential regulation of type III secretion and virulence genes in Bordetella pertussis and Bordetella bronchiseptica by a secreted anti-sigma factor. Proc Natl Acad Sci USA. 2016;113:2341–8. 10.1073/pnas.1600320113. PubMed DOI PMC
Akerley BJ, Miller JF. Flagellin gene transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J Bacteriol. 1993;175:3468–79. 10.1128/jb.175.11.3468-3479.1993. PubMed DOI PMC
Aline Dias da P, Nathalia Marins de A, Gabriel Guarany de A et al. The World of Cyclic Dinucleotides in Bacterial Behavior. Molecules. 2020;25:2462. 10.3390/molecules25102462. PubMed DOI PMC
Ambrosis N, Boyd CD, GA OT et al. Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by Bordetella bronchiseptica. PLoS One. 2016;11:e0158752. 10.1371/journal.pone.0158752. PubMed DOI PMC
Amikam D, Galperin MY. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics. 2006;22:3–6. 10.1093/bioinformatics/bti739. PubMed DOI
Arico B, Miller JF, Roy C et al. Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci USA. 1989;86:6671–5. 10.1073/pnas.86.17.6671. PubMed DOI PMC
Barr SA, Kennedy EN, McKay LS et al. Phosphorylation chemistry of the Bordetella PlrSR TCS and its contribution to bacterial persistence in the lower respiratory tract. Mol Microbiol. 2023;119:174–90. 10.1111/mmi.15019. PubMed DOI PMC
Baykov AA, Tuominen HK, Lahti R. The CBS domain: a protein module with an emerging prominent role in regulation. ACS Chem Biol. 2011;6:1156–63. 10.1021/cb200231c. PubMed DOI
Belhart K, Gutierrez MP, Zacca F et al. Bordetella bronchiseptica Diguanylate Cyclase BdcA Regulates Motility and Is Important for the Establishment of Respiratory Infection in Mice. J Bacteriol. 2019;201:e00011–19. 10.1128/JB.00011-19. PubMed DOI PMC
Belhart K, Sisti F, Gestal MC et al. Bordetella bronchiseptica diguanylate cyclase BdcB inhibits the type three secretion system and impacts the immune response. Sci Rep. 2023;13:7157. 10.1038/s41598-023-34106-x. PubMed DOI PMC
Bibova I, Hot D, Keidel K et al. Transcriptional profiling of Bordetella pertussis reveals requirement of RNA chaperone Hfq for Type III secretion system functionality. RNA Biology. 2015;12:175–85. 10.1080/15476286.2015.1017237. PubMed DOI PMC
Bobrov AG, Kirillina O, Ryjenkov DA et al. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol. 2011;79:533–51. 10.1111/j.1365-2958.2010.07470.x. PubMed DOI PMC
Bone MA, Wilk AJ, Perault AI et al. Bordetella PlrSR regulatory system controls BvgAS activity and virulence in the lower respiratory tract. Proc Natl Acad Sci USA. 2017;114:E1519–E27. 10.1073/pnas.1609565114. PubMed DOI PMC
Boyd CD, Chatterjee D, Sondermann H et al. LapG, required for modulating biofilm formation by Pseudomonas fluorescens Pf0-1, is a calcium-dependent protease. J Bacteriol. 2012;194:4406–14. 10.1128/JB.00642-12. PubMed DOI PMC
Brickman TJ, Cummings CA, Liew SY et al. Transcriptional profiling of the iron starvation response in Bordetella pertussis provides new insights into siderophore utilization and virulence gene expression. J Bacteriol. 2011;193:4798–812. 10.1128/JB.05136-11. PubMed DOI PMC
Burns JL, Deer DD, Weinert EE. Oligomeric state affects oxygen dissociation and diguanylate cyclase activity of globin coupled sensors. Mol BioSyst. 2014;10:2823–6. 10.1039/C4MB00366G. PubMed DOI
Burns JL, Rivera S, Deer DD et al. Oxygen and Bis(3',5')-cyclic Dimeric Guanosine Monophosphate Binding Control Oligomerization State Equilibria of Diguanylate Cyclase-Containing Globin Coupled Sensors. Biochemistry. 2016;55:6642–51. 10.1021/acs.biochem.6b00526. PubMed DOI
Cancino-Diaz ME, Guerrero-Barajas C, Betanzos-Cabrera G et al. Nucleotides as Bacterial Second Messengers. Molecules. 2023;28:7996. 10.3390/molecules28247996. PubMed DOI PMC
Chen Q, Ng V, Warfel JM et al. Activation of Bvg-Repressed Genes in Bordetella pertussis by RisA Requires Cross Talk from Noncooperonic Histidine Kinase RisK. J Bacteriol. 2017;199:e00475–17. 10.1128/JB.00475-17. PubMed DOI PMC
Chen Q, Stibitz S. The BvgASR virulence regulon of Bordetella pertussis. Curr Opin Microbiol. 2019;47:74–81. 10.1016/j.mib.2019.01.002. PubMed DOI
Chen Y, Quirk NF, Tan S. Shining a light on bacterial environmental cue integration and its relation to metabolism. Mol Microbiol. 2023;120:71–74. 10.1111/mmi.15065. PubMed DOI PMC
Christen B, Christen M, Paul R et al. Allosteric control of cyclic di-GMP signaling. J Biol Chem. 2006;281:32015–24. 10.1016/S0021-9258(19)84115-7. PubMed DOI
Christen M, Christen B, Folcher M et al. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem. 2005;280:30829–37. 10.1074/jbc.M504429200. PubMed DOI
Christensen DG, Marsden AE, Hodge-Hanson K et al. LapG mediates biofilm dispersal in Vibrio fischeri by controlling maintenance of the VCBS-containing adhesin LapV. Mol Microbiol. 2020;114:742–61. 10.1111/mmi.14573. PubMed DOI PMC
Conover MS, Sloan GP, Love CF et al. The Bps polysaccharide of Bordetella pertussis promotes colonization and biofilm formation in the nose by functioning as an adhesin. Mol Microbiol. 2010;77:1439–55. 10.1111/j.1365-2958.2010.07297.x. PubMed DOI PMC
Cooley RB, Smith TJ, Leung W et al. Cyclic Di-GMP-Regulated Periplasmic Proteolysis of a Pseudomonas aeruginosa Type Vb Secretion System Substrate. J Bacteriol. 2016;198:66–76. 10.1128/JB.00369-15. PubMed DOI PMC
Cotter PA, Jones AM. Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol. 2003;11:367–73. 10.1016/S0966-842X(03)00156-2. PubMed DOI
Cotter PA, Miller JF. BvgAS-mediated signal transduction: analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect Immun. 1994;62:3381–90. 10.1128/iai.62.8.3381-3390.1994. PubMed DOI PMC
Cotter PA, Miller JF. A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of Bvg-regulated antigens. Mol Microbiol. 1997;24:671–85. 10.1046/j.1365-2958.1997.3821741.x. PubMed DOI
Coutte L, Antoine R, Slupek S et al. Combined transcriptomic and ChIPseq analyses of the Bordetella pertussis RisA regulon. Msystems. 2024;9:e0095123. 10.1128/msystems.00951-23. PubMed DOI PMC
Coutte L, Huot L, Antoine R et al. The multifaceted RisA regulon of Bordetella pertussis. Sci Rep. 2016;6:32774. 10.1038/srep32774. PubMed DOI PMC
Croinin TO, Grippe VK, Merkel TJ. Activation of the vrg6 promoter of Bordetella pertussis by RisA. J Bacteriol. 2005;187:1648–58. 10.1128/JB.187.5.1648-1658.2005. PubMed DOI PMC
Cummings CA, Bootsma HJ, Relman DA et al. Species- and strain-specific control of a complex, flexible regulon by Bordetella BvgAS. J Bacteriol. 2006;188:1775–85. 10.1128/JB.188.5.1775-1785.2006. PubMed DOI PMC
Debandi M, Carrica M, Hentschker C et al. Role of the Putative Histidine Kinase BP1092 in Bordetella pertussis Virulence Regulation and Intracellular Survival. J Proteome Res. 2024;23:1666–78. 10.1021/acs.jproteome.3c00817. PubMed DOI
Deora R, Bootsma HJ, Miller JF et al. Diversity in the Bordetella virulence regulon: transcriptional control of a Bvg-intermediate phase gene. Mol Microbiol. 2001;40:669–83. 10.1046/j.1365-2958.2001.02415.x. PubMed DOI
Diavatopoulos DA, Cummings CA, Schouls LM et al. Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog. 2005;1:e45. 10.1371/journal.ppat.0010045. PubMed DOI PMC
Dienstbier A, Amman F, Stipl D et al. Comparative Integrated Omics Analysis of the Hfq Regulon in Bordetella pertussis. Int J Mol Sci. 2019;20:3073. 10.3390/ijms20123073. PubMed DOI PMC
Domenech de Celles M, Rohani P. Pertussis vaccines, epidemiology and evolution. Nat Rev Micro. 2024;22:722–35. 10.1038/s41579-024-01064-8. PubMed DOI
Drzmisek J, Petrackova D, Dienstbier A et al. T3SS chaperone of the CesT family is required for secretion of the anti-sigma factor BtrA in Bordetella pertussis. Emerg Microbes Infect. 2023;12:2272638. 10.1080/22221751.2023.2272638. PubMed DOI PMC
Dupre E, Herrou J, Lensink MF et al. Virulence regulation with Venus flytrap domains: structure and function of the periplasmic moiety of the sensor-kinase BvgS. PLoS Pathog. 2015;11:e1004700. 10.1371/journal.ppat.1004700. PubMed DOI PMC
El Khatib N, Ferroni A, Le Bourgeois M et al. Persistent Bordetella bronchiseptica infection in a child with cystic fibrosis: relationship to bacterial phenotype. J Cyst Fibros. 2015;14:E13–5. 10.1016/j.jcf.2015.03.014. PubMed DOI
Ereno-Orbea J, Oyenarte I, Martinez-Cruz LA. CBS domains: ligand binding sites and conformational variability. Arch Biochem Biophys. 2013;540:70–81. 10.1016/j.abb.2013.10.008. PubMed DOI
Farman MR, Petrackova D, Kumar D et al. Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment. Emerg Microbes Infect. 2023;12:e2146536. 10.1080/22221751.2022.2146536. PubMed DOI PMC
Fauconnier A, Veithen A, Gueirard P et al. Characterization of the type III secretion locus of Bordetella pertussis. Int J Med Microbiol. 2001;290:693–705. 10.1016/S1438-4221(01)80009-6. PubMed DOI
Fennelly NK, Sisti F, Higgins SC et al. Bordetella pertussis expresses a functional type III secretion system that subverts protective innate and adaptive immune responses. Infect Immun. 2008;76:1257–66. 10.1128/IAI.00836-07. PubMed DOI PMC
Fernandez J, Sisti F, Bottero D et al. Constitutive expression of bvgR-repressed factors is not detrimental to the Bordetella bronchiseptica-host interaction. Res Microbiol. 2005;156:843–50. 10.1016/j.resmic.2005.04.003. PubMed DOI
Freitas TA, Hou S, Alam M. The diversity of globin-coupled sensors. FEBS Lett. 2003;552:99–104. 10.1016/S0014-5793(03)00923-2. PubMed DOI
Fullen AR, Gutierrez-Ferman JL, Rayner RE et al. Architecture and matrix assembly determinants of Bordetella pertussis biofilms on primary human airway epithelium. PLoS Pathog. 2023;19:e1011193. 10.1371/journal.ppat.1011193. PubMed DOI PMC
Galan JE, Lara-Tejero M, Marlovits TC et al. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol. 2014;68:415–38. 10.1146/annurev-micro-092412-155725. PubMed DOI PMC
Galperin MY, Gaidenko TA, Mulkidjanian AY et al. MHYT, a new integral membrane sensor domain. FEMS Microbiol Lett. 2001;205:17–23. 10.1111/j.1574-6968.2001.tb10919.x. PubMed DOI
Galperin MY. Diversity of structure and function of response regulator output domains. Curr Opin Microbiol. 2010;13:150–9. 10.1016/j.mib.2010.01.005. PubMed DOI PMC
Germani F, Nardini M, De Schutter A et al. Structural and Functional Characterization of the Globin-Coupled Sensors of Azotobacter vinelandii and Bordetella pertussis. Antioxid Redox Signaling. 2020;32:378–95. 10.1089/ars.2018.7690. PubMed DOI
Giacalone D, Smith TJ, Collins AJ et al. Ligand-Mediated Biofilm Formation via Enhanced Physical Interaction between a Diguanylate Cyclase and Its Receptor. mBio. 2018;9:e01254–18. 10.1128/mBio.01254-18. PubMed DOI PMC
Gilles-Gonzalez MA, Sousa EHS. Escherichia coli DosC and DosP: a role of c-di-GMP in compartmentalized sensing by degradosomes. Adv Microb Physiol. 2019;75:53–67. PubMed
Goodnow RA. Biology of Bordetella bronchiseptica. Microbiol Rev. 1980;44:722–38. 10.1128/mr.44.4.722-738.1980. PubMed DOI PMC
Goto M, Hanawa T, Abe A et al. Transcriptional Downregulation of a Type III Secretion System under Reducing Conditions in Bordetella pertussis. J Bacteriol. 2020;202:e00400–20. 10.1128/JB.00400-20. PubMed DOI PMC
Gueirard P, Weber C, Le Coustumier A et al. Human Bordetella bronchiseptica infection related to contact with infected animals: persistence of bacteria in host. J Clin Microbiol. 1995;33:2002–6. 10.1128/jcm.33.8.2002-2006.1995. PubMed DOI PMC
Gutierrez MP, Wong TY, Damron FH et al. Cyclic di-GMP Regulates the Type III Secretion System and Virulence in Bordetella bronchiseptica. Infect Immun. 2022;90:e0010722. 10.1128/iai.00107-22. PubMed DOI PMC
Gutierrez Mdl P, Damron FH, Sisti F et al. BvgR is important for virulence-related phenotypes in Bordetella bronchiseptica. Microbiol Spectr. 2024;12:e0079424. 10.1128/spectrum.00794-24. PubMed DOI PMC
Hamidou Soumana I, Linz B, Harvill ET. Environmental Origin of the Genus Bordetella. Front Microbiol. 2017;8:28. 10.3389/fmicb.2017.00028. PubMed DOI PMC
Hanawa T, Kamachi K, Yonezawa H et al. Glutamate Limitation, BvgAS Activation, and (p)ppGpp Regulate the Expression of the Bordetella pertussis Type 3 Secretion System. J Bacteriol. 2016;198:343–51. 10.1128/JB.00596-15. PubMed DOI PMC
Heikaus CC, Pandit J, Klevit RE. Cyclic nucleotide binding GAF domains from phosphodiesterases: structural and mechanistic insights. Structure. 2009;17:1551–7. 10.1016/j.str.2009.07.019. PubMed DOI PMC
Hengge R. High-specificity local and global c-di-GMP signaling. Trends Microbiol. 2021;29:993–1003. 10.1016/j.tim.2021.02.003. PubMed DOI
Herbst S, Lorkowski M, Sarenko O et al. Transmembrane redox control and proteolysis of PdeC, a novel type of c-di-GMP phosphodiesterase. EMBO J. 2018;37:e97825. 10.15252/embj.201797825. PubMed DOI PMC
Herrou J, Bompard C, Wintjens R et al. Periplasmic domain of the sensor-kinase BvgS reveals a new paradigm for the Venus flytrap mechanism. Proc Natl Acad Sci USA. 2010;107:17351–5. 10.1073/pnas.1006267107. PubMed DOI PMC
Hester SE, Goodfield LL, Park J et al. Host Specificity of Ovine Bordetella parapertussis and the Role of Complement. PLoS One. 2015;10:e0130964. 10.1371/journal.pone.0130964. PubMed DOI PMC
Hinsa SM, Espinosa-Urgel M, Ramos JL et al. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol. 2003;49:905–18. 10.1046/j.1365-2958.2003.03615.x. PubMed DOI
Hot D, Antoine R, Renauld-Mongenie G et al. Differential modulation of Bordetella pertussis virulence genes as evidenced by DNA microarray analysis. Mol Gen Genomics. 2003;269:475–86. 10.1007/s00438-003-0851-1. PubMed DOI
Jenal U, Malone J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet. 2006;40:385–407. 10.1146/annurev.genet.40.110405.090423. PubMed DOI
Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Micro. 2017;15:271–84. 10.1038/nrmicro.2016.190. PubMed DOI
Jungnitz H, West NP, Walker MJ et al. A second two-component regulatory system of Bordetella bronchiseptica required for bacterial resistance to oxidative stress, production of acid phosphatase, and in vivo persistence. Infect Immun. 1998;66:4640–50. 10.1128/IAI.66.10.4640-4650.1998. PubMed DOI PMC
Junkermeier EH, Hengge R. Local signaling enhances output specificity of bacterial c-di-GMP signaling networks. Microlife. 2023;4:uqad026. 10.1093/femsml/uqad026. PubMed DOI PMC
Kamanova J. Bordetella Type III Secretion Injectosome and Effector Proteins. Front Cell Infect Microbiol. 2020;10:466. 10.3389/fcimb.2020.00466. PubMed DOI PMC
Kaut CS, Duncan MD, Kim JY et al. A novel sensor kinase is required for Bordetella bronchiseptica to colonize the lower respiratory tract. Infect Immun. 2011;79:3216–28. 10.1128/IAI.00005-11. PubMed DOI PMC
Keidel K, Amman F, Bibova I et al. Signal transduction-dependent small regulatory RNA is involved in glutamate metabolism of the human pathogen Bordetella pertussis. RNA. 2018;24:1530–41. 10.1261/rna.067306.118. PubMed DOI PMC
Kerr JR, Rigg GP, Matthews RC et al. The Bpel locus encodes type III secretion machinery in Bordetella pertussis. Microb Pathog. 1999;27:349–67. 10.1006/mpat.1999.0307. PubMed DOI
Khalil A, Samara A, Campbell H et al. Recent increase in infant pertussis cases in Europe and the critical importance of antenatal immunizations: we must do better…now. Int J Infect Dis. 2024;146:107148. 10.1016/j.ijid.2024.107148. PubMed DOI
Knapp S, Mekalanos JJ. Two trans-acting regulatory genes (vir and mod) control antigenic modulation in Bordetella pertussis. J Bacteriol. 1988;170:5059–66. 10.1128/jb.170.11.5059-5066.1988. PubMed DOI PMC
Kozak NA, Mattoo S, Foreman-Wykert AK et al. Interactions between partner switcher orthologs BtrW and BtrV regulate type III secretion in Bordetella. J Bacteriol. 2005;187:5665–76. 10.1128/JB.187.16.5665-5676.2005. PubMed DOI PMC
Kurushima J, Kuwae A, Abe A. The type III secreted protein BspR regulates the virulence genes in Bordetella bronchiseptica. PLoS One. 2012;7:e38925. 10.1371/journal.pone.0038925. PubMed DOI PMC
Kuwae A, Matsuzawa T, Ishikawa N et al. BopC is a novel type III effector secreted by Bordetella bronchiseptica and has a critical role in type III-dependent necrotic cell death. J Biol Chem. 2006;281:6589–600. 10.1074/jbc.M512711200. PubMed DOI
Lacey BW. Antigenic modulation of Bordetella pertussis. J Hyg. 1960;58:57–93. 10.1017/S0022172400038134. PubMed DOI PMC
Lamberti Y, Cafiero JH, Surmann K et al. Proteome analysis of Bordetella pertussis isolated from human macrophages. J Proteomics. 2016;136:55–67. 10.1016/j.jprot.2016.02.002. PubMed DOI
Liu Y, Blanco-Toral C, Larrouy-Maumus G. The role of cyclic nucleotides in bacterial antimicrobial resistance and tolerance. Trends Microbiol. 2025;33:164–83. 10.1016/j.tim.2024.08.006. PubMed DOI
Lu S, Wang J, Chitsaz F et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48:D265–8. 10.1093/nar/gkz991. PubMed DOI PMC
Marchler-Bauer A, Bo Y, Han L et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45:D200–3. 10.1093/nar/gkw1129. PubMed DOI PMC
Martinez de Tejada G, Cotter PA, Heininger U et al. Neither the Bvg- phase nor the vrg6 locus of Bordetella pertussis is required for respiratory infection in mice. Infect Immun. 1998;66:2762–8. 10.1128/IAI.66.6.2762-2768.1998. PubMed DOI PMC
Matilla MA, Gavira JA, Monteagudo-Cascales E et al. Structural and functional diversity of sensor domains in bacterial transmembrane receptors. Trends Microbiol. 2025;33:796–809. 10.1016/j.tim.2025.02.019. PubMed DOI PMC
Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev. 2005;18:326–82. 10.1128/CMR.18.2.326-382.2005. PubMed DOI PMC
Mattoo S, Foreman-Wykert AK, Cotter PA et al. Mechanisms of Bordetella pathogenesis. Front Biosci. 2001;6:E168–86. 10.2741/Mattoo. PubMed DOI
Mattoo S, Yuk MH, Huang LL et al. Regulation of type III secretion in Bordetella. Mol Microbiol. 2004;52:1201–14. 10.1111/j.1365-2958.2004.04053.x. PubMed DOI
Melvin JA, Scheller EV, Miller JF et al. Bordetella pertussis pathogenesis: current and future challenges. Nat Rev Micro. 2014;12:274–88. 10.1038/nrmicro3235. PubMed DOI PMC
Merkel TJ, Barros C, Stibitz S. Characterization of the bvgR locus of Bordetella pertussis. J Bacteriol. 1998;180:1682–90. 10.1128/JB.180.7.1682-1690.1998. PubMed DOI PMC
Merkel TJ, Boucher PE, Stibitz S et al. Analysis of bvgR expression in Bordetella pertussis. J Bacteriol. 2003;185:6902–12. 10.1128/JB.185.23.6902-6912.2003. PubMed DOI PMC
Merkel TJ, Stibitz S, Keith JM et al. Contribution of regulation by the bvg locus to respiratory infection of mice by Bordetella pertussis. Infect Immun. 1998;66:4367–73. 10.1128/IAI.66.9.4367-4373.1998. PubMed DOI PMC
Merkel TJ, Stibitz S. Identification of a locus required for the regulation of bvg-repressed genes in Bordetella pertussis. J Bacteriol. 1995;177:2727–36. 10.1128/jb.177.10.2727-2736.1995. PubMed DOI PMC
Miller JF, Mekalanos JJ, Falkow S. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science. 1989;243:916–22. 10.1126/science.2537530. PubMed DOI
Moon K, Bonocora RP, Kim DD et al. The BvgAS Regulon of Bordetella pertussis. mBio. 2017;8:e01526–17. 10.1128/mBio.01526-17. PubMed DOI PMC
Mugni SL, Ambrosis N, GA OT et al. Interplay of virulence factors and signaling molecules: albumin and calcium-mediated biofilm regulation in Bordetella bronchiseptica. J Bacteriol. 2025;207:e0044524. 10.1128/jb.00445-24. PubMed DOI PMC
Nagamatsu K, Kuwae A, Konaka T et al. Bordetella evades the host immune system by inducing IL-10 through a type III effector, BopN. J Exp Med. 2009;206:3073–88. 10.1084/jem.20090494. PubMed DOI PMC
Navarrete KM, Bumba L, Prudnikova T et al. BopN is a Gatekeeper of the Bordetella Type III Secretion System. Microbiol Spectr. 2023;11:e0411222. 10.1128/spectrum.04112-22. PubMed DOI PMC
Navarro MV, Newell PD, Krasteva PV et al. Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. PLoS Biol. 2011;9:e1000588. 10.1371/journal.pbio.1000588. PubMed DOI PMC
Newell PD, Boyd CD, Sondermann H et al. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol. 2011;9:e1000587. 10.1371/journal.pbio.1000587. PubMed DOI PMC
Newell PD, Monds RD, O’Toole GA. LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci USA. 2009;106:3461–6. 10.1073/pnas.0808933106. PubMed DOI PMC
Nicholson TL, Brockmeier SL, Loving CL et al. Phenotypic modulation of the virulent Bvg phase is not required for pathogenesis and transmission of Bordetella bronchiseptica in swine. Infect Immun. 2012;80:1025–36. 10.1128/IAI.06016-11. PubMed DOI PMC
Nicholson TL, Brockmeier SL, Loving CL et al. The Bordetella bronchiseptica type III secretion system is required for persistence and disease severity but not transmission in swine. Infect Immun. 2014;82:1092–103. 10.1128/IAI.01115-13. PubMed DOI PMC
Nicholson TL, Waack U, Fleming DS et al. The contribution of BvgR, RisA, and RisS to global gene regulation, intracellular cyclic-di-GMP levels, motility, and biofilm formation in Bordetella bronchiseptica. Front Microbiol. 2024;15:1305097. 10.3389/fmicb.2024.1305097. PubMed DOI PMC
Nishikawa S, Shinzawa N, Nakamura K et al. The bvg-repressed gene brtA, encoding biofilm-associated surface adhesin, is expressed during host infection by Bordetella bronchiseptica. Microbiol Immunol. 2016;60:93–105. 10.1111/1348-0421.12356. PubMed DOI
Nugraha DK, Nishida T, Tamaki Y et al. Survival of Bordetella bronchiseptica in Acanthamoeba castellanii. Microbiol Spectr. 2023;11:e0048723. 10.1128/spectrum.00487-23. PubMed DOI PMC
Panina EM, Mattoo S, Griffith N et al. A genome-wide screen identifies a Bordetella type III secretion effector and candidate effectors in other species. Mol Microbiol. 2005;58:267–79. 10.1111/j.1365-2958.2005.04823.x. PubMed DOI
Parkhill J, Sebaihia M, Preston A et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet. 2003;35:32–40. 10.1038/ng1227. PubMed DOI
Paul K, Nieto V, Carlquist WC et al. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol Cell. 2010;38:128–39. 10.1016/j.molcel.2010.03.001. PubMed DOI PMC
Paul R, Weiser S, Amiot NC et al. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev. 2004;18:715–27. 10.1101/gad.289504. PubMed DOI PMC
Pilione MR, Harvill ET. The Bordetella bronchiseptica type III secretion system inhibits gamma interferon production that is required for efficient antibody-mediated bacterial clearance. Infect Immun. 2006;74:1043–9. 10.1128/IAI.74.2.1043-1049.2006. PubMed DOI PMC
Poli JP, Boyeldieu A, Lutz A et al. BpfD Is a c-di-GMP Effector Protein Playing a Key Role for Pellicle Biosynthesis in Shewanella oneidensis. Int J Mol Sci. 2024;25:9697. 10.3390/ijms25179697. PubMed DOI PMC
Porter JF, Connor K, Donachie W. Isolation and characterization of Bordetella parapertussis-like bacteria from ovine lungs. Microbiology. 1994;140:255–61. 10.1099/13500872-140-2-255. PubMed DOI
Porter JF, Wardlaw AC. Long-term survival of Bordetella bronchiseptica in lakewater and in buffered saline without added nutrients. FEMS Microbiol Lett. 1993;110:33–36. 10.1111/j.1574-6968.1993.tb06291.x. PubMed DOI
Raffa RG, Raivio TL. A third envelope stress signal transduction pathway in Escherichia coli. Mol Microbiol. 2002;45:1599–611. 10.1046/j.1365-2958.2002.03112.x. PubMed DOI
Randall TE, Eckartt K, Kakumanu S et al. Sensory Perception in Bacterial Cyclic Diguanylate Signal Transduction. J Bacteriol. 2022;204:e0043321. 10.1128/jb.00433-21. PubMed DOI PMC
Redelman-Sidi G, Grommes C, Papanicolaou G. Kitten-transmitted Bordetella bronchiseptica infection in a patient receiving temozolomide for glioblastoma. J Neurooncol. 2011;102:335–9. 10.1007/s11060-010-0322-6. PubMed DOI
Rivera S, Young PG, Hoffer ED et al. Structural Insights into Oxygen-Dependent Signal Transduction within Globin Coupled Sensors. Inorg Chem. 2018;57:14386–95. 10.1021/acs.inorgchem.8b02584. PubMed DOI
Ross P, Weinhouse H, Aloni Y et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature. 1987;325:279–81. 10.1038/325279a0. PubMed DOI
Rotcheewaphan S, Belisle JT, Webb KJ et al. Diguanylate cyclase activity of the Mycobacterium leprae T cell antigen ML1419c. Microbiology (Reading). 2016;162:1651–61. 10.1099/mic.0.000339. PubMed DOI PMC
Ryan RP, Lucey J, O’Donovan K et al. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa. Environ Microbiol. 2009;11:1126–36. 10.1111/j.1462-2920.2008.01842.x. PubMed DOI
Schirmer T, Jenal U. Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Micro. 2009;7:724–35. 10.1038/nrmicro2203. PubMed DOI
Schmidt AJ, Ryjenkov DA, Gomelsky M. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol. 2005;187:4774–81. 10.1128/JB.187.14.4774-4781.2005. PubMed DOI PMC
Shimizu T. The Heme-Based Oxygen-Sensor Phosphodiesterase Ec DOS (DosP): structure-Function Relationships. Biosensors. 2013;3:211–37. 10.3390/bios3020211. PubMed DOI PMC
Sisti F, Ha DG, O’Toole GA et al. Cyclic-di-GMP signalling regulates motility and biofilm formation in Bordetella bronchiseptica. Microbiology (Reading). 2013;159:869–79. 10.1099/mic.0.064345-0. PubMed DOI PMC
Skinner JA, Pilione MR, Shen H et al. Bordetella type III secretion modulates dendritic cell migration resulting in immunosuppression and bacterial persistence. J Immunol. 2005;175:4647–52. 10.4049/jimmunol.175.7.4647. PubMed DOI
Sloan GP, Love CF, Sukumar N et al. The Bordetella Bps polysaccharide is critical for biofilm development in the mouse respiratory tract. J Bacteriol. 2007;189:8270–6. 10.1128/JB.00785-07. PubMed DOI PMC
Smith TJ, Sondermann H, O’Toole GA. Type 1 Does the Two-Step: type 1 Secretion Substrates with a Functional Periplasmic Intermediate. J Bacteriol. 2018;200:e00168–18. 10.1128/JB.00168-18. PubMed DOI PMC
Sobran MA, Cotter PA. The BvgS PAS Domain, an Independent Sensory Perception Module in the Bordetella bronchiseptica BvgAS Phosphorelay. J Bacteriol. 2019;201:e00286–19. 10.1128/JB.00286-19. PubMed DOI PMC
Stenson TH, Allen AG, Al-Meer JA et al. Bordetella pertussis risA, but not risS, is required for maximal expression of Bvg-repressed genes. Infect Immun. 2005;73:5995–6004. 10.1128/IAI.73.9.5995-6004.2005. PubMed DOI PMC
Stockbauer KE, Foreman-Wykert AK, Miller JF. Bordetella type III secretion induces caspase 1-independent necrosis. Cell Microbiol. 2003;5:123–32. 10.1046/j.1462-5822.2003.00260.x. PubMed DOI
Stuffle EC, Johnson MS, Watts KJ. PAS domains in bacterial signal transduction. Curr Opin Microbiol. 2021;61:8–15. 10.1016/j.mib.2021.01.004. PubMed DOI PMC
Taylor BL, Zhulin IB. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev. 1999;63:479–506. 10.1128/MMBR.63.2.479-506.1999. PubMed DOI PMC
Taylor-Mulneix DL, Bendor L, Linz B et al. Bordetella bronchiseptica exploits the complex life cycle of Dictyostelium discoideum as an amplifying transmission vector. PLoS Biol. 2017;15:e2000420. 10.1371/journal.pbio.2000420. PubMed DOI PMC
Troisfontaines P, Cornelis GR. Type III secretion: more systems than you think. Physiology (Bethesda). 2005;20:326–39. PubMed
Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA. Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. J Mol Biol. 2011;407:633–9. 10.1016/j.jmb.2011.02.019. PubMed DOI
Tuckerman JR, Gonzalez G, Sousa EH et al. An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry. 2009;48:9764–74. 10.1021/bi901409g. PubMed DOI
Uhl MA, Miller JF. Autophosphorylation and phosphotransfer in the Bordetella pertussis BvgAS signal transduction cascade. Proc Natl Acad Sci USA. 1994;91:1163–7. 10.1073/pnas.91.3.1163. PubMed DOI PMC
Upadhyay AA, Fleetwood AD, Adebali O et al. Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes. PLoS Comput Biol. 2016;12:e1004862. 10.1371/journal.pcbi.1004862. PubMed DOI PMC
Valentini M, Filloux A. Multiple Roles of c-di-GMP Signaling in Bacterial Pathogenesis. Annu Rev Microbiol. 2019;73:387–406. 10.1146/annurev-micro-020518-115555. PubMed DOI
van der Zee A, Mooi F, Van Embden J et al. Molecular evolution and host adaptation of Bordetella spp.: phylogenetic analysis using multilocus enzyme electrophoresis and typing with three insertion sequences. J Bacteriol. 1997;179:6609–17. 10.1128/jb.179.21.6609-6617.1997. PubMed DOI PMC
Vasenina A, Fu Y, O’Toole GA et al. Local control: a hub-based model for the c-di-GMP network. mSphere. 2024;9:e0017824. 10.1128/msphere.00178-24. PubMed DOI PMC
Wan X, Saito JA, Newhouse JS et al. The importance of conserved amino acids in heme-based globin-coupled diguanylate cyclases. PLoS One. 2017;12:e0182782. 10.1371/journal.pone.0182782. PubMed DOI PMC
Wan X, Tuckerman JR, Saito JA et al. Globins synthesize the second messenger bis-(3'-5')-cyclic diguanosine monophosphate in bacteria. J Mol Biol. 2009;388:262–70. 10.1016/j.jmb.2009.03.015. PubMed DOI PMC
Wang J, Chitsaz F, Derbyshire MK et al. The conserved domain database in 2023. Nucleic Acids Res. 2023;51:D384–8. 10.1093/nar/gkac1096. PubMed DOI PMC
Wang S, Zhang S, Liu J. Resurgence of pertussis: epidemiological trends, contributing factors, challenges, and recommendations for vaccination and surveillance. Hum Vaccin Immunother. 2025;21:2513729. 10.1080/21645515.2025.2513729. PubMed DOI PMC
Weiss AA, Hewlett EL, Myers GA et al. Tn5-induced mutations affecting virulence factors of Bordetella pertussis. Infect Immun. 1983;42:33–41. 10.1128/iai.42.1.33-41.1983. PubMed DOI PMC
Yan J, Deforet M, Boyle KE et al. Bow-tie signaling in c-di-GMP: machine learning in a simple biochemical network. PLoS Comput Biol. 2017;13:e1005677. 10.1371/journal.pcbi.1005677. PubMed DOI PMC
Yuk MH, Harvill ET, Cotter PA et al. Modulation of host immune responses, induction of apoptosis and inhibition of NF-kappaB activation by the Bordetella type III secretion system. Mol Microbiol. 2000;35:991–1004. 10.1046/j.1365-2958.2000.01785.x. PubMed DOI
Yuk MH, Harvill ET, Miller JF. The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol Microbiol. 1998;28:945–59. 10.1046/j.1365-2958.1998.00850.x. PubMed DOI
Zhang R, Evans G, Rotella FJ et al. Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase. Biochemistry. 1999;38:4691–700. 10.1021/bi982858v. PubMed DOI
Zhulin IB, Taylor BL, Dixon R. PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem Sci. 1997;22:331–3. 10.1016/S0968-0004(97)01110-9. PubMed DOI
Zimna K, Medina E, Jungnitz H et al. Role played by the response regulator Ris in Bordetella bronchiseptica resistance to macrophage killing. FEMS Microbiol Lett. 2001;201:177–80. 10.1111/j.1574-6968.2001.tb10753.x. PubMed DOI
Zmuda M, Sedlackova E, Pravdova B et al. The Bordetella effector protein BteA induces host cell death by disruption of calcium homeostasis. mBio. 2024;15:e0192524. 10.1128/mbio.01925-24. PubMed DOI PMC