Architecture and regulatory functions of c-di-GMP signaling in classical Bordetella species

. 2026 Jan 02 ; 50 () : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41452322

Grantová podpora
24-11053S Czech Science Foundation
CZ.02.01.01/00/22_008/0004597 Ministry of Education, Youth and Sports
PICT-2019-00680 Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación
PICT-2021-00937 Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación

Cyclic di-GMP (c-di-GMP) is a highly conserved bacterial second messenger that regulates important processes such as motility, biofilm formation and virulence. In this review, we investigate the architecture and regulatory functions of c-di-GMP signaling in classical Bordetella species, including B. bronchiseptica, B. parapertussis and B. pertussis. We examine how the c-di-GMP signaling pathway interacts with the BvgAS two-component system and other signaling pathways to coordinate virulence gene expression and surface-associated behaviors in these respiratory pathogens. In particular, we highlight the functions of characterized diguanylate cyclases (DGCs), phosphodiesterases (PDEs) and dual-domain proteins, focusing on regulatory modules such as the BdcA-DdpA scaffold complex, the oxygen-sensing DGC BpeGReg and the LapD-LapG proteolytic switch that controls BrtA adhesin. We also propose a model for the function of BvgR, a PDE-like protein lacking catalytic residues, and discuss how c-di-GMP suppresses the type III secretion system. Importantly, we highlight the diversity of the c-di-GMP network in classical Bordetella species, likely reflecting their evolutionary specialization. To conclude, we outline important open questions and suggest future research directions, including the identification of sensory ligands and c-di-GMP effectors. Overall, our review illustrates the importance of c-di-GMP as a critical, but still incompletely understood, regulatory hub in Bordetella pathogenesis.

Zobrazit více v PubMed

Abe  A, Nishimura  R, Kuwae  A. Bordetella effector BopN is translocated into host cells via its N-terminal residues. Microbiol Immunol. 2017;61:206–14. 10.1111/1348-0421.12489. PubMed DOI

Ahuja  U, Shokeen  B, Cheng  N  et al.  Differential regulation of type III secretion and virulence genes in Bordetella pertussis and Bordetella bronchiseptica by a secreted anti-sigma factor. Proc Natl Acad Sci USA. 2016;113:2341–8. 10.1073/pnas.1600320113. PubMed DOI PMC

Akerley  BJ, Miller  JF. Flagellin gene transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J Bacteriol. 1993;175:3468–79. 10.1128/jb.175.11.3468-3479.1993. PubMed DOI PMC

Aline Dias da  P, Nathalia Marins de  A, Gabriel Guarany de  A  et al.  The World of Cyclic Dinucleotides in Bacterial Behavior. Molecules. 2020;25:2462. 10.3390/molecules25102462. PubMed DOI PMC

Ambrosis  N, Boyd  CD, GA  OT  et al.  Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by Bordetella bronchiseptica. PLoS One. 2016;11:e0158752. 10.1371/journal.pone.0158752. PubMed DOI PMC

Amikam  D, Galperin  MY. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics. 2006;22:3–6. 10.1093/bioinformatics/bti739. PubMed DOI

Arico  B, Miller  JF, Roy  C  et al.  Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci USA. 1989;86:6671–5. 10.1073/pnas.86.17.6671. PubMed DOI PMC

Barr  SA, Kennedy  EN, McKay  LS  et al.  Phosphorylation chemistry of the Bordetella PlrSR TCS and its contribution to bacterial persistence in the lower respiratory tract. Mol Microbiol. 2023;119:174–90. 10.1111/mmi.15019. PubMed DOI PMC

Baykov  AA, Tuominen  HK, Lahti  R. The CBS domain: a protein module with an emerging prominent role in regulation. ACS Chem Biol. 2011;6:1156–63. 10.1021/cb200231c. PubMed DOI

Belhart  K, Gutierrez  MP, Zacca  F  et al.  Bordetella bronchiseptica Diguanylate Cyclase BdcA Regulates Motility and Is Important for the Establishment of Respiratory Infection in Mice. J Bacteriol. 2019;201:e00011–19. 10.1128/JB.00011-19. PubMed DOI PMC

Belhart  K, Sisti  F, Gestal  MC  et al.  Bordetella bronchiseptica diguanylate cyclase BdcB inhibits the type three secretion system and impacts the immune response. Sci Rep. 2023;13:7157. 10.1038/s41598-023-34106-x. PubMed DOI PMC

Bibova  I, Hot  D, Keidel  K  et al.  Transcriptional profiling of Bordetella pertussis reveals requirement of RNA chaperone Hfq for Type III secretion system functionality. RNA Biology. 2015;12:175–85. 10.1080/15476286.2015.1017237. PubMed DOI PMC

Bobrov  AG, Kirillina  O, Ryjenkov  DA  et al.  Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol. 2011;79:533–51. 10.1111/j.1365-2958.2010.07470.x. PubMed DOI PMC

Bone  MA, Wilk  AJ, Perault  AI  et al.  Bordetella PlrSR regulatory system controls BvgAS activity and virulence in the lower respiratory tract. Proc Natl Acad Sci USA. 2017;114:E1519–E27. 10.1073/pnas.1609565114. PubMed DOI PMC

Boyd  CD, Chatterjee  D, Sondermann  H  et al.  LapG, required for modulating biofilm formation by Pseudomonas fluorescens Pf0-1, is a calcium-dependent protease. J Bacteriol. 2012;194:4406–14. 10.1128/JB.00642-12. PubMed DOI PMC

Brickman  TJ, Cummings  CA, Liew  SY  et al.  Transcriptional profiling of the iron starvation response in Bordetella pertussis provides new insights into siderophore utilization and virulence gene expression. J Bacteriol. 2011;193:4798–812. 10.1128/JB.05136-11. PubMed DOI PMC

Burns  JL, Deer  DD, Weinert  EE. Oligomeric state affects oxygen dissociation and diguanylate cyclase activity of globin coupled sensors. Mol BioSyst. 2014;10:2823–6. 10.1039/C4MB00366G. PubMed DOI

Burns  JL, Rivera  S, Deer  DD  et al.  Oxygen and Bis(3',5')-cyclic Dimeric Guanosine Monophosphate Binding Control Oligomerization State Equilibria of Diguanylate Cyclase-Containing Globin Coupled Sensors. Biochemistry. 2016;55:6642–51. 10.1021/acs.biochem.6b00526. PubMed DOI

Cancino-Diaz  ME, Guerrero-Barajas  C, Betanzos-Cabrera  G  et al.  Nucleotides as Bacterial Second Messengers. Molecules. 2023;28:7996. 10.3390/molecules28247996. PubMed DOI PMC

Chen  Q, Ng  V, Warfel  JM  et al.  Activation of Bvg-Repressed Genes in Bordetella pertussis by RisA Requires Cross Talk from Noncooperonic Histidine Kinase RisK. J Bacteriol. 2017;199:e00475–17. 10.1128/JB.00475-17. PubMed DOI PMC

Chen  Q, Stibitz  S. The BvgASR virulence regulon of Bordetella pertussis. Curr Opin Microbiol. 2019;47:74–81. 10.1016/j.mib.2019.01.002. PubMed DOI

Chen  Y, Quirk  NF, Tan  S. Shining a light on bacterial environmental cue integration and its relation to metabolism. Mol Microbiol. 2023;120:71–74. 10.1111/mmi.15065. PubMed DOI PMC

Christen  B, Christen  M, Paul  R  et al.  Allosteric control of cyclic di-GMP signaling. J Biol Chem. 2006;281:32015–24. 10.1016/S0021-9258(19)84115-7. PubMed DOI

Christen  M, Christen  B, Folcher  M  et al.  Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem. 2005;280:30829–37. 10.1074/jbc.M504429200. PubMed DOI

Christensen  DG, Marsden  AE, Hodge-Hanson  K  et al.  LapG mediates biofilm dispersal in Vibrio fischeri by controlling maintenance of the VCBS-containing adhesin LapV. Mol Microbiol. 2020;114:742–61. 10.1111/mmi.14573. PubMed DOI PMC

Conover  MS, Sloan  GP, Love  CF  et al.  The Bps polysaccharide of Bordetella pertussis promotes colonization and biofilm formation in the nose by functioning as an adhesin. Mol Microbiol. 2010;77:1439–55. 10.1111/j.1365-2958.2010.07297.x. PubMed DOI PMC

Cooley  RB, Smith  TJ, Leung  W  et al.  Cyclic Di-GMP-Regulated Periplasmic Proteolysis of a Pseudomonas aeruginosa Type Vb Secretion System Substrate. J Bacteriol. 2016;198:66–76. 10.1128/JB.00369-15. PubMed DOI PMC

Cotter  PA, Jones  AM. Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol. 2003;11:367–73. 10.1016/S0966-842X(03)00156-2. PubMed DOI

Cotter  PA, Miller  JF. BvgAS-mediated signal transduction: analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect Immun. 1994;62:3381–90. 10.1128/iai.62.8.3381-3390.1994. PubMed DOI PMC

Cotter  PA, Miller  JF. A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of Bvg-regulated antigens. Mol Microbiol. 1997;24:671–85. 10.1046/j.1365-2958.1997.3821741.x. PubMed DOI

Coutte  L, Antoine  R, Slupek  S  et al.  Combined transcriptomic and ChIPseq analyses of the Bordetella pertussis RisA regulon. Msystems. 2024;9:e0095123. 10.1128/msystems.00951-23. PubMed DOI PMC

Coutte  L, Huot  L, Antoine  R  et al.  The multifaceted RisA regulon of Bordetella pertussis. Sci Rep. 2016;6:32774. 10.1038/srep32774. PubMed DOI PMC

Croinin  TO, Grippe  VK, Merkel  TJ. Activation of the vrg6 promoter of Bordetella pertussis by RisA. J Bacteriol. 2005;187:1648–58. 10.1128/JB.187.5.1648-1658.2005. PubMed DOI PMC

Cummings  CA, Bootsma  HJ, Relman  DA  et al.  Species- and strain-specific control of a complex, flexible regulon by Bordetella BvgAS. J Bacteriol. 2006;188:1775–85. 10.1128/JB.188.5.1775-1785.2006. PubMed DOI PMC

Debandi  M, Carrica  M, Hentschker  C  et al.  Role of the Putative Histidine Kinase BP1092 in Bordetella pertussis Virulence Regulation and Intracellular Survival. J Proteome Res. 2024;23:1666–78. 10.1021/acs.jproteome.3c00817. PubMed DOI

Deora  R, Bootsma  HJ, Miller  JF  et al.  Diversity in the Bordetella virulence regulon: transcriptional control of a Bvg-intermediate phase gene. Mol Microbiol. 2001;40:669–83. 10.1046/j.1365-2958.2001.02415.x. PubMed DOI

Diavatopoulos  DA, Cummings  CA, Schouls  LM  et al.  Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog. 2005;1:e45. 10.1371/journal.ppat.0010045. PubMed DOI PMC

Dienstbier  A, Amman  F, Stipl  D  et al.  Comparative Integrated Omics Analysis of the Hfq Regulon in Bordetella pertussis. Int J Mol Sci. 2019;20:3073. 10.3390/ijms20123073. PubMed DOI PMC

Domenech de Celles  M, Rohani  P. Pertussis vaccines, epidemiology and evolution. Nat Rev Micro. 2024;22:722–35. 10.1038/s41579-024-01064-8. PubMed DOI

Drzmisek  J, Petrackova  D, Dienstbier  A  et al.  T3SS chaperone of the CesT family is required for secretion of the anti-sigma factor BtrA in Bordetella pertussis. Emerg Microbes Infect. 2023;12:2272638. 10.1080/22221751.2023.2272638. PubMed DOI PMC

Dupre  E, Herrou  J, Lensink  MF  et al.  Virulence regulation with Venus flytrap domains: structure and function of the periplasmic moiety of the sensor-kinase BvgS. PLoS Pathog. 2015;11:e1004700. 10.1371/journal.ppat.1004700. PubMed DOI PMC

El Khatib  N, Ferroni  A, Le Bourgeois  M  et al.  Persistent Bordetella bronchiseptica infection in a child with cystic fibrosis: relationship to bacterial phenotype. J Cyst Fibros. 2015;14:E13–5. 10.1016/j.jcf.2015.03.014. PubMed DOI

Ereno-Orbea  J, Oyenarte  I, Martinez-Cruz  LA. CBS domains: ligand binding sites and conformational variability. Arch Biochem Biophys. 2013;540:70–81. 10.1016/j.abb.2013.10.008. PubMed DOI

Farman  MR, Petrackova  D, Kumar  D  et al.  Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment. Emerg Microbes Infect. 2023;12:e2146536. 10.1080/22221751.2022.2146536. PubMed DOI PMC

Fauconnier  A, Veithen  A, Gueirard  P  et al.  Characterization of the type III secretion locus of Bordetella pertussis. Int J Med Microbiol. 2001;290:693–705. 10.1016/S1438-4221(01)80009-6. PubMed DOI

Fennelly  NK, Sisti  F, Higgins  SC  et al.  Bordetella pertussis expresses a functional type III secretion system that subverts protective innate and adaptive immune responses. Infect Immun. 2008;76:1257–66. 10.1128/IAI.00836-07. PubMed DOI PMC

Fernandez  J, Sisti  F, Bottero  D  et al.  Constitutive expression of bvgR-repressed factors is not detrimental to the Bordetella bronchiseptica-host interaction. Res Microbiol. 2005;156:843–50. 10.1016/j.resmic.2005.04.003. PubMed DOI

Freitas  TA, Hou  S, Alam  M. The diversity of globin-coupled sensors. FEBS Lett. 2003;552:99–104. 10.1016/S0014-5793(03)00923-2. PubMed DOI

Fullen  AR, Gutierrez-Ferman  JL, Rayner  RE  et al.  Architecture and matrix assembly determinants of Bordetella pertussis biofilms on primary human airway epithelium. PLoS Pathog. 2023;19:e1011193. 10.1371/journal.ppat.1011193. PubMed DOI PMC

Galan  JE, Lara-Tejero  M, Marlovits  TC  et al.  Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol. 2014;68:415–38. 10.1146/annurev-micro-092412-155725. PubMed DOI PMC

Galperin  MY, Gaidenko  TA, Mulkidjanian  AY  et al.  MHYT, a new integral membrane sensor domain. FEMS Microbiol Lett. 2001;205:17–23. 10.1111/j.1574-6968.2001.tb10919.x. PubMed DOI

Galperin  MY. Diversity of structure and function of response regulator output domains. Curr Opin Microbiol. 2010;13:150–9. 10.1016/j.mib.2010.01.005. PubMed DOI PMC

Germani  F, Nardini  M, De Schutter  A  et al.  Structural and Functional Characterization of the Globin-Coupled Sensors of Azotobacter vinelandii and Bordetella pertussis. Antioxid Redox Signaling. 2020;32:378–95. 10.1089/ars.2018.7690. PubMed DOI

Giacalone  D, Smith  TJ, Collins  AJ  et al.  Ligand-Mediated Biofilm Formation via Enhanced Physical Interaction between a Diguanylate Cyclase and Its Receptor. mBio. 2018;9:e01254–18. 10.1128/mBio.01254-18. PubMed DOI PMC

Gilles-Gonzalez  MA, Sousa  EHS. Escherichia coli DosC and DosP: a role of c-di-GMP in compartmentalized sensing by degradosomes. Adv Microb Physiol. 2019;75:53–67. PubMed

Goodnow  RA. Biology of Bordetella bronchiseptica. Microbiol Rev. 1980;44:722–38. 10.1128/mr.44.4.722-738.1980. PubMed DOI PMC

Goto  M, Hanawa  T, Abe  A  et al.  Transcriptional Downregulation of a Type III Secretion System under Reducing Conditions in Bordetella pertussis. J Bacteriol. 2020;202:e00400–20. 10.1128/JB.00400-20. PubMed DOI PMC

Gueirard  P, Weber  C, Le Coustumier  A  et al.  Human Bordetella bronchiseptica infection related to contact with infected animals: persistence of bacteria in host. J Clin Microbiol. 1995;33:2002–6. 10.1128/jcm.33.8.2002-2006.1995. PubMed DOI PMC

Gutierrez  MP, Wong  TY, Damron  FH  et al.  Cyclic di-GMP Regulates the Type III Secretion System and Virulence in Bordetella bronchiseptica. Infect Immun. 2022;90:e0010722. 10.1128/iai.00107-22. PubMed DOI PMC

Gutierrez Mdl  P, Damron  FH, Sisti  F  et al.  BvgR is important for virulence-related phenotypes in Bordetella bronchiseptica. Microbiol Spectr. 2024;12:e0079424. 10.1128/spectrum.00794-24. PubMed DOI PMC

Hamidou Soumana  I, Linz  B, Harvill  ET. Environmental Origin of the Genus Bordetella. Front Microbiol. 2017;8:28. 10.3389/fmicb.2017.00028. PubMed DOI PMC

Hanawa  T, Kamachi  K, Yonezawa  H  et al.  Glutamate Limitation, BvgAS Activation, and (p)ppGpp Regulate the Expression of the Bordetella pertussis Type 3 Secretion System. J Bacteriol. 2016;198:343–51. 10.1128/JB.00596-15. PubMed DOI PMC

Heikaus  CC, Pandit  J, Klevit  RE. Cyclic nucleotide binding GAF domains from phosphodiesterases: structural and mechanistic insights. Structure. 2009;17:1551–7. 10.1016/j.str.2009.07.019. PubMed DOI PMC

Hengge  R. High-specificity local and global c-di-GMP signaling. Trends Microbiol. 2021;29:993–1003. 10.1016/j.tim.2021.02.003. PubMed DOI

Herbst  S, Lorkowski  M, Sarenko  O  et al.  Transmembrane redox control and proteolysis of PdeC, a novel type of c-di-GMP phosphodiesterase. EMBO J. 2018;37:e97825. 10.15252/embj.201797825. PubMed DOI PMC

Herrou  J, Bompard  C, Wintjens  R  et al.  Periplasmic domain of the sensor-kinase BvgS reveals a new paradigm for the Venus flytrap mechanism. Proc Natl Acad Sci USA. 2010;107:17351–5. 10.1073/pnas.1006267107. PubMed DOI PMC

Hester  SE, Goodfield  LL, Park  J  et al.  Host Specificity of Ovine Bordetella parapertussis and the Role of Complement. PLoS One. 2015;10:e0130964. 10.1371/journal.pone.0130964. PubMed DOI PMC

Hinsa  SM, Espinosa-Urgel  M, Ramos  JL  et al.  Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol. 2003;49:905–18. 10.1046/j.1365-2958.2003.03615.x. PubMed DOI

Hot  D, Antoine  R, Renauld-Mongenie  G  et al.  Differential modulation of Bordetella pertussis virulence genes as evidenced by DNA microarray analysis. Mol Gen Genomics. 2003;269:475–86. 10.1007/s00438-003-0851-1. PubMed DOI

Jenal  U, Malone  J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet. 2006;40:385–407. 10.1146/annurev.genet.40.110405.090423. PubMed DOI

Jenal  U, Reinders  A, Lori  C. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Micro. 2017;15:271–84. 10.1038/nrmicro.2016.190. PubMed DOI

Jungnitz  H, West  NP, Walker  MJ  et al.  A second two-component regulatory system of Bordetella bronchiseptica required for bacterial resistance to oxidative stress, production of acid phosphatase, and in vivo persistence. Infect Immun. 1998;66:4640–50. 10.1128/IAI.66.10.4640-4650.1998. PubMed DOI PMC

Junkermeier  EH, Hengge  R. Local signaling enhances output specificity of bacterial c-di-GMP signaling networks. Microlife. 2023;4:uqad026. 10.1093/femsml/uqad026. PubMed DOI PMC

Kamanova  J. Bordetella Type III Secretion Injectosome and Effector Proteins. Front Cell Infect Microbiol. 2020;10:466. 10.3389/fcimb.2020.00466. PubMed DOI PMC

Kaut  CS, Duncan  MD, Kim  JY  et al.  A novel sensor kinase is required for Bordetella bronchiseptica to colonize the lower respiratory tract. Infect Immun. 2011;79:3216–28. 10.1128/IAI.00005-11. PubMed DOI PMC

Keidel  K, Amman  F, Bibova  I  et al.  Signal transduction-dependent small regulatory RNA is involved in glutamate metabolism of the human pathogen Bordetella pertussis. RNA. 2018;24:1530–41. 10.1261/rna.067306.118. PubMed DOI PMC

Kerr  JR, Rigg  GP, Matthews  RC  et al.  The Bpel locus encodes type III secretion machinery in Bordetella pertussis. Microb Pathog. 1999;27:349–67. 10.1006/mpat.1999.0307. PubMed DOI

Khalil  A, Samara  A, Campbell  H  et al.  Recent increase in infant pertussis cases in Europe and the critical importance of antenatal immunizations: we must do better…now. Int J Infect Dis. 2024;146:107148. 10.1016/j.ijid.2024.107148. PubMed DOI

Knapp  S, Mekalanos  JJ. Two trans-acting regulatory genes (vir and mod) control antigenic modulation in Bordetella pertussis. J Bacteriol. 1988;170:5059–66. 10.1128/jb.170.11.5059-5066.1988. PubMed DOI PMC

Kozak  NA, Mattoo  S, Foreman-Wykert  AK  et al.  Interactions between partner switcher orthologs BtrW and BtrV regulate type III secretion in Bordetella. J Bacteriol. 2005;187:5665–76. 10.1128/JB.187.16.5665-5676.2005. PubMed DOI PMC

Kurushima  J, Kuwae  A, Abe  A. The type III secreted protein BspR regulates the virulence genes in Bordetella bronchiseptica. PLoS One. 2012;7:e38925. 10.1371/journal.pone.0038925. PubMed DOI PMC

Kuwae  A, Matsuzawa  T, Ishikawa  N  et al.  BopC is a novel type III effector secreted by Bordetella bronchiseptica and has a critical role in type III-dependent necrotic cell death. J Biol Chem. 2006;281:6589–600. 10.1074/jbc.M512711200. PubMed DOI

Lacey  BW. Antigenic modulation of Bordetella pertussis. J Hyg. 1960;58:57–93. 10.1017/S0022172400038134. PubMed DOI PMC

Lamberti  Y, Cafiero  JH, Surmann  K  et al.  Proteome analysis of Bordetella pertussis isolated from human macrophages. J Proteomics. 2016;136:55–67. 10.1016/j.jprot.2016.02.002. PubMed DOI

Liu  Y, Blanco-Toral  C, Larrouy-Maumus  G. The role of cyclic nucleotides in bacterial antimicrobial resistance and tolerance. Trends Microbiol. 2025;33:164–83. 10.1016/j.tim.2024.08.006. PubMed DOI

Lu  S, Wang  J, Chitsaz  F  et al.  CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48:D265–8. 10.1093/nar/gkz991. PubMed DOI PMC

Marchler-Bauer  A, Bo  Y, Han  L  et al.  CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45:D200–3. 10.1093/nar/gkw1129. PubMed DOI PMC

Martinez de Tejada  G, Cotter  PA, Heininger  U  et al.  Neither the Bvg- phase nor the vrg6 locus of Bordetella pertussis is required for respiratory infection in mice. Infect Immun. 1998;66:2762–8. 10.1128/IAI.66.6.2762-2768.1998. PubMed DOI PMC

Matilla  MA, Gavira  JA, Monteagudo-Cascales  E  et al.  Structural and functional diversity of sensor domains in bacterial transmembrane receptors. Trends Microbiol. 2025;33:796–809. 10.1016/j.tim.2025.02.019. PubMed DOI PMC

Mattoo  S, Cherry  JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev. 2005;18:326–82. 10.1128/CMR.18.2.326-382.2005. PubMed DOI PMC

Mattoo  S, Foreman-Wykert  AK, Cotter  PA  et al.  Mechanisms of Bordetella pathogenesis. Front Biosci. 2001;6:E168–86. 10.2741/Mattoo. PubMed DOI

Mattoo  S, Yuk  MH, Huang  LL  et al.  Regulation of type III secretion in Bordetella. Mol Microbiol. 2004;52:1201–14. 10.1111/j.1365-2958.2004.04053.x. PubMed DOI

Melvin  JA, Scheller  EV, Miller  JF  et al.  Bordetella pertussis pathogenesis: current and future challenges. Nat Rev Micro. 2014;12:274–88. 10.1038/nrmicro3235. PubMed DOI PMC

Merkel  TJ, Barros  C, Stibitz  S. Characterization of the bvgR locus of Bordetella pertussis. J Bacteriol. 1998;180:1682–90. 10.1128/JB.180.7.1682-1690.1998. PubMed DOI PMC

Merkel  TJ, Boucher  PE, Stibitz  S  et al.  Analysis of bvgR expression in Bordetella pertussis. J Bacteriol. 2003;185:6902–12. 10.1128/JB.185.23.6902-6912.2003. PubMed DOI PMC

Merkel  TJ, Stibitz  S, Keith  JM  et al.  Contribution of regulation by the bvg locus to respiratory infection of mice by Bordetella pertussis. Infect Immun. 1998;66:4367–73. 10.1128/IAI.66.9.4367-4373.1998. PubMed DOI PMC

Merkel  TJ, Stibitz  S. Identification of a locus required for the regulation of bvg-repressed genes in Bordetella pertussis. J Bacteriol. 1995;177:2727–36. 10.1128/jb.177.10.2727-2736.1995. PubMed DOI PMC

Miller  JF, Mekalanos  JJ, Falkow  S. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science. 1989;243:916–22. 10.1126/science.2537530. PubMed DOI

Moon  K, Bonocora  RP, Kim  DD  et al.  The BvgAS Regulon of Bordetella pertussis. mBio. 2017;8:e01526–17. 10.1128/mBio.01526-17. PubMed DOI PMC

Mugni  SL, Ambrosis  N, GA  OT  et al.  Interplay of virulence factors and signaling molecules: albumin and calcium-mediated biofilm regulation in Bordetella bronchiseptica. J Bacteriol. 2025;207:e0044524. 10.1128/jb.00445-24. PubMed DOI PMC

Nagamatsu  K, Kuwae  A, Konaka  T  et al.  Bordetella evades the host immune system by inducing IL-10 through a type III effector, BopN. J Exp Med. 2009;206:3073–88. 10.1084/jem.20090494. PubMed DOI PMC

Navarrete  KM, Bumba  L, Prudnikova  T  et al.  BopN is a Gatekeeper of the Bordetella Type III Secretion System. Microbiol Spectr. 2023;11:e0411222. 10.1128/spectrum.04112-22. PubMed DOI PMC

Navarro  MV, Newell  PD, Krasteva  PV  et al.  Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. PLoS Biol. 2011;9:e1000588. 10.1371/journal.pbio.1000588. PubMed DOI PMC

Newell  PD, Boyd  CD, Sondermann  H  et al.  A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol. 2011;9:e1000587. 10.1371/journal.pbio.1000587. PubMed DOI PMC

Newell  PD, Monds  RD, O’Toole  GA. LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci USA. 2009;106:3461–6. 10.1073/pnas.0808933106. PubMed DOI PMC

Nicholson  TL, Brockmeier  SL, Loving  CL  et al.  Phenotypic modulation of the virulent Bvg phase is not required for pathogenesis and transmission of Bordetella bronchiseptica in swine. Infect Immun. 2012;80:1025–36. 10.1128/IAI.06016-11. PubMed DOI PMC

Nicholson  TL, Brockmeier  SL, Loving  CL  et al.  The Bordetella bronchiseptica type III secretion system is required for persistence and disease severity but not transmission in swine. Infect Immun. 2014;82:1092–103. 10.1128/IAI.01115-13. PubMed DOI PMC

Nicholson  TL, Waack  U, Fleming  DS  et al.  The contribution of BvgR, RisA, and RisS to global gene regulation, intracellular cyclic-di-GMP levels, motility, and biofilm formation in Bordetella bronchiseptica. Front Microbiol. 2024;15:1305097. 10.3389/fmicb.2024.1305097. PubMed DOI PMC

Nishikawa  S, Shinzawa  N, Nakamura  K  et al.  The bvg-repressed gene brtA, encoding biofilm-associated surface adhesin, is expressed during host infection by Bordetella bronchiseptica. Microbiol Immunol. 2016;60:93–105. 10.1111/1348-0421.12356. PubMed DOI

Nugraha  DK, Nishida  T, Tamaki  Y  et al.  Survival of Bordetella bronchiseptica in Acanthamoeba castellanii. Microbiol Spectr. 2023;11:e0048723. 10.1128/spectrum.00487-23. PubMed DOI PMC

Panina  EM, Mattoo  S, Griffith  N  et al.  A genome-wide screen identifies a Bordetella type III secretion effector and candidate effectors in other species. Mol Microbiol. 2005;58:267–79. 10.1111/j.1365-2958.2005.04823.x. PubMed DOI

Parkhill  J, Sebaihia  M, Preston  A  et al.  Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet. 2003;35:32–40. 10.1038/ng1227. PubMed DOI

Paul  K, Nieto  V, Carlquist  WC  et al.  The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol Cell. 2010;38:128–39. 10.1016/j.molcel.2010.03.001. PubMed DOI PMC

Paul  R, Weiser  S, Amiot  NC  et al.  Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev. 2004;18:715–27. 10.1101/gad.289504. PubMed DOI PMC

Pilione  MR, Harvill  ET. The Bordetella bronchiseptica type III secretion system inhibits gamma interferon production that is required for efficient antibody-mediated bacterial clearance. Infect Immun. 2006;74:1043–9. 10.1128/IAI.74.2.1043-1049.2006. PubMed DOI PMC

Poli  JP, Boyeldieu  A, Lutz  A  et al.  BpfD Is a c-di-GMP Effector Protein Playing a Key Role for Pellicle Biosynthesis in Shewanella oneidensis. Int J Mol Sci. 2024;25:9697. 10.3390/ijms25179697. PubMed DOI PMC

Porter  JF, Connor  K, Donachie  W. Isolation and characterization of Bordetella parapertussis-like bacteria from ovine lungs. Microbiology. 1994;140:255–61. 10.1099/13500872-140-2-255. PubMed DOI

Porter  JF, Wardlaw  AC. Long-term survival of Bordetella bronchiseptica in lakewater and in buffered saline without added nutrients. FEMS Microbiol Lett. 1993;110:33–36. 10.1111/j.1574-6968.1993.tb06291.x. PubMed DOI

Raffa  RG, Raivio  TL. A third envelope stress signal transduction pathway in Escherichia coli. Mol Microbiol. 2002;45:1599–611. 10.1046/j.1365-2958.2002.03112.x. PubMed DOI

Randall  TE, Eckartt  K, Kakumanu  S  et al.  Sensory Perception in Bacterial Cyclic Diguanylate Signal Transduction. J Bacteriol. 2022;204:e0043321. 10.1128/jb.00433-21. PubMed DOI PMC

Redelman-Sidi  G, Grommes  C, Papanicolaou  G. Kitten-transmitted Bordetella bronchiseptica infection in a patient receiving temozolomide for glioblastoma. J Neurooncol. 2011;102:335–9. 10.1007/s11060-010-0322-6. PubMed DOI

Rivera  S, Young  PG, Hoffer  ED  et al.  Structural Insights into Oxygen-Dependent Signal Transduction within Globin Coupled Sensors. Inorg Chem. 2018;57:14386–95. 10.1021/acs.inorgchem.8b02584. PubMed DOI

Ross  P, Weinhouse  H, Aloni  Y  et al.  Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature. 1987;325:279–81. 10.1038/325279a0. PubMed DOI

Rotcheewaphan  S, Belisle  JT, Webb  KJ  et al.  Diguanylate cyclase activity of the Mycobacterium leprae T cell antigen ML1419c. Microbiology (Reading). 2016;162:1651–61. 10.1099/mic.0.000339. PubMed DOI PMC

Ryan  RP, Lucey  J, O’Donovan  K  et al.  HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa. Environ Microbiol. 2009;11:1126–36. 10.1111/j.1462-2920.2008.01842.x. PubMed DOI

Schirmer  T, Jenal  U. Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Micro. 2009;7:724–35. 10.1038/nrmicro2203. PubMed DOI

Schmidt  AJ, Ryjenkov  DA, Gomelsky  M. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol. 2005;187:4774–81. 10.1128/JB.187.14.4774-4781.2005. PubMed DOI PMC

Shimizu  T. The Heme-Based Oxygen-Sensor Phosphodiesterase Ec DOS (DosP): structure-Function Relationships. Biosensors. 2013;3:211–37. 10.3390/bios3020211. PubMed DOI PMC

Sisti  F, Ha  DG, O’Toole  GA  et al.  Cyclic-di-GMP signalling regulates motility and biofilm formation in Bordetella bronchiseptica. Microbiology (Reading). 2013;159:869–79. 10.1099/mic.0.064345-0. PubMed DOI PMC

Skinner  JA, Pilione  MR, Shen  H  et al.  Bordetella type III secretion modulates dendritic cell migration resulting in immunosuppression and bacterial persistence. J Immunol. 2005;175:4647–52. 10.4049/jimmunol.175.7.4647. PubMed DOI

Sloan  GP, Love  CF, Sukumar  N  et al.  The Bordetella Bps polysaccharide is critical for biofilm development in the mouse respiratory tract. J Bacteriol. 2007;189:8270–6. 10.1128/JB.00785-07. PubMed DOI PMC

Smith  TJ, Sondermann  H, O’Toole  GA. Type 1 Does the Two-Step: type 1 Secretion Substrates with a Functional Periplasmic Intermediate. J Bacteriol. 2018;200:e00168–18. 10.1128/JB.00168-18. PubMed DOI PMC

Sobran  MA, Cotter  PA. The BvgS PAS Domain, an Independent Sensory Perception Module in the Bordetella bronchiseptica BvgAS Phosphorelay. J Bacteriol. 2019;201:e00286–19. 10.1128/JB.00286-19. PubMed DOI PMC

Stenson  TH, Allen  AG, Al-Meer  JA  et al.  Bordetella pertussis risA, but not risS, is required for maximal expression of Bvg-repressed genes. Infect Immun. 2005;73:5995–6004. 10.1128/IAI.73.9.5995-6004.2005. PubMed DOI PMC

Stockbauer  KE, Foreman-Wykert  AK, Miller  JF. Bordetella type III secretion induces caspase 1-independent necrosis. Cell Microbiol. 2003;5:123–32. 10.1046/j.1462-5822.2003.00260.x. PubMed DOI

Stuffle  EC, Johnson  MS, Watts  KJ. PAS domains in bacterial signal transduction. Curr Opin Microbiol. 2021;61:8–15. 10.1016/j.mib.2021.01.004. PubMed DOI PMC

Taylor  BL, Zhulin  IB. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev. 1999;63:479–506. 10.1128/MMBR.63.2.479-506.1999. PubMed DOI PMC

Taylor-Mulneix  DL, Bendor  L, Linz  B  et al.  Bordetella bronchiseptica exploits the complex life cycle of Dictyostelium discoideum as an amplifying transmission vector. PLoS Biol. 2017;15:e2000420. 10.1371/journal.pbio.2000420. PubMed DOI PMC

Troisfontaines  P, Cornelis  GR. Type III secretion: more systems than you think. Physiology (Bethesda). 2005;20:326–39. PubMed

Tuckerman  JR, Gonzalez  G, Gilles-Gonzalez  MA. Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. J Mol Biol. 2011;407:633–9. 10.1016/j.jmb.2011.02.019. PubMed DOI

Tuckerman  JR, Gonzalez  G, Sousa  EH  et al.  An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry. 2009;48:9764–74. 10.1021/bi901409g. PubMed DOI

Uhl  MA, Miller  JF. Autophosphorylation and phosphotransfer in the Bordetella pertussis BvgAS signal transduction cascade. Proc Natl Acad Sci USA. 1994;91:1163–7. 10.1073/pnas.91.3.1163. PubMed DOI PMC

Upadhyay  AA, Fleetwood  AD, Adebali  O  et al.  Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes. PLoS Comput Biol. 2016;12:e1004862. 10.1371/journal.pcbi.1004862. PubMed DOI PMC

Valentini  M, Filloux  A. Multiple Roles of c-di-GMP Signaling in Bacterial Pathogenesis. Annu Rev Microbiol. 2019;73:387–406. 10.1146/annurev-micro-020518-115555. PubMed DOI

van der Zee  A, Mooi  F, Van Embden  J  et al.  Molecular evolution and host adaptation of Bordetella spp.: phylogenetic analysis using multilocus enzyme electrophoresis and typing with three insertion sequences. J Bacteriol. 1997;179:6609–17. 10.1128/jb.179.21.6609-6617.1997. PubMed DOI PMC

Vasenina  A, Fu  Y, O’Toole  GA  et al.  Local control: a hub-based model for the c-di-GMP network. mSphere. 2024;9:e0017824. 10.1128/msphere.00178-24. PubMed DOI PMC

Wan  X, Saito  JA, Newhouse  JS  et al.  The importance of conserved amino acids in heme-based globin-coupled diguanylate cyclases. PLoS One. 2017;12:e0182782. 10.1371/journal.pone.0182782. PubMed DOI PMC

Wan  X, Tuckerman  JR, Saito  JA  et al.  Globins synthesize the second messenger bis-(3'-5')-cyclic diguanosine monophosphate in bacteria. J Mol Biol. 2009;388:262–70. 10.1016/j.jmb.2009.03.015. PubMed DOI PMC

Wang  J, Chitsaz  F, Derbyshire  MK  et al.  The conserved domain database in 2023. Nucleic Acids Res. 2023;51:D384–8. 10.1093/nar/gkac1096. PubMed DOI PMC

Wang  S, Zhang  S, Liu  J. Resurgence of pertussis: epidemiological trends, contributing factors, challenges, and recommendations for vaccination and surveillance. Hum Vaccin Immunother. 2025;21:2513729. 10.1080/21645515.2025.2513729. PubMed DOI PMC

Weiss  AA, Hewlett  EL, Myers  GA  et al.  Tn5-induced mutations affecting virulence factors of Bordetella pertussis. Infect Immun. 1983;42:33–41. 10.1128/iai.42.1.33-41.1983. PubMed DOI PMC

Yan  J, Deforet  M, Boyle  KE  et al.  Bow-tie signaling in c-di-GMP: machine learning in a simple biochemical network. PLoS Comput Biol. 2017;13:e1005677. 10.1371/journal.pcbi.1005677. PubMed DOI PMC

Yuk  MH, Harvill  ET, Cotter  PA  et al.  Modulation of host immune responses, induction of apoptosis and inhibition of NF-kappaB activation by the Bordetella type III secretion system. Mol Microbiol. 2000;35:991–1004. 10.1046/j.1365-2958.2000.01785.x. PubMed DOI

Yuk  MH, Harvill  ET, Miller  JF. The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol Microbiol. 1998;28:945–59. 10.1046/j.1365-2958.1998.00850.x. PubMed DOI

Zhang  R, Evans  G, Rotella  FJ  et al.  Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase. Biochemistry. 1999;38:4691–700. 10.1021/bi982858v. PubMed DOI

Zhulin  IB, Taylor  BL, Dixon  R. PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem Sci. 1997;22:331–3. 10.1016/S0968-0004(97)01110-9. PubMed DOI

Zimna  K, Medina  E, Jungnitz  H  et al.  Role played by the response regulator Ris in Bordetella bronchiseptica resistance to macrophage killing. FEMS Microbiol Lett. 2001;201:177–80. 10.1111/j.1574-6968.2001.tb10753.x. PubMed DOI

Zmuda  M, Sedlackova  E, Pravdova  B  et al.  The Bordetella effector protein BteA induces host cell death by disruption of calcium homeostasis. mBio. 2024;15:e0192524. 10.1128/mbio.01925-24. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...