Glycodendrimers are a novel group of dendrimers (DDMs) characterized by surface modifications with various types of glycosides. It has been shown previously that such modifications significantly decrease the cytotoxicity of DDMs. Here, we present an investigation of glucose-modified carbosilane DDMs (first-third-generation, DDM1-3Glu) interactions with two models of biological structures: lipid membranes (liposomes) and serum protein (human serum albumin, HSA). The changes in lipid membrane fluidity with increasing concentration of DDMs was monitored by spectrofluorimetry and calorimetry methods. The influence of glycodendrimers on serum protein was investigated by monitoring changes in protein fluorescence intensity (fluorescence quenching) and as protein secondary structure alterations by circular dichroism spectrometry. Generally, all generations of DDMGlu induced a decrease of membrane fluidity and interacted weakly with HSA. Interestingly, in contrast to other dendritic type polymers, the extent of the DDM interaction with both biological models was not related to DDM generation. The most significant interaction with protein was shown in the case of DDM2Glu, whereas DDM1Glu induced the highest number of changes in membrane fluidity. In conclusion, our results suggest that the flexibility of a DDM molecule, as well as its typical structure (hydrophobic interior and hydrophilic surface) along with the formation of larger aggregates of DDM2-3Glu, significantly affect the type and extent of interaction with biological structures.
- MeSH
- cirkulární dichroismus MeSH
- dendrimery chemie farmakologie MeSH
- fluidita membrány účinky léků MeSH
- fluorescenční spektrometrie MeSH
- glukosa chemie farmakologie MeSH
- hydrofobní a hydrofilní interakce MeSH
- lidé MeSH
- lidský sérový albumin metabolismus MeSH
- liposomy MeSH
- nádory farmakoterapie MeSH
- nosiče léků chemie farmakologie MeSH
- protinádorové látky aplikace a dávkování MeSH
- silany chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The preparation of light-activated hybrid antibacterial agent combining the porphyrin molecules, bound to the silver nanoparticles (AgNPs) surface is reported. AgNPs were synthesized by N-methyl-2-pyrrolidone-initiated reduction without additional reducing agents. The chemical structure of protoporphyrin IX was modified with the aim to introduce thiol groups. The size distribution and shape features of AgNPs were checked using TEM and HRTEM microscopies. The introduction of thiol groups into the porphyrin was proved by IR spectroscopy. The AgNPs-porphyrin binding was performed in solution and confirmed by fluorescence quenching, Raman spectroscopy and energy-filtered transmission electron microscopy (EFTEM). The antibacterial tests were performed against S. epidermidis and E. coli upon to LED illumination and in the dark. The synergetic effect of AgNPs and porphyrin as well as light activation of the created antibacterial conjugates were observed.
- MeSH
- antibakteriální látky chemická syntéza farmakologie MeSH
- Escherichia coli účinky léků MeSH
- kovové nanočástice chemie ultrastruktura MeSH
- luminiscence MeSH
- mikrobiální testy citlivosti MeSH
- porfyriny chemická syntéza chemie farmakologie MeSH
- Staphylococcus epidermidis účinky léků MeSH
- stříbro chemie farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
Non-viral gene delivery vectors studied in the gene therapy applications are often designed with the cationic nitrogen containing groups necessary for binding and cell release of nucleic acids. Disadvantage is a relatively high toxicity which restricts the in vivo use of such nanoparticles. Here we show, that the 3rd generation carbosilane dendrimers possessing (trimethyl)phosphonium (PMe3) groups on their periphery were able to effectively deliver the functional siRNA into the cells (B14, Cricetulus griseus), release it into the cytosol and finally to achieve up to 40% gene silencing of targeted gene (glyceraldehyde-3-phosphate dehydrogenase (GAPDH)) with the comparable or, in some cases, even better effectivity as their ammonium counterparts. Moreover, such cationic dendrimers show relatively low in vivo toxicity as compared to their ammonium analogues when analyzed by standard fish embryo test (FET) on Danio rerio in vivo model, with LD50 = 6.26 μM after 48 h of incubation. This is more than 10-fold improvement as compared to published values for various other types of cationic dendrimers. We discuss the potential of further increase of the transfection efficiency, endosomal escape and decrease of toxicity of such non-viral vectors, based on the systematic screening of different types of substituents on central phosphonium atom.
- MeSH
- buněčné linie MeSH
- Cricetulus MeSH
- dánio pruhované MeSH
- dendrimery aplikace a dávkování toxicita MeSH
- embryo nesavčí MeSH
- LD50 MeSH
- malá interferující RNA aplikace a dávkování MeSH
- organofosforové sloučeniny aplikace a dávkování toxicita MeSH
- silany aplikace a dávkování toxicita MeSH
- transfekce metody MeSH
- umlčování genů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH